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ON VON NEUMANN’S PROBLEM IN EXTENSION THEORY
OF NONNEGATIVE OPERATORS

YURY ARLINSKĬI AND EDUARD TSEKANOVSKĬI

(Communicated by Joseph A. Ball)

Abstract. The solution of von Neumann’s problem about parametrization of
all nonegative selfadjoint extensions of a nonnegative densely defined operator
in terms of his formulas is obtained.

1.

John von Neumann [18] formulated a problem about existence and description
(parametrization) of all selfadjoint extensions preserving the lower bound of a given
densely defined symmetric operator bounded from below acting on some Hilbert
space. The existing descriptions of all nonnegative self-adjoint extensions of a
nonnegative densely defined operator are not in terms of von Neumann’s classical
formulas. They have been obtained indirectly by M.Krĕın [15], [16] in terms of his
theory of self-adjoint contractive extensions of non-densely defined Hermitian con-
tractions and by M.Birman [6] for a symmetric operator with strictly positive lower
bound using the M.Vishik approach [20] (see [1]). In terms of abstract boundary
conditions [13] and the Weyl-Titchmarsh functions [8], [11], [12], descriptions of
the domains of all nonnegative self-adjoint and proper m-sectorial extensions were
obtained in [9].

In this paper, taking into account methods and approaches in [3], [4], [17], we
establish new formulas (Theorem 2) which provide a parametrization of all nonneg-
ative self-adjoint extensions of a nonnegative symmetric operator with, generally
speaking, zero lower bound under the assumption that the so-called Friedrichs ex-
tension [15] of this operator is known. As a result of this approach we obtain a
solution of von Neumann’s problem about parametrization of all nonnegative self-
adjoint extensions in terms of his formulas. Since the Friedrichs extension can be
found independently of the above-mentioned methods, it turns out that the pre-
sented approach is efficient. An example of an operator with zero lower bound
is considered. We plan to consider applications to canonical resolvents, point-
interactions in R3 with m-points of interaction, perturbation theory and the theory
of Krein-Langer Q-functions in a future paper.

We shall use the following notations: L(H1, H2) denotes the Banach space of
all continuous linear operators acting from the Hilbert space H1 into the Hilbert
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space H2, L(H) = L(H,H), and D(T ), R(T ), Ker T , ρ(T ) denote the domain, the
range, the null-space and the resolvent set of a linear operator T , respectively.

2.

Let H be a complex Hilbert space and let H2 be the Hilbert space of all pairs〈
u1, u2

〉
, u1, u2 ∈ H , with the inner product defined by(〈

u1, u2

〉
,
〈
v1, v2

〉)
= (u1, v1) + (u2, v2).

As is well known [7], a closed subspace T ⊆ H2 is called a linear relation (l.r.) in
H . We denote by D(T) the domain of a linear relation T and by T(u) the set of
all v such that

〈
u, v
〉
∈ T. By definition

D(T) =
{
u1 ∈ H : there exists u2 ∈ H such that

〈
u1, u2

〉
∈ T

}
,

R(T) =
{
u2 ∈ H : there exists u1 ∈ H such that

〈
u1, u2

〉
∈ T

}
,

T−1 =
{〈
u2, u1

〉
:
〈
u1, u2

〉
∈ T

}
.

An arbitrary l.r. T has the decomposition T = Gr(T ) ⊕
〈
0,T(0)

〉
, where T

is a linear operator (the operator part of T), Gr(T)=
〈
u, Tu

〉
, u ∈ D(T ), and

D(T ) = D(T). It is evident that T(u) = Tu⊕T(0) for all u ∈ D(T) and R(T) =
R(T ) ⊕ T(0). An l.r. T is called Hermitian if the form (T(u), u) is real for all
u ∈ D(T). If T is Hermitian, then the subspace T(0) is orthogonal to D(T) [19]. An
l.r. T is called self-adjoint if it is Hermitian and has no Hermitian extensions. In this
case the operator part T [7] is self-adjoint in the subspace D(T) and T(0)⊕D(T) =
H . An l.r. T is called nonnegative if (T(u), u) ≥ 0 for all u ∈ D(T). Let τ [·, ·] be
a sesquilinear, symmetric and nonnegative form in a Hilbert space H defined on a
linear manifold D[τ ], i.e. τ [u, v] = τ [v, u] and τ [u] := τ [u, u] ≥ 0 for all u, v ∈ D[τ ].
A sequence {un} is called τ -converging to the vector u ∈ H if [14]

lim
n→∞

un = u and lim
n,m→∞

τ [un − um] = 0.

The form τ is called closed if for every sequence {un} τ -converging to a vector
u, it follows that u ∈ D[τ ] and lim

n→∞
τ [u − un] = 0. A form τ is closed if and

only if the linear manifold D[τ ] is a Hilbert space with the inner product (u, v)τ =
τ [u, v]+(u, v) [14]. If τ is a closed densely defined nonnegative form, then according
to the first representation theorem [14] there exists a unique nonnegative self-adjoint
operator T in H , associated with τ in the following sense: (Tu, v) = τ [u, v] for all
u ∈ D(T ) and for all v ∈ D[τ ]. By the second representation theorem [14] the
identities hold:

D[τ ] = D(T 1/2), τ [u, v] = (T 1/2u, T 1/2v), u, v ∈ D[τ ].

If τ is a closed nonnegative but nondensely defined form, then we will associate
with τ the nonnegative self-adjoint linear relation [19]

T =
{〈
u, Tu+ h

〉
, u ∈ D(T ), h ∈ H 	D[τ ]

}
,

where T is a nonnegative self-adjoint operator (the operator part of T) associated
with τ in the subspace D[τ ]. Clearly, T(0) = H 	D[τ ]. The inverse linear relation
T−1 is associated with the form

τ−1[f + h1, g + h2] := (T̂−1/2f, T̂−1/2g), f, g ∈ R(T 1/2), h1, h2 ∈ T(0),
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ON VON NEUMANN’S PARAMETRIZATION 3145

where T̂−1/2 =
(
T 1/2�R(T 1/2)

)−1. We will denote by R[T] the linear manifold
R(T 1/2) ⊕ T(0). The form τ is called closable if it has a closed extension; in this
case the closure of τ is the smallest closed extension of τ . If S is a nonnegative
Hermitian operator ((Su, u) ≥ 0 for all u ∈ D(S)), then the form τ [u, v] := (Su, v)
is closable. Following the notations of M.G. Krĕın we denote by S[·, ·] the closure
of the form τ and by D[S] its domain. By definition S[u] = S[u, u] for all u ∈ D[S].
We use the same notations for the case of a nonnegative linear relation. Note that
if T is a nonnegative linear relation with the operator part T , then D[T] = D[T ]
and T[u, v] = T [u, v] for all u, v ∈ D[T].

Let T1 and T2 be two nonnegative self-adjoint linear relations. We shall write
T1 ≥ T2 if D[T1] ⊆ D[T2] and T1[u] ≥ T2[u] for all u ∈ D[T1]. In order to prove
our main results we need the following propositions which can be proved by passing
to the operator part of the l.r.

Proposition 1. Let T1 and T2 be two nonnegative self-adjoint linear relations in
a Hilbert space H. Then the following conditions are equivalent:

1. T1 ≥ T2;
2. T−1

1 ≤ T−1
2 ;

3. R(T2) ⊆ R[T1] and T−1
1 [T2(u)] ≤ (T2(u), u) for all u ∈ D(T2).

Note that the equivalence 1.⇐⇒ 2. is well known for linear operators [14].

Proposition 2. Let T1 and T2 be two nonnegative self-adjoint l.r.’s such that
T1 ≥ T2. Then the closure of the form

(
T1(f), g

)
−T2[f, g], f, g ∈ D(T1), in the

Hilbert space D[T2] coincides with the form

T1[u, v]−T2[u, v], u, v ∈ D[T1].

Proof. The form t̄ [u, v] := T1[u, v] −T2[u, v], u, v ∈ D[t̄ ] = D[T1] is nonnegative
and closed in the Hilbert space D[T2]. Let u ∈ D[T1]. Then there exists a sequence
{fn} ⊂ D(T1) such that lim

n→∞
fn = u and lim

m,n→∞
(T1(fn − fm), fn − fm) = 0. Then

lim
m,n→∞

T2[fn − fm] = 0, therefore, the sequence {fn} converges to u in the space

D[T2] and lim
n→∞

{
T1[fn − u]−T2[fn − u]

}
= 0. Thus, the form t̄ is the closure of

the form
(
T1(f), g

)
−T2[f, g] in the Hilbert space D[T2]. �

3.

Let S be a closed densely defined symmetric and nonnegative operator in a
Hilbert space H and let S∗ be its adjoint. As is well known [14], the extension SF
of S obtained by K.Friedrichs [10] is defined as a nonnegative self-adjoint extension
associated with the form S[·, ·]. Clearly, D(SF ) = D[S] ∩ D(S∗), SF = S∗�D(SF ).
If Nz = Ker(S∗ − zI) are the defect subspaces, then D[S] ∩Nz = {0}, z ∈ ρ(SF )
and

(1) R(S1/2
F ) =

{
h ∈ H : sup

[∣∣(h, f)
∣∣2/(Sf, f), f ∈ D(S)

]
<∞

}
.

In addition, ||Ŝ−1/2
F h||2 = sup

[∣∣(h, f)
∣∣2/(Sf, f), f ∈ D(S)

]
.

As was established by M.G.Krĕın [15], [16], a nonnegative symmetric operator S
has a minimal nonnegative self-adjoint extension which coincides with the extension
obtained by J.von Neumann [18] (in the case of a positive lower bound of S). This
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extension we call the Krĕın-von Neumann extension SN . The operator SN can be
defined as follows [2], [7]: SN =

(
(S−1)F

)−1
, where S−1 denotes in this context

the inverse l.r. to the Gr(S). Thus, for every nonnegative self-adjoint extension S̃

of S, the inequality SN ≤ S̃ ≤ SF holds. In addition,

S̃[f, u] = (f, S∗u), f ∈ D[S], u ∈ D[S̃] ∩D[S∗],(2)

D[S̃] = D[S]uNz ∩ D[S̃].(3)

We will use the following relations (see [2]):

(4) D[SN ] =
{
u ∈ H : sup

[∣∣(u, Sf)
∣∣2/(Sf, f), f ∈ D(S)

]
<∞

}
and SN [u] = sup

[∣∣(u, Sf)
∣∣2/(Sf, f), f ∈ D(S)

]
, u ∈ D[SN ]. From (4) and (1) we

see the equivalence

(5) u ∈ D(S∗) ∩ D[SN ] ⇐⇒ S∗u ∈ R(S1/2
F )

and the equality

(6) SN [u] = S−1
F [S∗u], u ∈ D(S∗) ∩ D[SN ].

In particular,

(7) Nz ∩ D[SN ] = Nz ∩R(S1/2
F )

and for ϕz ∈ Nz ∩ D[SN ] we have

(8) SN [ϕz ] = |z|2S−1
F [ϕz ].

From (2), (3) and (8) and the polarization identity we obtain for all f, g ∈ D[S],
ϕz, ψz ∈ Nz ∩ D[SN ] and z ∈ ρ(SF )

(9) SN [f + ϕz , g + ψz] =
(
S

1/2
F f + zŜ

−1/2
F ϕz , S

1/2
F g + zŜ

−1/2
F ψz

)
.

The next theorem gives a description of all closed forms associated with nonnegative
self-adjoint extensions of S.

Theorem 1 ([3], [5]). Let S̃ be a nonnegative self-adjoint extension of S. Then
the form (S̃u, v)− SN [u, v], u, v ∈ D(S̃), is nonnegative and closable in the Hilbert
space D[SN ]. Moreover, the formulas

S̃[u, v] = SN [u, v] + τ [u, v], u, v ∈ D[S̃] = D[τ ]

give a one-to-one correspondence between all closed forms S̃[·, ·] associated with
nonnegative self-adjoint extensions S̃ of S and all nonnegative forms τ [·, ·] which
are closed in the Hilbert space D[SN ] and such that τ [f ] = 0 for all f ∈ D[S].

Recall that two self-adjoint extensions S̃1 and S̃2 of a symmetric operator S are
disjoint (relatively prime) if D(S̃1) ∩ D(S̃2) = D(S) and transversal if in addition
D(S̃1)+D(S̃2) = D(S∗). The necessary and sufficient condition for transversality of
the Friedrichs and Krĕın-von Neumann extensions is the following: Nz ⊂ D[SN ] for
some (and then for all) z ∈ ρ(SF ). This condition is equivalent to Nz ⊂ R[SF ] for
some (and then for all) z ∈ ρ(SF ). M.G.Krĕın established criterion for uniqueness
of nonnegative self-adjoint extensions of a nonnegative densely defined operator S.
Below we present an equivalent condition for uniqueness.
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Consider the domain D(S∗) of the adjoint operator S∗ to a closed densely defined
nonnegative symmetric operator S as a Hilbert space H+ with the inner product
(f, g)+ = (f, g) + (S∗f, S∗g). The (+)-orthogonal decomposition holds: H+ =
D(S)⊕Ni ⊕N−i. Denote

NF = D(SF )	D(S), MF = H+ 	D(SF )

((+)-orthogonal complements of D(S) in D(SF ) and of D(SF ) in H+). Note that

MF = SFNF , N±i = (SF ± iI)NF , H+ = D(S)⊕NF ⊕MF .

Proposition 3. A necessary and sufficient condition for the uniqueness of a non-
negative self-adjoint extension of S is the equality R(S1/2

F ) ∩NF = {0}.

4.

Suppose that

(10) N0 = R(S1/2
F ) ∩NF 6= {0}.

According to Proposition 3 an operator S has nonunique nonnegative self-adjoint
extensions. In the following we give a parametrization of all of them. First of all
we describe the closed form, associated with the Krĕın-von Neumann extension SN
of S.

Proposition 4. The following equalities hold:

(11)

{
D[SN ] = D[S]u SFN0,

SN [f + SF e] = ||S1/2
F f − Ŝ−1/2

F e||2, f ∈ D[S], e ∈ N0.

Proof. From SF ≥ 0 and the equality S∗SF e = −e for all e ∈ NF it follows that
D[S] ∩ SFNF = {0}. From Ni = (SF + iI)NF , (3) and (7), we have D[SN ] =
D[S] u R(S1/2

F ) ∩Ni. Hence, we get that D[SN ] = D[S] u SFN0. From (9) it
follows for all f ∈ D[S] and all e ∈ N0 that

SN [f + SF e] = SN [f − ie+ (SF + iI)e]

= ||S1/2
F (f − ie) + iŜ

−1/2
F (SF + iI)e||2 = ||S1/2

F f − Ŝ−1/2
F e||2. �

Proposition 5. Suppose that condition (10) is fulfilled and define a nonnegative
sesquilinear form

(12) w0[e, g] = (S1/2
F e, S

1/2
F g) + (Ŝ−1/2

F e, Ŝ
−1/2
F g), e, g ∈ N0.

Then the form w0 is closed in the Hilbert space H+ and

w0[e] ≥ 2||e||2 for all e ∈ N0.

Denote by N
w0
0 the Hilbert space with the inner product

(e, h)w0 = w0[e, h] + (e, h)+, e, h ∈ N0.

Then the operator SF is an isomorphism of the Hilbert space N
w0
0 and the subspace

SFN0 of the Hilbert space D[SN ].
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Proof. From (12) it follows that

w0[e] =
∥∥S1/2

F e− Ŝ−1/2
F e

∥∥2+2||e||2 = ||S1/2
F e± iŜ−1/2

F e||2.

Therefore, w0[e] ≥ 2||e||2 for all e ∈ N0. Let lim
n→∞

en = e in H+, and let

lim
n,m→∞

w0[en − em] = 0. Then lim
n→∞

en = e in H and
{
S

1/2
F en

}
,
{
Ŝ
−1/2
F en

}
are

Cauchy sequences. Since the operators S1/2
F and Ŝ

−1/2
F are closed, we get that

S
1/2
F e = lim

n→∞
S

1/2
F en, e ∈ R(S1/2

F ) and Ŝ
−1/2
F e = lim

n→∞
S
−1/2
F en.

Thus e ∈ N0 and lim
n→∞

w0[e − en] = 0. This implies that the form w0 is closed in

H+. From the inequality ||Λ1−θu|| ≤ ||Λu||1−θ||u||θ for all u ∈ D(Λ), which is true
for an arbitrary nonnegative self-adjoint operator Λ and an arbitrary θ ∈ [0, 1], we
obtain, for all e ∈ D(SF ) ∩R(S1/2

F ),

||e|| ≤ ||SF e||1/3||Ŝ−1/2
F e||2/3, ||S1/2

F e|| ≤ ||SF e||2/3||Ŝ−1/2
F e||1/3.

Therefore, statement 2. follows from (10) and (11). �

Let W0 be a (+)-nonnegative self-adjoint linear relation in NF associated with
w0. In view of w0[f ] > 0 for all f 6= 0 ∈ N0, the inverse l.r. W−1

0 is densely defined
in NF and therefore is the graph of a (+)-self-adjoint nonnegative operator. We
denote this operator by W−1

0 . Clearly, KerW−1
0 = W(0) = NF 	 N0 (the (+)-

orthogonal complement).
The next theorem gives a description of all nonnegative self-adjoint extensions of

S and their associated closed forms in terms of W−1
0 and some auxiliary operators

in NF .

Theorem 2. The formulas{
D(S̃) = D(S)⊕ (I + SF Ũ)D(Ũ ),
S̃(f0 + e+ SF Ũe) = SF (f0 + e)− Ũe, f0 ∈ D(S), e ∈ D(Ũ),

(13) 
D[S̃] = D[S]+̇SFR(Ũ1/2),
S̃[f + SFh] = ||S1/2

F f − S−1/2
F h||2 + Ũ−1[h]− w0[h],

f ∈ D[S], h ∈ R(Ũ1/2)
(14)

give a one-to-one correspondence between all nonnegative self-adjoint extensions S̃
of S, their associated closed forms and all (+)-nonnegative self-adjoint operators Ũ
in NF satisfying the condition

(15) Ũ ≤W−1
0 .

An extension S̃ coincides with SN if Ũ = W−1
0 . The extensions SF and SN are

disjoint if and only if N0 is dense in NF , and are transversal if and only if N0 = NF .

Proof. For every h ∈ NF we have
(
S∗SFh, SFh

)
= −

(
h, SFh

)
≤ 0. It follows that,

if S̃ = S̃∗ is a nonnegative extension of S, then D(S̃) ∩ SFNF = {0}. Therefore,
we obtain D(S̃) = D(S) ⊕ (I + SF Ũ)D(Ũ ), where Ũ is a closed linear operator in
the subspace NF with the domain D(Ũ). Let us show that Ũ is a (+)-self-adjoint
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operator in NF and satisfies condition (15). Consider an arbitrary vector f ∈ D(S̃)
of the form f = h+ SF Ũh, h ∈ D(Ũ). Then S̃f = S∗f = SFh− Ũh and

(S̃f, f) = (SFh− Ũh, h+ SF Ũh)

= (SFh, h)− (Ũh, SF Ũh) + (h, Ũh)+ − 2 Re(Ũh, h).

Since Im(S̃f, f) = 0, we get that Im(h, Ũh)+ = 0. This means that Ũ is a (+)-
symmetric operator in NF . Since S̃ is a nonnegative self-adjoint extension of S,
then for every vector f ∈ D(S̃) the inequality (S̃f, f) ≥ SN [f ] holds. Again let
f = h + SF Ũh, h ∈ D(Ũ). Then (5) implies Ũh ∈ R(S1/2

F ) for all h ∈ D(Ũ) and
from (6) we obtain

SN [f ] = (SFh, h) +
∥∥Ŝ−1/2

F Ũh
∥∥2−2 Re(h, Ũh).

Thus, the inequality (S̃f, f) ≥ SN [f ] yields

(SFh, h)− (Ũh, SF Ũh) + (h, Ũh)+ − 2 Re(Ũh, h)

≥ (SFh, h) +
∥∥S−1/2

F Ũh
∥∥2−2 Re(h, Ũh).

Finally we have
∥∥Ŝ−1/2

F Ũh
∥∥2+(Ũh, SF Ũh) ≤ (h, Ũh)+. It follows that w0[Ũh] ≤

(Ũh, h)+ for all h ∈ D(Ũ).
In particular, Ũ is a (+)-nonnegative operator in NF . It follows that Ũ has a

(+)-self-adjoint extension ˜̃U in NF . One can check that the operator ˜̃S given by

D( ˜̃S) = D(S)⊕ (I + SF
˜̃
U)D( ˜̃U), ˜̃S = S∗

∣∣D( ˜̃S) is a symmetric extension of S̃ in H .

Since S̃ is self-adjoint, we get ˜̃U = Ũ . Thus, Ũ is a (+)-self-adjoint and nonnegative
operator in NF . According to Proposition 1 the inequality w0[Ũh] ≤ (Ũh, h)+,

h ∈ D(Ũ), is equivalent to Ũ ≤W−1
0 .

Conversely, let Ũ be a (+)-self-adjoint nonnegative operator in NF satisfying the
condition Ũ ≤ W−1

0 . Then also w0[Ũh] ≤ (Ũh, h)+ for all h ∈ D(Ũ ). It follows
that

(S∗f, f) ≥ SN [f ] for all f = h+ SFh, h ∈ D(Ũ),

and from (4) we obtain
∣∣(Sϕ, f)

∣∣2 ≤ (Sϕ, ϕ)(S∗f, f). Hence,

2 Re(Sϕ, f) ≥ −(Sϕ, ϕ)− (S∗f, f).

Further for g = ϕ+ f , where ϕ ∈ D(S), we have

(S∗g, g) = (Sϕ+ S∗f, ϕ+ f) = (Sϕ, ϕ) + (S∗f, f) + 2 Re(Sϕ, f) ≥ 0.

Thus, the operator S̃ = S∗
∣∣(D(S) ⊕ (I + SF Ũ)D(Ũ )

)
is a self-adjoint nonnegative

extension of S. Define a nonnegative self-adjoint extension

S̃0 = S∗�
(
D(S)⊕

(
I + SFW

−1
0

)
N0

)
.

Let us prove that S̃0 coincides with the Krĕın-von Neumann extension SN . We will
show the equality

(
S̃0u, v

)
= SN [u, v] for all u ∈ D(S̃0) and all v ∈ D[SN ]. Let u =

f + (I + SFW
−1
0 )e, v = g + SFh, where f ∈ D(S), e ∈ D(W−1

0 ), g ∈ D[S], h ∈ N0.
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Then from (11)

SN [u, v] =
(
S

1/2
F (f + e)− Ŝ−1/2

F W−1
0 e, S

1/2
F g − Ŝ−1/2

F h
)

=
(
SF (f + e)−W−1

0 e, g
)
−
(
f + e, h

)
+
(
Ŝ
−1/2
F W−1

0 e, Ŝ
−1/2
F h

)
=
(
SF (f + e)−W−1

0 e, g
)

+
(
SF (f + e), SFh

)
−
(
f + e, h

)
+

+
(
Ŝ
−1/2
F W−1

0 e, Ŝ
−1/2
F h

)
=
(
SF (f + e)−W−1

0 e, g + SFh
)
−
(
e, h
)

+

+
(
Ŝ
−1/2
F W−1

0 e, Ŝ
−1/2
F h

)
+
(
W−1

0 e, SFh
)

=
(
S̃0u, v

)
−
(
e, h
)
+

+
(
Ŝ
−1/2
F W−1

0 e, Ŝ
−1/2
F h

)
+
(
W−1

0 e, SFh
)
.

Put q = W−1
0 e. Then e ∈W0(q) and (W0(q), h)+ = (e, h)+ for all h ∈ D[w0] =

N0. By the definition of the form w0 we have(
Ŝ
−1/2
F W−1

0 e, Ŝ
−1/2
F g

)
= w0[q, h]−

(
SF q, h

)
=
(
W0(q), h

)
+
−
(
SF q, h

)
=
(
e, h)+ −

(
SFW

−1
0 e, h

)
.

Thus,
(
S̃0u, v

)
= SN [u, v]. In accordance with the first representation theorem

we obtain S̃0 = SN .
Let us prove (14). Let u = f1 + SFh1, v = f2 + SFh2, where f1, f2 ∈ D[S],

h1, h2 ∈ R(Ũ1/2). Define the form τ [u, v] in D[SN ]:

τ [u, v] = Ũ−1[h1, h2]− w0[h1, h2].

Proposition 1 implies nonnegativity of τ . According to Proposition 2, the form
Ũ−1[h1, h2] − w0[h1, h2] is closed in the Hilbert space N

w0
0 = D[w0] and is the

closure of the form (e1, Ũe2)+ − w0[Ũe1, Ũe2], e1, e2 ∈ D(Ũ ). Using Propositions 4
and 5 we get that τ is closed in the Hilbert space D[SN ].

For u = ϕ1 + (I + SF Ũ)e1, v = ϕ2 + (I + SF Ũ)e2, ϕ1, ϕ2 ∈ D(S), e1, e2 ∈ D(Ũ)
from (13) and (11) we have the equality(

S̃u, v
)
− SN [u, v] = (e1, Ũe2)+ − w0[Ũe1, Ũe2].

Therefore, Theorem 1 yields equalities (14). �

As a consequence of this theorem we get

Theorem 3. Let P+
i be the orthogonal projection onto Ni in H+ and D(SF ) =

D(S)u (I + VF )Ni. Then the operator

Ṽ P+
i h = −VFP+

i (Ũ + iI)(Ũ − iI)−1h, h ∈ NF ,

defines D(S̃) by the von Neumann formula D(S̃) = D(S) u (I + Ṽ )Ni, where Ũ is
a (+)-self-adjoint operator in NF satisfying the condition 0 ≤ Ũ ≤W−1

0 .

Proof. Let Ũ be a (+)-selfadjoint operator in the subspace NF which satisfies the

condition 0 ≤ Ũ ≤W−1
0 and let Z̃ =

(
Ũ + iI

)(
Ũ − iI

)−1

be the Cayley transform
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of Ũ . Then Z̃ is a (+)-unitary operator in NF and Ũ can be defined as follows:
e = i(I − Z̃)h, Ũe = (I + Z̃)h, h ∈ NF . Since NF = (I + VF )Ni and VF is
a (+)-isometry from Ni onto N−i, we get that if h = (I + VF )g, g ∈ Ni, then
Z̃h = (I + VF )K̃g, where K̃ is a (+)-unitary operator in Ni. This implies that
P+
i h = g, P+

i Z̃h = K̃g, and e = i(I + VF )(g − K̃g), Ũe = (I + VF )(g + K̃g),
SF Ũe = (I − VF )(g + K̃)g,

(I + SF Ũ)e = i(I + VF )(g − K̃g) + i(I − VF )(g + K̃g)

= 2ig − 2iVF K̃g.

Hence, for a self-adjoint extension S̃ given by (13) we get

D(S̃) = D(S)u (I − VF K̃)Ni. �

5.

Let y ∈ R3. Consider the operator S defined as follows:

D(S) =
{
ϕ(x) ∈ H2

2 (R3) : ϕ(y) = 0
}
, Sϕ = −∆ϕ,

where x ∈ R3, H2
2 (R3) is the Sobolev space and ∆ denotes the Laplacian. As is well

known the operator S is a nonnegative symmetric operator in L2(R3, dx) with defect
numbers 1, 1 and its Friedrichs extension SF is given by D(SF ) = H2

2 (R3), SF =
−∆.

Let F : L2(R3, dx)→ L2(R3, dp),

Ff = f̂(p) = s− lim
R→∞

(2π)−3/2

∫
|x|≤R

f(x) exp(−ixp)dx, p = (p1, p2, p3),

be the Fourier transform. In the p-representation we obtain the nonnegative sym-

metric operator
◦
A and its Friedrichs extension AF :

D(
◦
A) =

{
h(p) ∈ L2(R3, dp),

∫
R3
h(p) exp(ipy)dp = 0

}
,

D(AF ) = H2(R3) := L2(R3, (|p|4 + 1)dp),
◦
Ah = |p|2h(p), h(p) ∈ D(A),

AF f = |p|2f(p), f(p) ∈ D(AF ).

Let e(p) = exp(−ipy)
(
1 + |p|4

)−1
. Clearly, NF = span

{
e(p)

}
, MF = AFNF =

span
{
|p|2e(p)

}
. The adjoint operator

◦
A
∗

is given by the following relations:

D(
◦
A
∗
) = D(

◦
A)+̇NF +̇MF = H2(R3)+̇MF ,

◦
A
∗ (
f(p) + λ|p|2e(p)

)
= |p|2f(p)− λe(p), f(p) ∈ H2(R3), λ ∈ C.
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Let H+ = D(
◦
A
∗
). Since

D(A1/2
F ) = H1(R3) := L2(R3, (|p|2 + 1)dp), A1/2

F f = |p|f(p),

we obtain that

A
−1/2
F e(p) =

exp(−ipy)
|p|(1 + |p|4)

∈ H1(R3).

By Proposition 3 we have AF 6= AN . By the direct calculation we get

(e(p), e(p))+ =
∫
R3

dp

1 + |p|4 =
√

2π2,(
A

1/2
F e(p), A1/2

F e(p)
)

+
(
A
−1/2
F e(p), A−1/2

F e(p)
)

=
∫
R3

dp

|p|2(1 + |p|4)
=
√

2π2.

From Theorem 2 we get the following descriptions of non-negative self-adjoint ex-

tensions of
◦
A:

D(AN ) =

{
f0(p) + λ

(1 + |p|2) exp(−ipy)
1 + |p|4 , f0(p) ∈ D(A), λ ∈ C

}
,

AN

(
f0(p) + λ

(1 + |p|2) exp(−ipy)
1 + |p|4

)
= |p|2f0(p) + λ

(|p|2 − 1) exp(−ipy)
1 + |p|4 ,

D(Ãu) =

{
f0(p) + λ

(1 + u |p|2) exp(−ipy)
1 + |p|4 , f0(p) ∈ D(A), λ ∈ C

}
,

Ãu

(
f0(p) + λ

(1 + u |p|2) exp(−ipy)
1 + |p|4

)
= |p|2f0(p) + λ

(|p|2 − u) exp(−ipy)
1 + |p|4 ,

where 0 ≤ u ≤ 1. The inverse Fourier transform F−1 is given by the equality

F−1f̂ = f(x) = s− lim
R→∞

(2π)−3/2

∫
|p|≤R

f̂(p) exp(ipx)dp.

We have S = F−1
◦
AF , SF = F−1AFF , SN = F−1ANF . A calculation gives

F−1e(p) =
√
π

2

exp (− |x−y|√
2

)

|x− y| sin
|x− y|√

2
,

F−1AF e(p) =
√
π

2

exp (− |x−y|√
2

)

|x− y| cos
|x− y|√

2
.
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Hence,

D(SN )=

{
f0(x) + λ

exp (− |x−y|√
2

)

|x− y|

(
sin
|x− y|√

2
+ cos

|x− y|√
2

)
, f0(y)=0, λ ∈ C

}
,

SN

f0(x) + λ
exp (− |x−y|√

2
)

|x− y|

(
sin
|x− y|√

2
+ cos

|x− y|√
2

)
= −∆f0(x) + λ

exp (− |x−y|√
2

)

|x− y|

(
cos
|x− y|√

2
− sin

|x− y|√
2

)
,

D(S̃u)=

{
f0(x) + λ

exp (− |x−y|√
2

)

|x− y|

(
sin
|x− y|√

2
+ u cos

|x− y|√
2

)
, f0(y)=0, λ∈C

}
,

S̃u

f0(x) + λ
exp (− |x−y|√

2
)

|x− y|

(
sin
|x− y|√

2
+ u cos

|x− y|√
2

)
= −∆f0(x) + λ

exp (− |x−y|√
2

)

|x− y|

(
cos
|x− y|√

2
− u sin

|x− y|√
2

)
, 0 ≤ u ≤ 1.
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