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Abstract

We show an arithmetic generalization of the recent work of Lazarsfeld–Mustaţǎ which
uses Okounkov bodies to study linear series of line bundles. As applications, we derive a
log-concavity inequality on volumes of arithmetic line bundles and an arithmetic Fujita
approximation theorem for big line bundles.

1. Introduction

In their recent paper [LM08], Lazarsfeld and Mustaţǎ explored a systematic way of using
Okounkov bodies, originated in [Oko96, Oko03], to study the volumes of line bundles
over algebraic varieties. They easily recovered many positivity results in algebraic geometry
(cf. [Laz04]). A similar construction with a different viewpoint was also taken by Kaveh–
Khovanskii [KK08]. Our paper is the expected arithmetic analogue of [LM08]. Our main results
are as follows.

• Introduce arithmetic Okounkov bodies associated to an arithmetic line bundle, and prove
that the volumes of the former approximate the volume of the later.

• Show some log-concavity inequalities on the volumes and top intersection numbers, which
can be viewed as a high-dimensional generalization of the Hodge index theorem on
arithmetic surfaces of Faltings [Fal84].

• Prove an arithmetic analogue of Fujita’s approximation theorem, which is proved
independently by Huayi Chen [Che08b] during the preparation of this paper.

• As by-products, we recover the convergence of ĥ0(X, mL)/(md/d!) proved by Chen [Che08a]
and the arithmetic Hodge index theorem in codimension one proved by Moriwaki [Mor96].

1.1 Volume of an arithmetic line bundle
Let X be an arithmetic variety of dimension d. That is, X is a d-dimensional integral scheme,
projective and flat over Spec(Z). For any Hermitian line bundle L = (L, ‖ · ‖) over X, denote

Ĥ0(X, L) = {s ∈H0(X, L) : ‖s‖sup 6 1}

and
ĥ0(X, L) = log #Ĥ0(X, L).

Define the volume to be

vol(L) = lim sup
m→∞

ĥ0(X, mL)
md/d!

.
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Note that in this paper we write line bundles additively, so mL means L⊗m.
A line bundle L is said to be big if vol(L)> 0; it is effective if ĥ0(X, L)> 0. If L is ample in

the sense of Zhang [Zha95] (cf. § 2.1), then it is big by the formula

vol(L) = Ld > 0.

This is a result combining the works of Gillet–Soulé [GS91, GS92], Bismut–Vasserot [BV89] and
Zhang [Zha95]. See [Yua08, Corollary 2.7] for example.

As pointed out above, Huayi Chen proved that ‘limsup = lim’ in the definition of vol(L)
in his recent work [Che08a] using Harder–Narasimhan filtrations. We will derive this result by
means of Okounkov bodies in Theorem 2.7.

Some basic properties of big line bundles are proved in [Mor00, Mor09, Yua08]. They use
different definitions of bigness, but [Yua08, Corollary 2.4] shows that all of these definitions are
equivalent. The result ‘big = ample + effective’ of [Yua08] rephrased in Theorem 2.2 will be
widely used in this paper. It is also worth noting that the main result of Moriwaki [Mor09]
asserts that the volume function is continuous at all Hermitian line bundles.

1.2 Okounkov body
Assume that X is normal with smooth generic fibre XQ. Let

X ⊃ Y1 ⊃ · · · ⊃ Yd
be a flag on X, where each Yi is a regular irreducible closed subscheme of codimension i in X.
We require that Y1 is a vertical divisor lying over some finite prime p, and write char(Y.) = p in
this case. We further require that the residue field of Yd is isomorphic to Fp. There is a positive
density of such prime p for which Y. exists.

Define a valuation map

νY. = (ν1, . . . , νd) :H0(X, L)− {0}→ Zd

with respect to the flag Y. as in [LM08]. We explain it here. For any non-zero s ∈H0(X, L), we
first set ν1(s) = ordY1(s). Let sY1 be a section of the line bundle O(Y1) with zero locus Y1. Then
s
⊗(−ν1(s))
Y1

s is non-zero on Y1, and let s1 = (s⊗(−ν1(s))
Y1

s)|Y1 be the restriction. Set ν2(s) = ordY2(s1).
Continue this process on the section s1 on Y2, we can define ν3(s) and thus ν4(s), . . . , νd(s).

For any Hermitian line bundle L on X, denote

vY.(L) = νY.(Ĥ0(X, L)− {0})

to be the image in Zd. Note that we only pick up the image of the finite set Ĥ0(X, L)− {0}.
Let ∆Y.(L) be the closure of ΛY.(L) =

⋃
m>1(1/md)vY.(mL) in Rd. It turns out that ∆Y.(L)

is a bounded convex subset of Rd if non-empty. It has a finite volume under the Lebesgue measure
of Rd. See Lemma 2.4. We have the following counterpart of [LM08, Theorem A].

Theorem A. If L is big, then

lim
p=char(Y.)→∞

vol(∆Y.(L)) log p=
1
d!

vol(L).

In the geometric case of [LM08], exact equality between two volumes are easily obtained
without taking limit on p. However, it seems hard to be true in the arithmetic case if L is not
ample. Nevertheless, the above result is apparently sufficient for applications of vol(L).
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1.3 Log-concavity and Hodge index theorem

As what Lazarsfeld and Mustaţǎ do, we also show the log-concavity of volume functions by the
classical Brunn–Minkowski theorem in Euclidean geometry.

Theorem B. For any two effective line bundles L1, L2, we have

vol(L1 + L2)1/d > vol(L1)1/d + vol(L2)1/d.

When L1 and L2 are ample, the above volumes are exactly equal to arithmetic intersection
numbers. Even in this case, the inequality is not as transparent as the geometric case. The result
can be viewed as a generalization of the Hodge index theorem on arithmetic surfaces. See [Laz04]
for many related inequalities in the geometric case.

An easy consequence of the above result is the relation

(Ld−1
1 · L2)2 > (Ld1)(Ld−2

1 · L2
2)

on intersection numbers for any two ample line bundles L1, L2. This simple-looking relation is
equivalent to the Hodge index theorem for divisors on arithmetic varieties, which was proved by
Moriwaki [Mor96]. See Corollaries 3.1 and 3.2.

1.4 Arithmetic Fujita approximation

In the geometric case, one of the most important properties of big line bundles is Fujita’s
approximation in [Fuj94]. It asserts that a big line bundle can be arbitrarily closely approximated
by ample line bundles. In this way, many properties of ample line bundles can be carried to big
line bundles. Our arithmetic analogue is as follows.

Theorem C. Let L be a big line bundle over X. Then for any ε > 0, there exist an integer n > 0,
a birational morphism π :X ′→X from another arithmetic variety X ′ to X, and an isomorphism

nπ∗L =A+ E

for an effective line bundle E on X ′ and an ample line bundle A on X ′ satisfying

1
nd

vol(A)> vol(L)− ε.

Our proof of this theorem consists of a finite part and an infinite part. The finite part is
an analogue in [LM08, Theorem 3.3], the infinite part is solved by taking pluri-subharmonic
envelope which is well-known in complex analysis.

As pointed out at the beginning, Chen [Che08b] also proves this result. His proof also relies
on [LM08]. The difference between our approaches is that, he really applies the original [LM08,
Theorem 3.5] combining with Bost’s slope theory, while here we prove an arithmetic analogue of
the theorem. Furthermore, he does not obtain our Theorems A and B.

1.5 Notations

We use P̂ic(X), Âmp(X), B̂ig(X), Êff(X) to denote respectively the isometry classes
of Hermitian line bundles, ample Hermitian line bundles, big Hermitian line bundles,
effective Hermitian line bundles.

When we treat the valuation ν, we always ignore the fact that the section 0 has no image.
For example, ν(S) is understood as ν(S − {0}) for any subset S ⊂H0(X, L).
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For any smooth function f :X(C)→ R, denote by O(f) = (O, e−f ) the trivial bundle O
endowed with the metric given by ‖1‖= e−f . In particular, it makes sense if f = α ∈ R is a
constant function. For any vertical Cartier divisor V of X, denote by O(V ) = (O(V ), ‖ · ‖) the
line bundleO(V ) associated to V with a metric given by ‖sV ‖= 1. Here sV denotes a fixed section
defining V . We further denote L(f + V ) = L +O(f) +O(V ) for any Hermitian line bundle L.

2. The arithmetic Okounkov body

The main goal of this section is to prove Theorem A. Section 2.1 recalls some results on ample
line bundles and big line bundles. After considering some easy properties followed from [LM08],
the proof of Theorem A is reduced to Theorem 2.6 in § 2.2. Then we prove Theorem 2.6 in the
next two subsections.

2.1 Basics on arithmetic ampleness and bigness

We follow the arithmetic intersection theory of Gillet–Soulé [GS90] and the notion of arithmetic
ampleness by Zhang [Zha95].

Recall that an arithmetic variety is an integral scheme, projective and flat over Spec(Z). The
dimension means the absolute dimension. Let X be an arithmetic variety of dimension d.
The notion of Hermitian line bundles needs more words if the complex space X(C) is not smooth.

A metrized line bundle L = (L, ‖ · ‖) over X is an invertible sheaf L over X together with
a Hermitian metric ‖ · ‖ on each fibre of L(C) over X(C). We say this metric is smooth if the
pull-back metric over f∗L under any analytic map f :Bd−1→X(C) is smooth in the usual sense.
Here Bd−1 denotes the unit ball in Cd−1. We call L a Hermitian line bundle if its metric is smooth
and invariant under complex conjugation. For a Hermitian line bundle L, we say the metric or
the curvature of L is semipositive if the curvature of f∗L with the pull-back metric under any
analytic map f :Bd−1→X(C) is semipositive definite.

A Hermitian line bundle L overX is called ample if the following three conditions are satisfied.

(a) The generic fibre LQ is ample.

(b) The Hermitian line bundle L is relatively semipositive: the curvature of L is semipositive
and deg(L|C) > 0 for any closed curve C on any special fibre of X over Spec(Z).

(c) The Hermitian line bundle L is horizontally positive: the intersection number (L|Y )dim Y is
greater than zero for any horizontal irreducible closed subvariety Y .

Zhang proved an arithmetic Nakai–Moishezon theorem which includes a special case as follows.

Theorem 2.1 [Zha95, Corollary 4.8]. Let L be an ample Hermitian line bundle on an arithmetic
variety X such that XQ is smooth. Then for any Hermitian line bundle E over X, the Z-module
H0(X, E +NL) has a basis consisting of strictly effective sections for N large enough.

Here an effective section is a non-zero section with supremum norm less than or equal to 1.
If the supremum norm of the section is less than 1, the section and the line bundle are said to
be strictly effective.

As for big line bundles, we need the following result.

Theorem 2.2 [Yua08, Theorem 2.1]. A Hermitian line bundle L on X is big if and only if

NL =A+ E for some integer N > 0, some A ∈ Âmp(X) and some E ∈ Êff(X).
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Fujita’s approximation roughly says that we can make the ample part (1/N)A arbitrarily
close to L.

In the end, we quote a theorem of Moriwaki which says that the volume function is invariant
under birational morphisms. We need it when we use generic resolution of singularities.

Theorem 2.3 [Mor09, Theorem 4.2]. Let π : X̃ →X be a birational morphism of arithmetic

varieties. Then for any Hermitian line bundle L ∈ P̂ic(X), we have vol(π∗L) = vol(L).

2.2 Volumes of Okounkov bodies
We always assume X to be normal with smooth generic fibre when we consider Okounkov bodies.
Recall that for the flag

X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd,
we require that Y1 is vertical over some prime p and the residue field of Yd is isomorphic to Fp.
This is not essential, but we will only stick on this case for simplicity. We will first explain why
such p has a positive density.

Let K be the largest algebraic number field contained in the fraction field of X. Then
the structure morphism X → Spec(Z) factors through X → Spec(OK) where OK is the ring
of integers of K, and X is geometrically connected over OK . It follows that the fiber X℘ over
any prime ideal ℘ of OK is connected. It is smooth for almost all ℘. We must have Y1 =X℘ for
some ℘ lying over p.

We require that the residue field F℘ =OK/℘ is isomorphic to Fp. For example, it is true if p
splits completely in OK , and it happens with a positive density by Chebotarev’s density theorem.
Once this is true, it is easy to choose Y2, Y3, . . . , Yd−1. The existence of a point Yd follows from
Weil’s conjecture for curves over finite fields.

We start with some basic properties of the Okounkov body we defined. Recall that

ν = νY. = (ν1, . . . , νd) :H0(X, L)− {0}→ Zd

is the corresponding valuation map,

v(L) = vY.(L) = νY.(Ĥ0(X, L)− {0})

is the image in Zd, and ∆ = ∆Y.(L) is the closure of Λ = ΛY.(L) =
⋃
m>1(1/md)v(mL) in Rd.

Lemma 2.4. The Okounkov body ∆Y.(L) is convex and bounded for any L ∈ P̂ic(X).

Proof. We first show convexity. By taking limit, it suffices to show that
∑k

i=0 aixi ∈ Λ for all
xi ∈ Λ and ai ∈Q>0 satisfying

∑k
i=0 ai = 1. Assume that xi comes from the section si ∈

Ĥ0(X, miL). Let N be a positive common denominator of ai/mi, and write ai/mi = bi/N . Then
the section

k⊗
i=0

s⊗bii ∈ Ĥ0(X, NL)

gives the point
∑k

i=0 aixi ∈ Λ.
Next we show boundedness. Similar to [LM08], we will show that there exists an integer b > 0

such that
νi(s) 6mb ∀s ∈ Ĥ0(X, mL)− {0}, i= 1, . . . , d. (1)

The valuation (ν2, . . . , νd) is exactly the valuation of dimension d− 1 with respect to the flag
Y1 ⊃ Y2 ⊃ · · · ⊃ Yd on the ambient variety Y1. Hence, the bound of νi for i > 1 follows from [LM08,
Proposition 2.1]. It remains to bound ν1.
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Fix an ample line bundle A on X. For any s ∈ Ĥ0(X, mL)− {0}, we have

L · Ad−1 =
1
m

(A|div(s))
d−1 − 1

m

∫
X(C)

log ‖s‖c1(M)d−1 >
ν1(s)
m

(A|Y1)d−1.

Thus we get a bound

ν1(s) 6
L · Ad−1

(A|Y1)d−1
m. 2

It is natural to describe the volume of the Okounkov body in terms of the order of the images
of the valuations. The proof is actually an argument of Okounkov [Oko03] using some results of
Khovanskii [Kho92] in convex geometry, but we will only refer to the setting of [LM08] below.

Proposition 2.5. If L is big, then

lim
m→∞

#vY.(mL)
md

= vol(∆Y.).

Proof. Note that in our arithmetic case,

Γ =
⋃
m>0

(v(mL), m)⊂ Zd+1

is also a semigroup. We will apply [LM08, Proposition 2.1] on Γ. We only need to check that Γ
satisfies conditions (2.3)–(2.5) required by the proposition. The proof is similar to Lemma 2.2 of
the paper.

Condition (2.3) is trivial. Condition (2.4) follows from (1) in the proof of Lemma 2.4. In
fact, Γ is contained in the the semigroup generated by {(x1, x2, . . . , xd, 1) : xi = 0, 1, . . . , b}. It
remains to check (2.5).

We first look at the case that L is ample. By the arithmetic Nakai–Moishezon theorem
proved by Zhang [Zha95] (cf. Theorem 2.1), when m is sufficiently large, H0(mL) has a Z-basis
consisting of effective sections. By this it is easy to find an s ∈ Ĥ0(mL) which is non-zero on Yd, or
equivalently ν(s) = 0. It follows that (0, . . . , 0, m) ∈ Γ. We also have (0, . . . , 0, m+ 1) ∈ Γ. Then
we see that (0, . . . , 0, 1) is generated by two elements of Γ. It remains to show that

⋃
m>0 v(mL)

generates Zd. We will show that one v(mL) is enough if m is sufficiently large.
For any i= 1, 2, . . . , d, we can find a line bundleMi on X with a section ti ∈H0(X,Mi) such

that ti does not vanish on Yi−1, vanishes on Yi, and vanishes on Yd with order one. Then {ν(ti)} is
exactly the standard basis of Zd. Choose and fix one metric onMi such that ti is effective. Denote
the Hermitian line bundle so obtained byMi. Consider the line bundle mL −Mi. We can find a
section si ∈ Ĥ0(mL −Mi) with ν(si) = 0. The existence is still a simple consequence of Zhang’s
theorem, which works on mL −Mi when m is large enough. The section si ⊗ ti ∈ Ĥ0(mL), and
{ν(si ⊗ ti)} form the standard basis of Zd.

Now we assume that L is any big line bundle. By Theorem 2.2, we get NL = L ′ + E for
some integer N > 0, some ample line bundle L ′ and some effective line bundle E . Following
the line above, we first show that (0, . . . , 0, 1) ∈ Zd+1 is generated by Γ. Fix an effective non-
zero section e ∈ E . For m large enough, by the above argument we have non-zero sections
s ∈ Ĥ0(mL ′) and s′ ∈ Ĥ0(mL ′ + L) with valuation ν(s) = ν(s′) = 0. Now the sections s⊗ e⊗m ∈
Ĥ0(mNL) and s′ ⊗ e⊗m ∈ Ĥ0((mN + 1)L) give

(ν(s′ ⊗ e⊗m), mN + 1)− (ν(s⊗ e⊗m), mN) = (0, . . . , 0, 1).
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It remains to show that
⋃
m>0 v(mL) generates Zd. Let s, e be as above. For any non-zero

section u ∈ Ĥ0(mL ′), we have ν(e⊗m ⊗ u)− ν(e⊗m ⊗ s) = ν(u) is the difference of two elements
in v(mNL). If m is sufficiently large, v(mNL) generates Zd since v(mL ′) does. 2

In the end, we state a theorem whose proof will take up the rest of this section. Combined
with Proposition 2.5, it simply implies Theorem A and the convergence result of Chen [Che08a].

Theorem 2.6. For any L ∈ P̂ic(X), there exists a constant c= c(L) depending only on (X, L),
such that

lim sup
m→∞

∣∣∣∣#vY.(mL)
md

log p− ĥ0(X, mL)
md

∣∣∣∣ 6 c

log p
.

Furthermore, we can take

c(L) = 2e0
vol(LQ)
vol(AQ)

L · Ad−1

(d− 1)!
.

Here e0 is the number of connected components of XQ, and A is any ample line bundle on X.

We first see how to induce the following result of Chen [Che08a].

Theorem 2.7. The limit limm→∞ ĥ0(X, mL)/(md/d!) exists for any L ∈ P̂ic(X).

Proof. The case that L is not big is easy. Assume that L is big. The key is that #vY.(mL)/md

is convergent by Proposition 2.5. Then Theorem 2.6 implies

lim sup
m→∞

ĥ0(X, mL)
md

− lim inf
m→∞

ĥ0(X, mL)
md

6
2c

log p
.

Let p→∞, we get lim sup = lim inf and thus the convergence. 2

It is also immediate to show Theorem A. In fact, since both limits exist, the result in
Theorem 2.6 simplifies as ∣∣∣∣vol(∆Y.(L)) log p− 1

d!
vol(L)

∣∣∣∣ 6 c

log p
.

Hence Theorem A is true under the assumption of Theorem 2.6.

2.3 Some preliminary results
We show some simple results which will be needed in the proof of Theorem 2.6 in next subsection.

Let K be a number field and OK be the ring of integers of K. Let X be an arithmetic variety
over OK . In another word, the structure morphism X → Spec(Z) factors through X → Spec(OK).
For any non-zero ideal I of OK , consider the reduction modulo I map

rI :H0(X, L)→H0(XOK/I , LOK/I).

We want to bound the order of rI(Ĥ0(X, L)). Denote by ZI the zero locus of I in X. Recall
that the notation L(f + V ) is explained at the end of the introduction. The following result is
a bridge from the arithmetic case to the geometric case.

Proposition 2.8. For any L ∈ P̂ic(X),

log #rI(Ĥ0(X, L)) 6 ĥ0(X, L(log 2))− ĥ0(X, L(−ZI))
log #rI(Ĥ0(X, L)) > ĥ0(X, L)− ĥ0(X, L(log 2− ZI)).
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Proof. For each t ∈H0(XOK/I , LOK/I), fix one lifting s0 ∈ r−1
I (t) ∩ Ĥ0(X, L) if it exists. For

any other s ∈ r−1
I (t) ∩ Ĥ0(X, L), we have s−1

ZI
⊗ (s− s0) regular everywhere and ‖s− s0‖sup 6 2.

Thus we have an element

s−1
ZI
⊗ (s− s0) ∈ Ĥ0(X, L(log 2− ZI)).

It follows that

#(r−1
I (t) ∩ Ĥ0(X, L)) 6 #Ĥ0(X, L(log 2− ZI)).

It induces the inequality

#rI(Ĥ0(X, L)) >
#Ĥ0(X, L)

#Ĥ0(X, L(log 2− ZI))
.

Now we seek the upper bound of #rI(Ĥ0(X, L)). Consider the set

S = Ĥ0(X, L) + sZI
⊗ Ĥ0(X, L(−ZI)).

Apparently rI(S) = rI(Ĥ0(X, L)). We further have S ⊂ Ĥ0(X, L(log 2)) since any s ∈ S satisfies
‖s‖sup 6 1 + 1 = 2.

For each t ∈ rI(S), there is a lifting s0 of t in Ĥ0(X, L), so

s0 + sZI
⊗ Ĥ0(X, L(−ZI))⊂ r−1

I (t) ∩ S.

Hence, #r−1
I (t) ∩ S > #Ĥ0(X, L(−ZI)). It follows that

#rI(Ĥ0(X, L)) = #rI(S) 6
#S

#Ĥ0(X, L(−ZI))
6

#Ĥ0(X, L(log 2))

#Ĥ0(X, L(−ZI))
. 2

Lemma 2.9. For any L ∈ P̂ic(X),

0 6 ĥ0(X, L)− ĥ0(X, L(−α)) 6 (α+ log 3) rankZ H0(X, L)

for any α ∈ R+.

Proof. The first inequality is trivial, and we only need to show the second one. Take I = (n) for
an integer n > 2 in Proposition 2.8, we get

ĥ0(X, L)− ĥ0(X, L(log 2− Zn)) 6 log #rn(Ĥ0(X, L)).

The right-hand side has an easy bound

log #rn(Ĥ0(X, L)) 6 log #(H0(X, L)/nH0(X, L)) = rankZ H0(X, L) log n.

It is easy to see that O(Zn)∼=O(log n), so the above gives

ĥ0(X, L)− ĥ0

(
X, L

(
−log

n

2

))
6 rankZ H0(X, L) log n.

For general α > 0, taking n= [2eα] + 1, then the above gives

ĥ0(X, L)− ĥ0(X, L(−α)) 6 ĥ0(X, L)− ĥ0

(
X, L

(
−log

n

2

))
6 rankZ H0(X, L) log n.

It proves the result since

log n 6 log(2eα + 1) 6 α+ log 3. 2
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2.4 Comparison of the volumes
In this subsection, we will prove Theorem 2.6. Resume the notation in § 2.2. That is, K is the
number field such that X → Spec(OK) is geometrically connected. And Y1 =X℘ for some prime ℘
of OK lying over a prime number p.

Recall that ν = (ν1, . . . , νd) is the valuation on X with respect to the flag

X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd.

Then the flag

Y1 ⊃ Y2 ⊃ · · · ⊃ Yd
on the ambient variety Y1 induces a valuation map ν◦ = (ν2, . . . , νd) of dimension d− 1 in the
geometric case. They are compatible in the sense that

ν(s) = (ν1(s), ν◦((s⊗(−ν1(s))
Y1

s)|Y1)),

where sY1 is the section of O(Y1) defining Y1. The notation such as L(log β − Y1) in the
proposition below is explained at the end of the introduction.

Proposition 2.10. For any L ∈ P̂ic(X):

(1) #ν◦(Ĥ0(X, L)|Y1) log p 6 ĥ0(X, L(log(2β)))− ĥ0(X, L(log β − Y1));

(2) #ν◦(Ĥ0(X, L)|Y1) log p > ĥ0(X, L(−log β))− ĥ0(X, L(−log(β/2)− Y1)).

Here we denote β = p dimF℘ H
0(XF℘ , LF℘).

Proof. We first prove part (1). The key point is to pass to the F℘-subspace 〈Ĥ0(L)|Y1〉 of
H0(Y1, L|Y1) generated by Ĥ0(L)|Y1 . For vector spaces, we can apply the last result of [LM08,
Lemma 1.3] to have the order of its valuation image. It is easy to see it also works for non-
algebraically closed field as long as the residue field of Yd agrees with the field of definition of
the ambient variety.

We first use the trivial bound

#ν◦(Ĥ0(X, L)|Y1) 6 #ν◦〈Ĥ0(L)|Y1〉.

Then [LM08, Lemma 1.3] implies

#ν◦〈Ĥ0(L)|Y1〉= dimF℘〈Ĥ0(L)|Y1〉.

Thus

#ν◦(Ĥ0(X, L)|Y1) 6 dimF℘〈Ĥ0(L)|Y1〉= logp #〈Ĥ0(L)|Y1〉.

Now we seek an upper bound on the order of 〈Ĥ0(L)|Y1〉. The key is to put this space into
Ĥ0(L ′)|Y1 for some ‘bigger’ Hermitian line bundle L ′.

Choose a basis {t} of 〈Ĥ0(L)|Y1〉 lying in Ĥ0(L)|Y1 , and fix a lifting t̃ ∈ Ĥ0(L) for each
t ∈ Ĥ0(L)|Y1 . Since the residue field F℘ is equal to Fp, the set

S =
{∑

t

att̃ : at = 0, 1, . . . , p− 1
}

maps surjectively to 〈Ĥ0(L)|Y1〉 under the reduction r℘. For any such element
∑

t att̃, the norm∥∥∥∥∑
t

att̃

∥∥∥∥
sup

6 p
∑
t

1 = p dimF℘〈Ĥ0(L)|Y1〉 6 ph0(L|Y1) = β.
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It follows that S ⊂ Ĥ0(L(log β)), and thus their reductions have the relation

〈Ĥ0(L)|Y1〉 ⊂ Ĥ0(L(log β))|Y1 .

By this we get a bound

#〈Ĥ0(L)|Y1〉 6 #Ĥ0(L(log β))|Y1 .

By Proposition 2.8, we obtain

log #Ĥ0(L(log β))|Y1 6 ĥ0(L(log(2β)))− ĥ0(L(log β − Y1)).

Putting the inequalities together, we achieve part (1) of Proposition 2.10.
Now we prove part (2) of Proposition 2.10. Similar to the above, we construct a set

T =
{∑

t

att̃ : at = 0, 1, . . . , p− 1
}
.

Here {t} is a basis of 〈Ĥ0(L(−log β))|Y1〉 lying in Ĥ0(L(−log β))|Y1 , and t̃ ∈ Ĥ0(L(−log β)) is
a fixed lifting for each t ∈ Ĥ0(L(−log β))|Y1 . By the same reason, we see that

T ⊂ Ĥ0(X, L)

and

Ĥ0(X, L)|Y1 ⊃ T |Y1 = 〈Ĥ0(L(−log β))|Y1〉.
Thus we have

#ν◦(Ĥ0(X, L)|Y1) > #ν◦〈Ĥ0(L(−log β))|Y1〉.
By [LM08, Lemma 1.3] again, we get

#ν◦〈Ĥ0(L(−log β))|Y1〉 = dimF℘〈Ĥ0(L(−log β))|Y1〉
= logp #〈Ĥ0(L(−log β))|Y1〉 > logp #Ĥ0(L(−log β))|Y1 .

Apply Proposition 2.8 again. We have

#ν◦(Ĥ0(X, L)|Y1) log p > log #Ĥ0(L(−log β))|Y1

> ĥ0(X, L(−log β))− ĥ0

(
X, L

(
−log

β

2
− Y1

))
.

This proves part (2) of Proposition 2.10. 2

Corollary 2.11.

#v(L) log p 6 ĥ0(X, L(log(2β))) +
∑
k>1

(ĥ0(X, L(log(2β)− kY1))− ĥ0(X, L(log β − kY1))),

#v(L) log p > ĥ0(X, L(−log β))−
∑
k>1

(
ĥ0

(
X, L

(
−log

β

2
− kY1

))
− ĥ0(X, L(−log β − kY1))

)
.

Proof. Denote

Mk = {s−kY1
⊗ s : s ∈ Ĥ0(X, L), ν1(s) > k}.

Then the compatibility between ν◦ = (ν2, . . . , νd) and ν = (ν1, ν2, . . . , νd) gives

#v(L) =
∑
k>0

#ν◦(Mk|Y1).
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Since the metric of sY1 is identically 1 in O(Y1), we have an interpretation

Mk = Ĥ0(X, L(−kY1)).

Therefore

#v(L) =
∑
k>0

#ν◦(Ĥ0(X, L(−kY1))|Y1).

Apply the above result to each L(−kY1) and rearrange the summations. 2

Remark . The summations in both inequalities in the proposition have only finitely many non-
zero terms, as we will see below.

Now we can prove Theorem 2.6 which asserts

lim sup
m→∞

∣∣∣∣#vY.(mL)
md

log p− ĥ0(X, mL)
md

∣∣∣∣ 6 c

log p
.

Proof of Theorem 2.6. The above corollary gives

#v(mL) log p 6 ĥ0(mL +O(log(2βm)))

+
∑
k>1

(ĥ0(mL +O(log(2βm)− kY1))− ĥ0(mL +O(log βm − kY1))).

Here βm = ph0(mL|Y1). By Lemma 2.9, we get

ĥ0(mL +O(log(2βm))) 6 ĥ0(mL) + log(6βm) h0(mLQ)

and

ĥ0(mL +O(log(2βm)− kY1))− ĥ0(mL +O(log βm − kY1)) 6 (log 6) h0(mLQ).

Let S be the set of k > 1 such that

ĥ0(mL +O(log(2βm)− kY1)) 6= 0.

Then we have

#v(mL) log p 6 ĥ0(mL) + h0(mLQ) log(6βm) + (log 6) h0(mLQ)(#S).

Next we bound #S which gives the main error term.
Fix an ample line bundle A. We are going to give an upper bound of S in terms of intersection

numbers with A. Assume that k ∈ S, so mL +O(log(2βm)− kY1) is effective. We must have

(mL +O(log(2βm)− kY1)) · Ad−1
> 0.

Equivalently,

mL · Ad−1 + log(2βm) deg(AQ)− kY1 · A
d−1

> 0.

Note that

Y1 · A
d−1 =

1
[K : Q]

deg(AQ) log p.

We get

k 6 [K : Q]
L · Ad−1

deg(AQ)
m

log p
+ [K : Q]

log(2βm)
log p

.

The order of S has the same bound.
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Therefore,

#v(mL) log p− ĥ0(mL)

6 h0(mLQ) log(6βm) + (log 6) h0(mLQ)[K : Q]
(
L · Ad−1

deg(AQ)
m

log p
+

log(2βm)
log p

)
= (log 6)[K : Q]

vol(LQ)
(d− 1)!

L · Ad−1

deg(AQ)
md

log p
+O(md−1 log m).

Here we have used the fact that βm = ph0(mL|Y1) is at most a Hilbert polynomial of degree d− 1.
It gives one direction of what we need to prove. Similarly, we can obtain the other direction. 2

3. Consequences

In this section, X is any arithmetic variety. To have good flags to apply Theorem A, we take
the normalization X̃ of the generic resolution of X. Consider the pull-back of Hermitian line
bundles. The volume does not change by Moriwaki’s result quoted in Theorem 2.3.

3.1 Log-concavity

We also show the log-concavity of volume functions. The key is still the Brunn–Minkowski
theorem which asserts that

vol(S1 + S2)1/d > vol(S1)1/d + vol(S2)1/d,

for any two compact subsets S1 and S2 of Rd. Unlike in [LM08], we do not explore any universal
Okounkov body since the space of numerical classes in our setting is too big.

Theorem B. For any two effective line bundles L1, L2, we have

vol(L1 + L2)1/d > vol(L1)1/d + vol(L2)1/d.

Proof. It is easy to see that the inequality is true if one of vol(L1) and vol(L2) is zero by the
effectivity property. So we can assume that L1 and L2 are big. We can further assume that X
is normal with smooth generic fibre by Moriwaki’s theorem of pull-back quoted in Theorem 2.3.

Take a flag Y. on X. It is easy to have

ΛY.(L1) + ΛY.(L2)⊂ ΛY.(L1 + L2).

Taking closures in Rd, we get

∆Y.(L1) + ∆Y.(L2)⊂∆Y.(L1 + L2).

The Brunn–Minkowski theorem gives

vol(∆Y.(L1 + L2))1/n > vol(∆Y.(L1))1/n + vol(∆Y.(L2))1/n.

It implies the result by taking char(Y.)→∞. 2

Corollary 3.1. For any two ample line bundles L1, L2, we have

Ld−1
1 · L2 > (Ld1)(d−1)/d(Ld2)1/d,

(Ld−1
1 · L2)2 > (Ld1)(Ld−2

1 · L2
2).
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Proof. Note that volumes for ample line bundles are equal to top self-intersection numbers. We
first show the first inequality. Let t be any positive rational number. Then the above theorem
gives

((L1 + tL2)d)1/d > (Ld1)1/d + t(Ld2)1/d.

In other words,

(L1 + tL2)d − ((Ld1)1/d + t(Ld2)1/d)d > 0.

The left-hand side is a polynomial in t whose constant term is zero. The coefficient of degree one
must be non-negative by considering t→ 0. It gives the result exactly.

Now we prove the second relation. Use the same trick on the first inequality. We get

Ld−1
1 · (L1 + tL2) > (Ld1)(d−1)/d((L1 + tL2)d)1/d.

It becomes

(Ld1 + tLd−1
1 · L2)d > (Ld1)d−1(L1 + tL2)d.

Let t→ 0. The terms of degree less than or equal to 2 give

(Ld1)d + dt(Ld1)d−1(Ld−1
1 · L2) +

d(d− 1)
2

t2(Ld1)d−2(Ld−1
1 · L2)2

> (Ld1)d−1

(
Ld1 + dtLd−1

1 · L2 +
d(d− 1)

2
t2Ld−2

1 · L2
2

)
.

It turns out the terms of degree less than or equal to 1 are canceled, and the degree two terms
give

(Ld1)d−2(Ld−1
1 · L2)2 > (Ld1)d−1(Ld−2

1 · L2
2).

This gives the second inequality. 2

Remark . The above method can also induce some inequalities on big line bundles. For example,
if we allow L2 to be big in the proof of the first inequality, then L1 + tL2 is still ample for t
small enough. Then we have

vol(L2) 6
(Ld−1

1 · L2)d

(Ld1)d−1

for any ample line bundle L1.

It turns out that the second inequality above implies the arithmetic Hodge index theorem in
codimension one proved by Moriwaki [Mor96].

Corollary 3.2. Let A ∈ Âmp(X), L ∈ P̂ic(X). If Ad−1 · L = 0, then Ad−2 · L2 6 0.

Proof. By replacing A by its positive multiples, we can assume that B =A+ L is ample. Then
L = B −A. We need to show that

Ad−2 · L2 =Ad−2 · B2 − 2Ad−1B +Ad 6 0. (2)

The above lemma gives

(Ad−1 · B)2 > (Ad)(Ad−2 · B2). (3)

The condition Ad−1 · L = 0 becomes Ad−1 · B =Ad. However, it is easy to see that (2) and (3)
are equivalent under this condition. 2
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3.2 Fujita approximation
For any L ∈ P̂ic(X), denote

Vk,n(L) = {s1 ⊗ s2 ⊗ · · · ⊗ sk : s1, s2, . . . , sk ∈ Ĥ0(X, nL)}.

It is a subset of Ĥ0(X, knL). Then a consequence of [LM08, Proposition 3.1] is the following
result.

Theorem 3.3. Assume that L is big and X is normal with smooth generic fibre, and let Y. be
a flag on X. Then for any ε > 0, there exists n0 > 0 such that

lim
k→∞

#vY.(Vk,n(L))
(nk)d

> vol(∆Y.(L))− ε ∀n > n0.

This theorem serves as an analogue of [LM08, Theorem 3.3] in the proof of the arithmetic
Fujita approximation. It is not as neat as the direct arithmetic analogue:

lim
k→∞

log #Vk,n(L)
(nk)d/d!

> vol(L)− ε ∀n > n0.

However, we do not know whether this analogue is true.
For the arithmetic Fujita approximation theorem, we need an extra argument to take care of

the archimedean part.

Theorem 3.4. Let L be an ample line bundle on a projective complex manifold M , and let ‖ · ‖
be any smooth Hermitian metric on L. Then the following results hold.

(a) There is a canonical positive continuous metric ‖ · ‖′ on L such that ‖ · ‖′ > ‖ · ‖ pointwise
and ‖ · ‖sup = ‖ · ‖′sup as norms on H0(M,mL) for any positive integer m.

(b) The above metric ‖ · ‖′ can be uniformly approximated by a sequence {‖ · ‖j}j of positive
smooth Hermitian metrics ‖ · ‖j > ‖ · ‖′ on L in the sense that limj→∞ ‖ · ‖j/‖ · ‖′ = 1
uniformly on M .

Proof. The results are standard in complex analysis. We will take the metric ‖ · ‖′ to be the
equilibrium metric of ‖ · ‖ defined as the following envelope:

‖s(z)‖′ := inf{‖s(z)‖+ : ‖ · ‖+ positive singular metric on L, ‖ · ‖+ > ‖ · ‖}.

By definition, it is positive and satisfies those two norm relations with ‖ · ‖ in Theorem 3.4(a).
As for the continuity, see [Ber07, Theorem 2.3 (1)], where the metric is proved to be C1,1.

Now we consider Theorem 3.4(b). In fact, any positive continuous metric can be approximated
uniformly by positive smooth ones. It is essentially due to the technique of Demailly [Dem92].
See also [BK07, Theorem 1] for a shorter proof. Note that monotone convergence to a continuous
function is uniform over any compact space. Once the convergence is uniform, it is easy to obtain
‖ · ‖j > ‖ · ‖′ by scalar perturbations on the metrics. For more general results, we refer to [BB08],
especially [BB08, Proposition 1.13]. 2

Now we are prepared to prove our arithmetic Fujita approximation theorem.

Theorem C. Let L be a big line bundle over X. Then for any ε > 0, there exist an integer n > 0,
a birational morphism π :X ′→X from another arithmetic variety X ′ to X, and an isomorphism

n π∗L =A+ E
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for an effective line bundle E on X ′ and an ample line bundle A on X ′ satisfying

1
nd

vol(A)> vol(L)− ε.

Proof. We can assume that X is normal with smooth generic fibre by Moriwaki’s pull-back result.
For any positive integer n, let πn :Xn→X be the blowing-up of the base ideal generated

by Ĥ0(X, nL). Denote by En the line bundle associated to the exceptional divisor, with
e ∈H0(Xn, En) a section defining the exceptional divisor. Denote by An = n π∗L − En, which
has regular sections λ(s) = π∗s⊗ e⊗(−1) for any s ∈ Ĥ0(X, nL). Furthermore, λ(Ĥ0(X, nL)) is
base-point free.

For any s ∈ Ĥ0(X, nL), we have ‖π∗s‖sup = ‖s‖sup 6 1 under the pull-back metric on π∗L.
We claim that there exist metrics on En and An such that under these metrics n π∗L=An + En
is isometric, e is effective, and λ(s) is effective for all s ∈ Ĥ0(X, nL).

To get such metrics on En and An, start from any metric ‖ · ‖0 on En. It suffices to find a
smooth function f :X(C)→ R+ such that f‖e‖0 6 1 and ‖s‖/(f‖e‖0) 6 1 for all s ∈ Ĥ0(X, nL).
Equivalently, we need

sup
s

‖s‖
‖e‖0

6 f 6
1
‖e‖0

.

This is possible because the left-hand side is always less than or equal to the right-hand side,
and the left-hand side is actually bounded everywhere.

Endowed with the above metrics, we get line Hermitian bundles En and An such that

n π∗L =An + En.

Here En is effective and An is base-point free since λ(Ĥ0(X, nL))⊂ Ĥ0(X,An). Furthermore,
each element of Vk,n(L) gives an effective section in Ĥ0(X, kAn) by the same way. We claim
that these sections give

lim
n→∞

1
nd

vol(An) = vol(L). (4)

Once it is true, we have obtained decompositions satisfying all requirements of the theorem
except that An may not be ample, though it is base-point free. We will make some adjustment
to get ampleness, but let us first verify (4). It is a consequence of Theorems 2.6 and 3.3.

In fact, it suffices to show that

lim inf
n→∞

1
nd

vol(An) > vol(L).

Replacing L by its tensor power if necessary, we can assume that Ĥ0(X, L) is non-zero. Let p0

be an integer such that the base locus of Ĥ0(X, L) has no vertical irreducible components lying
above any prime p > p0. Let Y. be a flag on X with char(Y.) = p > p0 such that Yd is not contained
in the base locus of Ĥ0(X, L). Then the same property is true for all Ĥ0(X, nL) since its base
locus is contained in that of Ĥ0(X, L). The strict transform π∗nY. gives a flag on Xn. It follows
that

#νπ∗
nY.(Ĥ

0(X, kAn)) > #νπ∗
nY.(λ(Vk,n(L))) = #νY.(Vk,n(L)).

Divide both sides by (nk)d, and set k→∞. We get

1
nd

vol(∆π∗
nY.(An)) > lim

k→∞

#vY.(Vk,n(L))
(nk)d

.
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By Theorem 3.3,

lim inf
n→∞

1
nd

vol(∆π∗
nY.(An)) > vol(∆Y.(L)). (5)

Now we want to take the limit as p→∞ to get volumes of the line bundles. It can be done
by interchanging the orders of limits, which is possible since Theorem A is somehow uniform
on An. In fact, Theorem 2.6 gives∣∣∣∣vol(∆Y.(L)) log p− 1

d!
vol(L)

∣∣∣∣ 6 c(L)
log p

,∣∣∣∣vol(∆π∗
nY.(An)) log p− 1

d!
vol(An)

∣∣∣∣ 6 c(An)
log p

.

The constants c(L), c(An) can be taken as follows. By choosing B ∈ Âmp(X), we can set

c(L) = 2e0
vol(LQ)
vol(BQ)

L · Bd−1

(d− 1)!
.

The line bundle π∗nB is not ample on Xn, but it is nef in the sense that π∗nB
d−1 · T > 0 for any

T ∈ Êff(Xn). It follows that π∗nB can also be a reference line bundle in the proof of Theorem 2.6,
and thus we can take

c(An) = 2e0
vol(An,Q)
vol(π∗nBQ)

An · π∗nB
d−1

(d− 1)!
6 2e0

vol(nLQ)
vol(BQ)

nL · Bd−1

(d− 1)!
= ndc(L).

It follows that ∣∣∣∣ 1
nd

vol(∆π∗
nY.(An)) log p− 1

d!
vol(An)
nd

∣∣∣∣ 6 c(L)
log p

.

Therefore, taking p→∞ on (5) yields

lim inf
n→∞

1
nd

vol(An) > vol(L).

This finishes proving (5).
As mentioned above, the line bundle An in the decomposition above is base-point free but

not ample in general. In order to make it ample, we are going to do a lot of modifications; for
simplicity, we write (πn, Xn,An) as (π, X ′,A).

• We can further assume that X ′ is normal with smooth generic fibre by pass to a generic
resolution of singularity.

• It suffices to treat the case that AQ is ample. In fact, we have n0π
∗L =A0 + E0 for some

n0 > 0, A0 ∈ amp(X ′) and E0 ∈ eff(X ′). Then consider

(nN + n0) π∗L = (NA+A0) + (NE + E0).

Make N � n0.

• By the same trick above, we can further assume that L(−c) = (L, ec‖ · ‖) is base-point free
for some c > 0.

• We can assume that A has a positive smooth metric. By Theorem 3.4, we can find a positive
metric ‖ · ‖j of A which is pointwise greater than ‖ · ‖ and satisfies

1 6
‖ · ‖j,sup

‖ · ‖sup
< ec.
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Then the decomposition

nπ∗L = (A, ‖ · ‖j) + E
(

log
‖ · ‖j
‖ · ‖

)
gives what we want.

• The above A is already ample. By the condition that the metric of A is positive and
Ĥ0(X ′,A) is base-point free, we need to check that A is ample. Since A is base-point free, it
is automatically nef on any vertical subvarieties. We only need to check that ĉ1(L|Z)dim Z > 0
for any horizontal irreducible closed subvariety Z of X ′. We can find an s ∈ Ĥ0(X ′,A) such
that div(s) does not contain Z by this base-point-free property. Use this section to compute
intersection. We get

(A|Z)dim Z = (A|div(s).Z)dim Z−1 −
∫
Z(C)

log ‖s‖ c1(L)dim Z−1

> (A|div(s).Z)dim Z−1.

By writing div(s).Z as a positive linear combination of irreducible cycles, we reduce the
problem to a smaller dimension. It means that the proof can be finished by induction on
dim Z. 2
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