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ON VORONTSOV’S THEOREM ON K3 SURFACES
WITH NON-SYMPLECTIC GROUP ACTIONS

KEIJI OGUISO AND DE-QI ZHANG

(Communicated by Ron Donagi)

Abstract. We shall give a proof for Vorontsov’s Theorem and apply this to
classify log Enriques surfaces with large prime canonical index.

Introduction

A K3 surface is, by definition, a simply connected smooth projective surface over
the complex numbers C with a nowhere vanishing holomorphic 2-form. For a K3
surfaceX , we denote by SX , TX and ωX the Néron-Severi lattice, the transcendental
lattice and a nowhere vanishing holomorphic 2-form ofX . We write t(X) = rankTX .

Nukulin [Ni1] considered the kernelHX of the natural representation Aut(X) −→
O(SX) and proved that HX is a finite cyclic group with ϕ(ord(HX))|t(X) and acts
faithfully on the space H2,0(X) = CωX , where ϕ is the Euler function. We set
h(X) = ord(HX). The interesting case here is when ϕ(h(X)) = t(X).

Kondo [Ko, Main Theorem] has studied the case where TX is unimodular and
shown the following complete classification:

Theorem 1. Set Σ := {66, 44, 42, 36, 28, 12}.
(1) Let X be a K3 surface with ϕ(h(X)) = t(X) whose transcendental lattice TX

is unimodular. Then h(X) ∈ Σ.
(2) Conversely, for each N ∈ Σ, there exists, modulo isomorphisms, a unique

K3 surface X such that h(X) = N,ϕ(h(X)) = t(X). Moreover, TX is unimodular
for this X.

In the case where TX is not unimodular, about 15 years ago, Vorontsov [Vo]
announced the following complete classification:

Theorem 2. Set Ω := {3k(1 ≤ k ≤ 3), 5l(l = 1, 2), 7, 11, 13, 17, 19}.
(1) Assume that X is a K3 surface satisfying ϕ(h(X)) = t(X) and that TX is

non-unimodular. Then h(X) ∈ Ω.
(2) Conversely, for each N ∈ Ω, there exists, modulo isomorphisms, a unique K3

surface X such that h(X) = N,ϕ(h(X)) = t(X). Moreover, TX is non-unimodular
for this X.

However, till now, he gave neither proof of this theorem nor construction of such
K3 surfaces. In fact the original statement of (1) in [Vo] was weaker than here.
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Later, in [Ko, Sections 6 and 7], Kondo has sharpened the statement of (1) as
in the present form and also given a complete proof of the statement (1). He has
also shown the existence part of the statement (2) by constructing such K3 surfaces
explicitly as follows:

Kondo’s example. For each h ∈ Ω, the following pair (Xh, 〈gh〉) of a K3 surface
Xh defined by the indicated Weierstrass equation (or a weighted homogeneous
equation in a weighted projective space) and its cyclic automorphism group 〈gh〉
satisfies HXh = 〈gh〉 and ϕ(h(Xh)) = t(Xh) and TX is not unimodular:
X19 : y2 = x3 + t7x+ t, g∗19(x, y, t) = (ζ7

19x, ζ19y, ζ
2
19t);

X17 : y2 = x3 + t7x+ t2, g∗17(x, y, t) = (ζ7
17x, ζ

2
17y, ζ

2
17t);

X13 : y2 = x3 + t5x+ t4, g∗13(x, y, t) = (ζ5
13x, ζ13y, ζ

2
13t);

g∗11(x, y, t) = (ζ5
11x, ζ

2
11y, ζ

2
11t);

X7 : y2 = x3 + t3x+ t8, g∗7(x, y, t) = (ζ3
7x, ζ7y, ζ

2
7 t);

X25 : {y2 + x6
0 + x0x

5
1 + x1x

5
2 = 0} ⊂ P(1, 1, 1, 3);

g∗25([x0 : x1 : x2 : y]) = [x0 : ζ20
25x1 : ζ25x2 : y];

X5 : y2 = x3 + t3x+ t7, g∗5(x, y, t) = (ζ3
5x, ζ

2
5y, ζ

2
5 t);

X27 : y2 = x3 + t(t9 − 1), g∗27(x, y, t) = (ζ2
27x, ζ

3
27y, ζ

6
27t);

X9 : y2 = x3 + t5(t3 − 1), g∗9(x, y, t) = (ζ2
9x, ζ

3
9y, ζ

3
9 t);

X3 : y2 = x3 + t2(t10 − 1), g∗3(x, y, t) = (ζ3x, y, t).
However, Kondo did not touch the uniqueness part of (2), either. Only the

uniqueness in the case where h(X) = 52 has been just settled by [MO, Theorem 3].
The main purpose of this short article is to give a complete proof for the unique-

ness part of (2) to guarantee Vorontsov’s Theorem. This together with Kondo’s
Theorem completes the classification of K3 surfaces X with ϕ(h(X)) = t(X).

We shall also show the following strong uniqueness result as an application of
Theorem 2:

Corollary 3. Let X be a K3 surface with an automorphism g of order I ∈ {19, 17,
13}, the three largest possible prime orders. Then we have:

(X, 〈g〉) ' (X19, 〈g19〉) when I = 19;
(X, 〈g〉) ' (X17, 〈g17〉) when I = 17; and
(X, 〈g〉) ' (X13, 〈g13〉) when I = 13,

where (XI , 〈gI〉) are pairs defined in Kondo’s example.

Besides its own interest, our motivation for this project lies also in its applica-
bility to the study of log Enriques surfaces initiated by the second author ([Z1]).
We should also mention here that log Enriques surfaces are regarded as a log ver-
sion of K3 surfaces and play an increasingly important role in higher dimensional
algebraic geometry. For instance, base spaces of elliptically fibered Calabi-Yau
threefolds ΦD : X → S with D.c2(X) = 0 are necessarily log Enriques surfaces
([Og]).

A log Enriques surface Z is, by definition, a projective rational surface with at
worst quotient singularities, or in other words, at worst klt singularities and with
numerically trivial canonical Weil divisor. Passing to the maximal crepant partial
resolution, we may also assume in the definition the following maximality for Z:

(∗) any birational morphism Z ′ → Z from another log Enriques surface Z ′ must
be an isomorphism.
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For a log Enriques surface Z, we define the canonical index I(Z) or index for
short, by

I(Z) := min{n ∈ Z>0|OZ(nKZ) ' OZ}.
A log Enriques surface of index I is closely related to a K3 surface admitting a
non-symplectic group (' Z/IZ) action via the canonical cover and its minimal
resolution:

X
ν−→ X := Spec(

I−1⊕
n=0

OZ(−iKZ)) π→ Z.

In fact, it is well known that X is either an abelain surface or a normal K3 surface
with at worst Du Val singularities and that π : X → Z is a cyclic Galois cover of
order I which acts faithfully on the space H0(X,OX(KX)) = CωX and is ramified
only over Sing(Z) ([Ka], [Z1]).

In the case where X is an abelain surface, Blache [Bl] shows that there are
exactly two such log Enriques surfaces up to isomorphisms.

Let us consider the case where X is a K3 surface. In [OZ1], [OZ2], [OZ3], we
regard the rank of the sublattice of SX generated by the exceptional curves of π as
an invariant to measure how bad Sing(Z) is and to classify the worst case, namely,
the “extremal” case where the rank is 19. As a result, we found that there exist
exactly 7 such surfaces up to isomorphisms. However one of them is of index 2 and
the others are all of index 3. Note that these indices are rather small.

Now, as a counterpart, it is also interesting to consider the canonical index I(Z)
as an invariant measuring how bad Sing(Z) is. It is known that 2 ≤ I(Z) ≤ 21 and
I(Z) ∈ {2, 3, 5, 7, 9, 11, 13, 17, 19} if I(Z) is prime ([Z1], [Bl]).

As an application of Corollary 3, we show the following uniqueness result for log
Enriques surfaces Z with the three largest prime indices:

Corollary 4. Let Z be a log Enriques surface with I(Z) = 19, 17 or 13 satisfying
the maximality (∗). Then we have:
Z ' Z19 := X19/〈g19〉 when I(Z) = 19;
Z ' Z17 := X17/〈g17〉 when I(Z) = 17; and
Z ' Z13 := X13/〈g13〉 when I(Z) = 13,

where (XI , gI) are pairs defined in Kondo’s example and X13 is the surface obtained
from X13 by contracting the unique rational curve in the fixed locus Xg13

13 .

The second author constructed log Enriques surfaces of indices 19, 17, 13 in a
completely different way ([Z1]). However, it looks very hard to show directly that
they are isomorphic to Z19, Z17 and Z13.

§1. Existence of Jacobian fiber space structures

Throughout this section we assume that X is a K3 surface with ϕ(h(X)) = t(X)
and with pr = N = h(X) ∈ Ω, where p is prime and fix a generator g of HX with
g∗ωX = ζNωX . In what follows, set S∗X = Hom(SX ,Z), T ∗X = Hom(TX ,Z) and
regard SX ⊂ S∗ ⊂ SX ⊗Q, TX ⊂ T ∗ ⊂ TX ⊗Q via the bilinear form of SX and
TX induced by the cup product on H2(X,Z). We denote by l(SX) the minimal
number of generators of the finite abelian group S∗X/SX . We call SX p-elementary
if there exists a non-negative integer a such that S∗X/SX is isomorphic to (Z/p)⊕a.
In this case we denote this a by l(SX).
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1574 KEIJI OGUISO AND DE-QI ZHANG

Recall that SX (resp. TX) is an even lattice of signature (1, rankSX − 1) (resp.
of signature (2, rankTX − 2)) and rankSX + rankTX = 22.

The goal of this section is to show the following:

Proposition (1.1). X admits a Jacobian fibration Φ : X → P1 if N 6= 25.

First we notice the following:

Lemma (1.2) ([MO], [Ni1]). (1) Each eigenvalue of g∗|TX is a primitive N -th root
of 1.

(2) Ann(TX) = 〈ΦN (g∗)〉, and TX is then naturally a torsion free Z[〈g∗〉]/
〈ΦN (g∗)〉-module, where ΦN (x) denotes the minimal polynomial over Q of a prim-
itive N -th root of 1.

(3) Under the identification Z[〈g∗〉]/〈ΦN (g∗)〉 = Z[ζN ] through the correspon-
dence g∗(mod〈ΦN (g∗)〉)↔ ζN , TX ' Z[ζN ] as Z[ζN ]-modules.

Proof. This is proved in [MO, Lemma(1.1)]. But it is so easy that we reproduce the
verfication here from [MO]. The statement (1) is shown by Nukulin ([Ni1, Theorem
3.1, Corollary 3.3]). The statement (2) is a simple reinterpretation of (1) in terms
of group algebra. Recall that torsion free modules are in fact free if the coefficient
ring is PID. Now, combining (2) with the fact that Z[ζN ] is PID for N ∈ Ω [MM,
Main Theorem], we get the assertion (3).

Lemma (1.3). SX is a p-elementary lattice with l(SX) = 1.

Proof. Since there exists a natural isomorphism T ∗X/TX ' S∗X/SX which commutes
with the action of Aut(X), it is enough to show that T ∗X/TX ' Z/p. Since g∗|SX =
id by the definition ofHX , g∗|(S∗X/SX) = id, whence g∗|(T ∗X/TX) = id. This means
g∗(x) ≡ x (mod TX) for each x ∈ T ∗X . Set n = N/p and h = gn. Then h is of order p.
Using (1.2)(1), we get px ≡ x+h∗(x)+...+(h∗)p−1(x) = (1+h∗+...+(h∗)p−1)(x) =
0 (mod TX). Thus, T ∗X/TX is p-elementary. We determine l(TX).

We shall treat the case where N = p. The verification for the case where N =
32, 33, 52 is quite similar and left to the reader as an exercise (cf. [MO, Claim(3.4)]
for the case where N = 52). Let ei (i = 1, ..., p−1) be a Z-basis of TX corresponding
to the Z-basis 1, ζp, ..., ζp−2

p of Z[ζp] via the isomorphism in (1.2). Then g∗(ei) =
ei+1 for i = 1, ..., p− 1 and g∗(ep−1) = −(e1 + e2 + ...+ ep−1) (corresponding to the
equality Φp(ζp) = 0 in Z[ζp]).

Choose y ∈ T ∗X(⊂ TX⊗Q) arbitrary. Since T ∗X/TX is p-elementary, we can write
y = 1/p(

∑p−1
i=1 aiei), where ai ∈ Z. Then

g∗(y)−y=1/p(−(a1 + ap−1)e1 +
p−3∑
i=1

(ai − ap−1 − ai+1)ei+1 + (ap−2 − 2ap−1)ep−1).

Since g∗|(T ∗X/TX) = id, we have g∗(y)−y ∈ TX , whence a1 +ap−1 ≡ 0, ai−ap−1−
ai+1 ≡ 0 and ap−2 − 2ap−1 ≡ 0 (mod p). This implies ai ≡ ia1 (mod p) and then
y = a1 × (1/p)(e1 + 2e2 + ...+ (p− 1)ep−1) in T ∗X/TX . Thus,

T ∗X/TX = 〈(1/p)(e1 + 2e2 + ...+ (p− 1)ep−1)〉 ' Z/p

because l(TX) 6= 0 if N ∈ Ω (cf. [Ko]). This implies the result.

Proof of Proposition (1.1). Let U be the even unimodular hyperbolic lattice of rank
2. If N ∈ Ω−{52}, then rank(SX) ≥ 4 = 3+l(SX). We can then apply the so-called
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splitting theorem due to Nikulin [Ni3, Corollary 1.13.5] for SX to split U out from
SX , namely, SX ' U ⊕ S′. Now the result follows from [Ko, Lemma 2.1].

§2. Uniqueness theorem when h(X) = 33, 32, 3

In this section we show the uniqueness of K3 surfaces X with ϕ(h(X)) = t(X)
and with N := h(X) = 33 (resp.32, resp.3). Let us set HX = 〈g〉. Then rankSX =
22 − t(X) = 4 (resp. 16, resp. 20). Since SX is an even hyperbolic 3-elementary
lattice with `(SX) = 1 by (1.3), applying [RS, Section 1], we find that SX ' U⊕A2,
U ⊕E8⊕E6, and U ⊕E8⊕E8⊕A2. Thus X has a Jacobian fibration Φ : X → P1

whose reducible fibers are exactly I3 or IV (resp. II∗ + IV ∗, resp. II∗ + II∗ + I3
or II∗ + II∗ + IV ).

Since g∗|SX = id, there exists g ∈ Aut(P1) such that Φ ◦ g = g ◦ Φ. Note also
that each smooth rational curve on X must be g-stable whence each reducible fiber
of Φ is also g-stable.

First consider the case where N = 3. Since there exist three reducible fibers,
g = id. Thus each smooth fiber E is g-stable and (g|E)∗ωE = ζ3ωE . Thus, the
J-invariant map J : P1 → P1 is j(C/Z + Zζ3) = 0. In particular, each singular
fiber is either of Type II, II∗, IV or IV ∗ by the classification of singular fibers
([Kd]). Thus, the reducible fibers of Φ are II∗ + II∗ + IV . We may adjust an
inhomogeneous coordinate t of the base so that X−1 and X1 are of type II∗ and
X0 is of type IV . Since χtop(X) = 24 = χtop(X1) + χtop(X−1) + χtop(X0), there
are no other singular fibers.

Let us determine the minimal Weierstrass equation y2 = x3 + a(t)x + b(t) of Φ.
We use the notation in [Ne, Table on the last page]. Since

J(t) = 4a(t)3/(4a(t)3 + 27b(t)2) = 0,

we have a(t) = 0 as polynomials. Thus, ∆(t) = 27b(t)2. This has exactly two zeros
of order 10 (mod12) at t = 1,−1 and one zero of order 4 (mod12) at t = 0. Note
that deg∆(t) ≤ 24, because X is a K3 surface. Thus, ∆(t) = C(t10−1)2t4 for some
constant C 6= 0, whence b(t) = c(t10 − 1)t2 for some constant c 6= 0. This means
the equation is written as y2 = x3 + c(t10 − 1)t2. Then changing the coordinates
x, y to c1/3x, c1/2y, we normalise this equation as y2 = x3 + (t10− 1)t2. This shows
that X is isomorphic to the Jacobian K3 surface y2 = x3 + (t10 − 1)t2.

Next consider the case where N = 9. We may take an inhomogeneous coordinate
t so that X0 is of type II∗ and X∞ is of type IV ∗. First determine ord(g). A priori
ord(g) = 1, 3 or 9. If ord(g) = 1, a smooth fiber E is g-stable and (g|E)∗ωE = ζ9ωE.
However there exists no such elliptic curve. If ord(g) = 9, then g permutes nine
fibers {Xζi9t

}p−1
i=0 , and there exists an integer m with 24 = χtop(X) = χtop(X0) +

χtop(X∞) + 9m = 18 + 9m, a contradiction. Thus, ord(g) = 3. Then g3 acts
on each fiber (g|E)∗ωE = ζ3ωE . Thus, the J-invariant map J : P1 → P1 is
j(C/Z + Zζ3) = 0. In particular, each singular fiber is either of Type II, II∗, IV
or IV ∗. Then by counting the Euler number of χtop(X), we see that there exist
three other singular fibers of Φ of type II permuted by g. Thus, we may adjust
an inhomogeneous coordinate t so that singular fibers of Φ are X0, X∞ and Xζi3
(i = 0, 1, 2). Now by the same argument as before, we can readily see that X is
isomorphic to the Jacobian K3 surface y2 = x3 + t5(t3 − 1).

Finally consider the case where N = 27. As in the previous case, we readily see
that ord(g) = 9, the J-invariant map is the constant map J(t) = j(C/Z+Zζ3) = 0,
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the reducible singular fiber is of Type IV and the remaining singular fibers consist
of one singular fiber of Type II stable under g and nine singular fibers of Type
II permuted by g. Then, we may normalise inhomogeneous coordinate t of the
base so that X0 and Xζi9

(0 ≤ i ≤ 8) are of Type II and X∞ is of Type IV .
Now, writing the Weierstrass equation and adjusting coordinates of fibers suitably
just as before, we can readily see that X is isomorphic to the Jacobian K3 surface
y2 = x3 + t(t9 − 1).

This complete the uniqueness for the case where N = 3, 32, or 33.

§3. Determination of singular fibers when h(X)
equals a prime p (≥ 5) and satisfies ϕ(h(X)) = t(X)

Let p ≥ 5 be a prime number in Ω and X a K3 surface with ϕ(h(X)) = t(X)
and with h(X) = p. Let us fix a solution of 4tp + 27 = 0 and denote it by αp.

The goal of this section is to show the following:

Proposition (3.1). For each p, X admits a Jacobian fibration Φp : X → P1 whose
singular fibers are as follows:
X0 is of Type II, X∞ is of Type III, and Xα19ζi19

(1 ≤ i ≤ 19) is of Type I1
when p = 19;
X0 is of Type IV , X∞ is of Type III, and Xα17ζi17

(1 ≤ i ≤ 17) is of Type I1 in
the case where p = 17;
X0 is of Type II, X∞ is of Type III∗, and Xα13ζi13

(1 ≤ i ≤ 13) is of Type I1
in the case where p = 13;
X0 is of Type II∗, X∞ is of Type III, and Xα11ζi11

(1 ≤ i ≤ 11) is of Type I1
in the case where p = 11;
X0 is of Type IV ∗, X∞ is of Type III∗, and Xα7ζi7

(1 ≤ i ≤ 7) is of Type I1 in
the case where p = 7;
X0 is of Type II∗, X∞ is of Type III∗, and Xα5ζi5

(1 ≤ i ≤ 5) is of Type I1 in
the case where p = 5.

Proof. By (1.1), there is a Jacobian fibration Φ : X → P1. For a generator g of
HX , there is an element g ∈ Aut(P1) such that g ◦ Φ = Φ ◦ g because g∗|SX = id.
Note also that each smooth rational curve on X is g-stable.

Claim (3.2). g is of order p.

Proof. Suppose to the contrary that the assertion is false. Then g = id. Let E be
a smooth fiber of Φ. Then g(E) = E. Since ωE ∧Φ∗(dt) gives a nowhere vanishing
2-form around E, g∗ω = ζpω implies that (g|E)∗ωE = ζpωE . But there is no such
elliptic curve with such action.

We adjust an inhomogeneous coordinate t of P1 such that (P1)g = {0,∞}.
Then only X0 and X∞ are the g-stable fibers. Note that singular fibers Xa where
a 6= 0,∞ (and hence Xa is not g-stable) are of Kodaira type I1 or II, for otherwise
Xa contains a smooth rational curve which is g-stable for g∗|SX = id. Since g
permutes {Xa, Xζpa, . . . , Xζp−1

p a}, we have

24 = χtop(X0) + χtop(X∞) + pc1 + 2pc2,(3.0.1)
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where pc1, pc2 denote the numbers of singular fibers of types I1, II, respectively.
Moreover, Xg = (X0)g

∐
(X∞)g, whence

χtop(Xg) = χtop((X0)g) + χtop((X∞)g).(3.0.2)

Lemma (3.3). When Xt is smooth (i.e., of type I0), we set nt = 0, and when Xt

is singular, we let nt denote the number of irreducible components of Xt. Then
each of X0 and X∞ is either of type Ipm, I∗pm, II, III, IV, II

∗, III∗, IV ∗. For both
t = 0,∞, χtop(Xt) = χtop((Xt)g) = nt (resp. nt + 1) if Xt is of type Ipm (resp.
otherwise).

Proof. We only consider X0, for X∞ is exactly the same.

By the classification of elliptic fibers, χtop(X0) = n0 (resp. n0 + 1) if X0 is of
type In0 (resp. otherwise). We now show that χtop(X

g
0 ) = χtop(X0).

If X0 is a smooth fiber, then either X0 ⊆ Xg or X0 ∩Xg = ∅ because there is
no elliptic curve with an automorphism g of prime order p (≥ 5) fixing at least one
point. It follows that χtop(X

g
0 ) = χtop(X0) = 0 = n0 in this case.

Now assume that X0 is singular. Notice the following facts (cf. 3-Go lemma in
[OZ1, §2]):

(1) If Q ∈ Xg
0 , then there exist local coordinates (xQ, yQ) around Q and an

integer a such that g∗(xQ, yQ) = (ζapxQ, ζ−a+1
p yQ) (as g∗ωX = ζpωX);

(2) If g|C 6= id for a smooth rational curve C, then Cg consists of two points,
say, Q1, Q2. If (g|C)∗(tQ1) = ζbptQ1 around Q1, then (g|C)∗(tQ2) = ζ−bp tQ2 around
Q2.

Now, using these facts and passing to the normalisation of X0 in the case of
Types I1 and II, we can identify Xg

0 for each possible type of X0 and hence deduce
easily the result.

Claim (3.4). We have χtop(X0) + χtop(X∞) = 24 − p. In particular, all singular
fibers other than X0, X∞ are of type I1. Moreover these are permuted by g.

Proof. By (3.0.2) and (3.2),

χtop(X0) + χtop(X∞) = χtop(X
g
0 ) + χtop(Xg

∞) = χ(Xg)

=
4∑
i=0

tr(g∗|Hi(X,Z)) = 2 + tr(g∗|SX) + tr(g∗|TX)

= 2 + (22− (p− 1)) + (−1) = 24− p.
Now (3.0.1) implies that 24 = χtop(X) = (24− p) + pc1 + 2pc2, and c1 + 2c2 = 1.

Hence c1 = 1, c2 = 0. This proves Claim (3.4).

Lemma (3.5). The pair of g-stable fibers (X0, X∞) of the elliptic fibration Φ :
X → P1 is one of the following types, after switching the indices 0,∞ if necessary:

(II, III) if p = 19;
(IV, III) if p = 17;
(II, III∗), or (IV ∗, III) if p = 13;
(II∗, III), or (IV, III∗), or (I11, II) if p = 11;
(IV ∗, III∗), or (IV, I∗7 ), or (I7, II∗), or (III, I14) if p = 7;
(II∗, III∗), or (IV ∗, I∗5 ), (III, I∗10), (III∗, I10), or (IV, I15) if p = 5.
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Proof. This readily follows from (3.3) and (3.4).

In order to complete (3.1), it is enough to show the following:

Lemma (3.6). In Lemma (3.5), replacing Φ by a new one, we may assume that
(X0, X∞) has the following type: (II, III), or (IV, III), or (II, III∗), or (II∗, III),
or (IV ∗, III∗), or (II∗, III∗) if p = 19, or 17, or 13, or 11, or 7 or 5.

Proof. In the case p = 5 (resp. p = 7 or p = 11), (X0, X∞) has one of 5 (resp. 4,
3) types in (3.5). Suppose that (X0, X∞) is not of the first type in (3.5). Let F
be a section of Φ. Clearly, X0 + F + X∞ contains a weighted rational tree X ′′0 of
Kodaira type II∗ (resp. III∗, or II∗). Then X ′′0 is nef. Now the Riemann-Roch
theorem implies that there is an elliptic fibration Ψ on X with X ′′0 as a (g-stable)
fiber.

It is easy to see that X0 or X∞ contains a cross-section of Ψ. Applying (3.4) to
Ψ, we see that the only two g-stable fibers of Ψ are of the first type in (3.4). Now
(3.6) follows by replacing Φ by Ψ.

Next consider the case p = 13. Suppose that the pair of the only two g-stable
fibers (X0, X∞) is of the second type (IV ∗, III) in (3.5).

Claim. There are two cross-sections F1, F2 of Φ such that F1∩F2 = ∅ and such that
F1 and F2 meet different (multiplicity one) components in Xt for both t = 0,∞.

Once this Claim is proved to be true, (3.6) follows by replacing Φ by the elliptic
fibration one of whose singular fibers is of type III∗ and contained in X0 + F1 +
F2 +X∞.

Now we prove the Claim. We fully use the notation and results in [Sh, Theorems
8.4, 8.6 and 8.7]. Fix one section F1 as the zero in the Mordell-Weil lattice E(K)
of Φ. First, E(K) is torsion free. Indeed, if F (6= F1) is a torsion in E(K), then
the height pairing 0 = 〈F1, F1〉 = 2χ(OX)+2F.F1−

∑
v∈R contrv(F ) = 4+2F.F1−

(4/3 or 0) − (1/2 or 0) ≥ 2F.F1 + 13/6 ≥ 13/6 > 0, a contradiction. So E(K) is a
torsion free lattice of rank 1 [Sh, Corollary 5.3]. Write E(K) = ZF2.

Denoting by n the index of the sublattice E(K)0 in E(K), we have n2〈F2, F2〉 =
det(E(K)0) = (detSX)n2/(3 × 2), and 〈F2, F2〉 = 13/6. Now the equality 13/6 =
〈F2, F2〉 = 2χ(OX) + 2F2.F1 −

∑
v∈R contrv(F2) and the description of contrv(F2)

in [Sh, (8.16)] imply the Claim. This also completes the proof of (3.6).

§4. Weierstrass equations of K3 surfaces when h(X)
equals a prime p (≥ 5) and satisfies ϕ(h(X)) = t(X)

Let y2 = x3 +ap(t)x+bp(t) be the minimal Weierstrass equation of Φp : X → P1

in (3.1). In this section, we determine this equation for each p by applying the
Néron-Tate algorithm ([Ne, Table on the last page]). This will imply the uniqueness
of a K3 surface X with ϕ(h(X)) = t(X) and with h(X) = p ≥ 5 for each p.

Since g acts on the base as g∗(t) = ζkp t (for some k with (k, p) = 1), the J-
invariant function Jp(t) := 4ap(t)3/∆p(t) is 〈ζp〉-invariant, and ∆p(t) := 4ap(t)3 +
27bp(t)2, which defines the discriminant divisor of Φp, is semi 〈ζp〉-invariant. Thus,
ap(t) is semi 〈ζp〉-invariant. Since Jp(t) 6= 0, we have ap(t) 6= 0. This together with
the invariance of Jp(t) also implies the semi-invariance of bp(t).

On the other hand, by the description of singular fibers and by the fact that
deg∆p(t) ≤ 24, we have ∆19(t) = C19t

2(4t19 + 27); ∆17(t) = C17t
4(4t17 + 27);

∆13(t) = C13t
2(4t13 + 27); ∆11(t) = C11t

10(4t11 + 27); ∆7(t) = C7t
8(4t7 + 27);
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∆5(t) = C5t
10(4t5 + 27). Here Cp 6= 0 are some constants. Moreover, in each case,

the singular fiber X∞ is the form of the finite quotient of C/(Z + Zζ4). Then we
have 1 = Jp(∞) = limt→∞ Jp(t). This implies: ap(t) = Apt

7 if p = 19, 17, 11,
ap(t) = Apt

5 if p = 13, 7 and (using also the semi-invariance) a5(t) = A5t
5 + C if

p = 5, where Ap are constants with A3
p = Cp. In the case p = 5, using ∆5(t) =

4a5(t)3 +27b5(t)2 and the semi-invariance of b5(t), we readily see that C = 0. Thus,
a5(t) = A5t

5.
Now, substituting these into ∆p(t) = 4ap(t)3 +27bp(t)2, we obtain b19(t) = B19t;

b17(t) = B17t
2; b13(t) = B13t; b11(t) = B11t

5; b7(t) = B7t
4; b5(t) = B5t

5, where
Bp are constants with B2

p = Cp. Then, there exists a constant Dp 6= 0 such that
Ap = D4

p and Bp = D6
p. Thus, the Weierstrass equation of Xp is:

y2 = x3 + D4
pt

7x + D6
pt if p = 19; y2 = x3 + D4

pt
7x + D6

pt
2 if p = 17; y2 =

x3+D4
pt

5x+D6
pt if p = 13; y2 = x3+D4

pt
7x+D6

pt
5 if p = 11; y2 = x3+D4

pt
5x+D6

pt
4

if p = 7; y2 = x3 +D4
pt

5x+D6
pt

5 if p = 5.
Now changing the coordinates of fibers (x, y) by (D2

px,D
3
py), we can normalise

the equation as:
y2 = x3 + t7x + t if p = 19; y2 = x3 + t7x + t2 if p = 17; y2 = x3 + t5x + t if

p = 13; y2 = x3 + t7x+ t5 if p = 11; y2 = x3 + t5x+ t4 if p = 7; y2 = x3 + t5x+ t5

if p = 5.
This shows the uniqueness of a K3 surface X with ϕ(h(X)) = t(X) and with

h(X) = p ≥ 5 for each p.

§5. Conclusion

In this section, we complete the proof of the uniqueness part of Theorem 2(2)
and Corollaries 3 and 4.

The uniqueness part of Theorem 2(2) follows from Section 2 (the case where
h(X) = 3, 32, 33), Section 4 (the case where h(X) = p ≥ 5 is prime) and [MO,
Theorem 3] (the case where h(X) = 52). Q.E.D.

Next we show Corollary 3. Set p = 19 (resp. 17 or 13). Since g∗ωX 6= ωX
by [Ni1, §5], g∗|TX is of order p. Then t(X) = p − 1 by [Ni1, Theorem 3.1 and
Corollary 3.3] whence rankSX = 22 − (p − 1) = 4 (resp. 6 or 10). In each case,
rankSX < ϕ(p) = p − 1. This implies g∗|SX = id, whence 〈g〉 ⊂ HX . Combining
this with Theorems 1(1) and 2(1), we get HX = 〈g〉. Now we may apply Theorem
2(2) to conclude the result. Q.E.D.

Finally, we show Corollary 4. Let X be the canonical cover of Z, 〈g〉 the Galois
group of this covering and X the minimal resolution of X . Then X is a K3 surface
and g induces an automorphism of X of order I(Z). Now we can apply Corollary 3
to get (X, 〈g〉) ' (XI , 〈gI〉). Since X → Z has no ramification curves, every g-fixed
curve on X must be contracted under X → X . Now the result follows from the
maximality assumption (*) on Z. Q.E.D.
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