RESEARCH NOTES

ON VON NEUMANN'S INEQUALITY

ARTHUR LUBIN
Department of Mathematics
Illinois Institute of Technology
Chicago, Illinois 60616

(Received October 31, 1977)

Von Neumann's inequality states that for a contraction T acting on a Hilbert space H
(v) $\quad||p(T)|| \leq \sup \{|p(z)|:|z|<1\}$
holds for all polynomials p. The analog for a set of commuting contractions

$$
\begin{aligned}
& \left\{T_{1}, \ldots, T_{n}\right\} \\
& \quad\left(v_{n}\right) \quad\left|\left|p\left(T_{1}, \ldots, T_{n}\right)\right|\right| \leq \sup \left\{\left|p\left(z_{1}, \ldots, z_{n}\right)\right|:\left|z_{i}\right|<1\right\}
\end{aligned}
$$

is known to be false for $n>2$. In fact, for any $c>0$, there exist $\left\{T_{1}, \ldots, T_{n}\right\}$, where n is sufficiently large, and a polynomial p such that

$$
\begin{equation*}
\left|\mid\left(p\left(T_{1}, \ldots, T_{n}\right)| |>c \sup \left\{\left|p\left(z_{1}, \ldots, z_{n}\right)\right|:\left|z_{i}\right|<1\right\}\right.\right. \tag{2}
\end{equation*}
$$

In this note we establish the following weakened version of $\left(v_{n}\right)$:
PROPOSITION 1. Let $\left\{T_{1}, \ldots, T_{n}\right\}$ be commuting contractions on a Hilbert space H. Then for any polynomial p,

$$
\| p\left(T_{1}, \ldots, T_{n}\right) \left\lvert\, \leq \sup \left\{\left|p\left(z_{1}, \ldots, z_{n}\right)\right|:\left|z_{i}\right|<n^{\frac{1}{2}}\right\}\right.,
$$

i.e., $D_{n}=\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right|<n^{\frac{1}{2}}\right\}$ is a spectral set for (T_{1}, \ldots, T_{n}).

Our proof is an easy consequence of the following proposition.
PROPOSITION 2 ($3,1.9 .2$). Let $\left\{S_{1}, \ldots, S_{n}\right\}$ be commuting contractions with $\sum_{i=1}^{n}\left\|s_{i}\right\|^{2} \leq 1$. Then $\left\{s_{1}, \ldots, s_{n}\right\}$ has a commuting unitary dilation (in fact a regular one) and it therefore follwos immediately that $\left\{S_{1}, \ldots, S_{n}\right\}$ satisfies $\left(v_{n}\right)$.
PROOF OF PROPOSITION 1. Given $\left\{T_{1}, \ldots, T_{n}\right\}$, let $S_{i}=n^{-\frac{1}{2}} T_{i}, i=1, \ldots, n$. Then $\sum_{i=1}^{n}\left\|S_{i}\right\|^{2}=n^{-1} \sum_{i=1}^{n}\left\|T_{i}\right\|^{2} \leq 1$ so $\left(v_{n}\right)$ holds for $\left\{S_{1}, \ldots, S_{n}\right\}$. Given any polynomial $p\left(z_{1}, \ldots, z_{n}\right)$, let $q\left(z_{1}, \ldots, z_{n}\right)=p\left(n^{\frac{1 / 2}{2}} z_{1}, \ldots, n^{\frac{1 / 2}{2}} z_{n}\right)$. Then

COROLLARY 3. (see (1) p. 279). Any set $\left\{\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{n}}\right\}$ of commuting contractions on H has the polydisc $D_{n}=\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right|<n^{\frac{1}{2}}\right\}$ as a complete spectral set. PROOF. By proposition 2, there exist commuting unitary operators U_{1}, \ldots, U_{n} on a Hilbert space K containing H such that $q\left(S_{1}, \ldots, S_{n}\right)=P q\left(U_{1}, \ldots, U_{n}\right)$ for all polynomials q, where $S_{i}=n^{-\frac{1}{2}} T_{i}$ and P projects K onto H. Setting $N_{i}=n^{\frac{1}{2}} U_{i}$, we have that $\left\{N_{1}, \ldots, N_{n}\right\}$ is a normal dilation of $\left\{T_{1}, \ldots, T_{n}\right\}$ with joint spectrum $\mathrm{sp}(\mathrm{N})$ contained in the boundary of D_{n} and the corollary follows as in (1).

Similarly, it follows that $D_{a}=\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right|<a_{i}\right\}$ is a complete spectral set for all commuting contractions $\left\{T_{1}, \ldots, T_{n}\right\}$ if $\Sigma a_{i}^{-2}<1$.

Since the common intersection of such D_{a} is the unit polydisc D, which is not in general a complete spectral set since $\left(v_{n}\right)$ can fail if $n \geq 3$, we have COROLLARY 4. If $\left\{T_{1}, \ldots, T_{n}\right\}$ is a set of commuting contractions such that the intersection of any two complete spectral sets is also a complete spectral set, then the unit polydisc D is also a complete spectral set.

We note that von Neumann's original paper (4) showed that for a single contraction the intersection of two spectral sets need not be a spectral set.

Since $\left(v_{n}\right)$ holds for $n=2$, we see that proposition 1 is not the best possible result. This prompts the following

PROBLEM. Find
$V(n)=\inf \left\{r:\left|\left|p\left(T_{1}, \ldots, T_{n}\right)\right| \leq \sup \left\{\left|p\left(z_{1}, \ldots, z_{n}\right)\right|:\left|z_{i}\right|<r\right\}\right\}\right.$
We note that Theorem $1.2(\mathrm{~b})$ of (2) yields information concerning the growth of $V(n)$ as n increases. Since
$\sup \left\{\left|p\left(z_{1}, \ldots, z_{n}\right)\right|:\left|z_{i}\right|<r\right\}=r^{s} \sup \left\{|p(z)|:\left|z_{i}\right|<l\right\}$ for homogeneous polynomials of degree s, we have for any $\varepsilon>0, V(n) \geq n^{\left(\frac{1}{4}-\varepsilon\right)}$ for n sufficiently large.

ACKNOWLEDGMENT. This research was partially supported by NSF Grant MCS 76-06516 A01.

REFERENCES

1. Arveson, W. Subalgebras of C*-algebras II, Acta. Math. 128 (1972) 271-308.
2. Dixon, P. G. The von Neumann Inequality for Polynomials of Degree Greater Than 2, J. London Math. Soc. 14 (1976) 369-375.
3. Sz.-Nagy, B. and C. Foias. Harmonic Analysis of Operators on Hilbert Space, North-Holland, 1970.
4. von Neumann, J. Eine Spektraltheorie fur Allgemeine Operatoren Eines Unitaren Raumes, Math. Nachr. 4 (1951) 258-281.

KEY WORDS AND PHRASES. Commuting contraction on a Hilbert Space, spectral set, Inequality.

AMS(MOS) SUBJECT CLASSIFICATIONS(1970). 47A25.

