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Abstract In this article, waiting time distributions of compound patterns are
considered in terms of the generating function of the numbers of occurrences of the
compound patterns. Formulae for the evaluation of the generating functions of wait-
ing time are given, which are very effective computational tools. We provide several
viewpoints on waiting time problems associated with compound patterns and develop
a general workable framework for the study of the corresponding distributions. The
general theory is employed for the investigation of some examples in order to illustrate
how the distributions of waiting time can be derived through our theoretical results.
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1 Introduction

Recently, there has been a great deal of interest in the development of the distribution
theory of patterns in a sequence of multi-state trials (see Antzoulakos 2001; Inoue
2004; Fu and Lou 2003; Inoue and Aki 2002; Fu and Chang 2002; Hirano and Aki
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2003; Stefanov 2000, 2003; Chryssaphinou and Papastavridis 1990; Han and Hirano
2003). Waiting time distributions of patterns are used effectively in a wide range of
areas such as reliability, quality control and DNA sequence analysis (see Chao et al.
1995; Shmueli and Cohen 2000; Ewens and Grant 2001; Robin and Daudin 1999,
2001). However, it is very difficult to obtain the exact distributions, which usually
involves hard probability theory and complicated mathematics. Even for the simple
case where the underlying sequence is identically and independently distributed (i.i.d.)
trials, many exact distributions remain unknown.

In this article, we study the waiting time distributions generated by compound
patterns and investigate several aspects of the waiting time problems. The results
presented here provide a proper framework for developing the exact distribution
theory of compound patterns.

Let {Z;,t > 1} be a sequence of multi-state trials defined on the state space I' =
{0, 1, ..., m}. According to Fu and Lou (2003) (see Fu and Chang 2002; Fu 1996),
we will define a simple pattern and a compound pattern, respectively.

Definition 1 We say that ¢ is a simple pattern if ¢ is composed of a specified sequence
of k states; i.e. ¢ = (a1, a2,...,ar),a; € I', 1 <i < k (the length of the pattern k
is fixed, and the states in the pattern are allowed to be repeated). We identify & with
{e} and also call {¢} the simple pattern. Let & and &, be two simple patterns with size
k1 and ky respectively. We say that €1 and &, are distinct if neither is a subsequence
(segment) of the other.

Definition 2 We say that ¢(> 2) simple patterns are distinct, if every two simple
patterns among ¢ simple patterns are distinct each other. We say that ¢ is a compound
pattern if it is a union of ¢(> 2) distinct simple patterns (a set of ¢ distinct simple
patterns). For the compound pattern ¢ = {¢1, ..., &.}, we define the occurrence of the
compound pattern ¢ to be the occurrence of one of the simple patterns €1, . . ., &.

Lete; = {si,j, j=1 ..., c,-},i =1,2,...,v,becompound patterns. We assume
that all the simple patterns &; ; (i = 1,2,...,v, j = 1,2,...,¢;) are distinct each
other. Fori = 1,2,...,v,let X ff (;) be the numbers of occurrences of compound
pattern ¢; in Z1, Z2, ..., Z, under «; (= N, O) counting, where the «; represents the
type of counting scheme employed; «; = N will indicate the non-overlapping count-
ing, o; = O the overlapping counting. Fori = 1,2, ..., v, we denote Ef,.i (a;) by the
event that the r; compound patterns €; are observed in the sequence of multi-state trials
under the o; counting. Let 7jf (x; ) be the waiting time for the xth occurrence of the
event among Efi" (o) under the o; counting, i = 1,2, ..., v, wheree = (g1, ..., 8&)),
r =(r,...,rn) and « = (vy,...,a,). Remark that each compound pattern &; is
observed only r; times, that is, after its r;th occurrence we are no longer interested in
the compound pattern ¢; and we are interested in when the remaining events occur.
The random variable Tre (1; o) means the waiting time until at least one of the events
Efj (a;), i = 1,2,...,v occurs. The random variable T,.e (2; ) means the waiting
time for the second occurrence among the events Efl." (aj), i = 1,2,...,v occurs,
where “the second occurrence” means the occurrence of another event excepting the
first event among the events E fl.i (i), i = 1,2, ..., v. Generally, the random variable
T,? (x; &) means the waiting time for the xth occurrence among the events E ff (a;),
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i =1,2,...,v occurs. It is clear that T, (1; ) < TfF (2; @) < --- < TE(v; ). In
the special case of x = 1 and x = v, the distributions of T,? (1; @) and Trs (v; ) are
called sooner waiting time distribution and later waiting time distribution.

In Sect. 2, the distribution of the waiting time 7,f (x; &) is captured through the
distribution of the sooner waiting time random variable 7, (1; &). We investigate
the relation between the distributions of waiting time T,.s (x; o) and the numbers
(X5 (@1), ..., Xi¥ (o)) of the occurrences of the compound patterns and proceed
to derive formulae of the generating function of the waiting time T,f': (x; ) in terms
of the generating function of (X' (a1), ..., X;"(a,)). Besides formulae of the gen-
erating function of the tail probability P (T,.e (x; @) > n) is established from the same
viewpoint. Section 3 presents a discussion on conditional distribution of the wait-
ing time T,.s (x; o), when the underlying sequence is a sequence of i.i.d. multi-state
trials. In Sect. 4, the waiting time distributions for runs are explored and the generating
functions are derived. As the special cases, the generalized birthday problem and the
coupon collector’s problem are treated. Finally, Sect. 5 deals with the moving window
scan statistics and linear/circular ratchet scan statistics for illustrative purposes.

2 General results

Let {Z,,n > 1} be a sequence of multi-state trials defined on the state space I' =

{0,1,...,m}. Let &5 = {si,j, j= 1,...,ci}, i = 1,2,...,v, be compound
patterns. As already mentioned in the introduction, we assume that all the simple
patterns &; ; i =1,2,...,v,j =1,2,...,¢;) are distinct each other.

2.1 The waiting time for the xth occurrence of patterns

Let T,.e (x; o) be the waiting time for the xth occurrence of the event among Efl." (a;),
i =1,2,...,v. The probability generating function and the double generating func-
tion of T,?(x; a), r;, > 0,i = 1,2,...,v, will be denoted by H,‘.':(t,x;oc) and
HE(t,z,x; a), respectively, that is,

Hf(t,x;a):E[tTre(’““)] ZP(T (x: &) = n)i",

Hé(t,z,x;a) = Z H (t, x; a)z

I
M
Me
~
3
So
0
2
I

S
NS

,,,,,

WaltmgtlmesTr ’(1 TR ozij) I<iip<---<ij<v,j=v—x+l,...,v

N
The key point for estabhshmg the results is the relatlonshlp between the Waltlng time
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T,.€ (x; o) and the waiting times T,f" (1; @;) until the r;th occurrence of the compound
pattern ¢; under ¢; counting, i = 1,2, ..., v,

{7 (x; &) = n+ 1} if and only if

%
& o
U U [T Qe znt 1, T (e 2 nt 1,
u=v—x+1 I<ij<--<iy=<v,
{iLH»l ~~~~~ ivicil,..., U}\{i],...,iu}
1<iyy1<--<iy<v

8iu+l
Tot (L) < T () <nfe ()

r'u+]
Proposition 1 We have the following relations:

v . _1
P(Ifmey=n)= > 3 <—1)u+x1(i_x)

J=v—x+1 1<ij<--<i;<v

Ei1seey&f:
x P (Trill,...,rijj (1’ Ay enn,y Oli_/') = I’l) s (2)

v .
Hi(txie)= >, >, (/7 (J _ I)Hﬁ”"“fﬁf
[ Vv —x ipsenli
j=v=x+1 1<ij<--<ij=<v

X(t, 1 iy oo ). 3)

Proof From the relationship (1), we have

P(TF(x;e) >n+1)

v
8,1
= > > P (T ey zn+1,.
u=v—x+1 15i1<“'<iu§V’
L7 T 15 Tk PN 1) AN LSRRI

1<iy41<--<iy=<v
E, & +1 . 8,
T (Gag) Z 0+ LT (a,) < n T2 () < n)

- > > 5 ()

u=v—x+1 j=u I<ij<--<ij<v

xP (T (o) Zn+ 1, T (i) =+ 1))

Interchanging the order of the above summation and making use of the identity
J v (D) = (=D (U 1) (see for example Feller 1968), we have

P(TF(x;o) > n+1)
v .
22 (—1)/'—”“—1(1 - 1)
Jj=v—x+1 1<ij<--<i;j<v L

xP (T (o) Zn+ 1, T (i) = n+ 1)
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: j—v+x—1 j_l
I I

j=v—x+1 1<i1<---<ij<v

,,,,,

xP(T,” L a,l,...,ai_/)2n+1).

Observing that P (Tf(x; o) = n) =P (T,.s(x; o) > n) —P (Tf(x; o) >n+ 1), we
have the Eq. (2). The second conclusion (3) of the proposition is derived immediately
by multiplying both sides of (2) by " and summing up for all n > 0. O

Easily we see that the expected value E [T s(x a)] can be captured through the

expected values of the sooner waiting time Tr

.....

, .
(1 Giysonen ;) 1 <y <ov0 <
ij<v,j=v—x+1,...,v;

. j—v+x— j_l
E[Tf(x;)]l= > > =/ ‘(v_x)

J=v—x+1 1<ij<-<ij<v

E,'],...,Si.
X E[Tr,'l ,.‘.,rijj (17 iy enn, O‘ij)]-

2.2 The relation between waiting times and numbers of occurrences of patterns

Fori =1,2,...,v,let Xf,i (;) be the numbers of occurrences of compound pattern
& in Zy,Zs,...,Z, under j(= N, O) counting. Then, we define the probability
generating function and the double generating function of (X}, (o), ..., X3’ (a)) by

€] e
¢y (z30) = E [zf @) X (om]

D P =x1, L X (@) = X))

X1,eXy >0

(e.¢]
(7,11 0) = Z¢,f(z;oc)t”
= Z Z PXE (o) = x1, .., X (@) = x)z) -2,

respectively. Clearly, the probablhty generating function and double generating

function of (X, i (i), - ’(a, ), J =1,2,...,v, can be expressed as
Bipoeenrij €
Pn T @iys oo Zigs Qs o5 ) = ) (25 00) foru #1,2,...,j
Ziy=
O gy 2 1 iy a) = P (2,1 @) foru#1,2,....J

Ziu =
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Let us elucidate the relation between the distributions of sooner waiting time T,.a (1; @)
and (X:'(a1), ..., X2"(ay)) in terms of the double generating functions. Notice
that the dual relationship between the random variables T,? (1; @) and (X5 (@), . . .,
X5 (),

{Tf(l; ) > n} if and only if {Xﬁ1 (1) <71ye.e Xi (o) < rv},
which gives the probability identity

P(Tf (L) =n) =P (X, (@) <ri,.... X" (@) <1y)

— P(Xfll(oq) < Tl XV (o) < rv), n,ry, ..., 1y > 1.
4)
We set
1, ifry=0forsomei=1,2,...,v,
P (T,.s(l; @) = O) - [O othlerwise. ©)

Lemma 1 The double generating function HE(t,z,1; ) of T,.e (1; ) can be
expressed in terms of double generating function ®(z, t; o).

l v
Hét,z,l0) = =—— (1= | |20 = )®% (2. 1;00) ). 6
t.z,1;) H,-zl(l—Zi)( gz( ) (ztoc)) (6)

Proof By virtue of (4) and (5), we have

He(t.z. i) = > ZP TE(; @) =n) "2} - 2l

Flyesry>0 n=0
= > PTFLia) =00 o)
Flyeersby>0
o0
+ >0 > D> P @) =i X (@) =)
resrv=l n=1 0<i;<r;—1

j=1,...v

n_ri r
Xt Zl ...Zv"

oo
> 2 2 PXen=in. Xy =iy)
Flyeens r>1 n=1 Ofijfrj—l
j=1,...,v

n_ri r
Xt Zl .'.ZUU'
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Using the condition (5) and interchanging the orders of summation in the RHS,
we get

P(Tf (1) = 0)7' - 7ly = _
> P (1 a) =0)) 1—z, H
T1yeeesy>0 i=1 i=

Z Z D P(X ) =i X () = 0y) 2 g

=1 n=l1 0<l j<rj—1

1—2z’

S € . & . i .
I § Z Z P (X () =it .., X0 (o) = i) £72) - 2
i=1 D=1 i, in=0
v z o0
= : z ¢S (z;a)t"  and
11—z
i=1 n=1
o
DD D P(XMe) =it X () = i) 12 2
eyl n=1 0<ij<r;—1
j=1,...v
vV i o0
1 & n
= ¢, (z00)t".
H I —z Z "
i=1 n=1
The proof is completed. O

Using the relation (6), we have the following theorem.

Theorem 1 The double generating function He(t,z,x;a) of T,.e (x; ) can be
expressed in terms of the double generating functions &% (Ziys o v vs2ijs 13

6" . . .
Uiy ooy @) Of(Xr,](ozl.) o Xy (i), 1 Sip < <dj v j=voxd
1,...,vas

_ J
He(t,z,x;a)zm 1+ Z (— 1)] v+x( _)16) Z HZiu

j=v—x+1 I<ij<--<ij<v u=l

Eiy sy &
X (L=1) @ (Ziy, oy Zigy 15 Qs oo, @)

Proof Substituting the Eq. (6) into the Eq. (3), we have

HE(t,z,x; ) = Z HE(t, x;a)Z} o 2l
Flyeees ry>0
= Z z z (_1)j—v+x—1(j - 1)
Tlseees ry20 j=v—x+1 I<ij<--<ij<v V—X
81' o 1] rl "
XHr,-I ,,,,, (tlotll,...,aij)zl ...ZV
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. j—V+x— —1 1
5% () et

J=v—x+1 1<ij<--<ij<v

i reinrEi .
x H™" i (t, Zil"" Z,'].,l (X,'l,...,a,‘j)

_ 1y vx—1 j_l
_H, 1(1—Zz Z Z (=1)/7v* (v_x)

j=v—x+1 1<ij<--<ij=<v

Eitseens€is
x|1-— HZiu(l =D QT(Ziy e T B Gy, )

u=1

Making use of the identity 37, ; _..; <, = (}) and using the relation 3>7%_,_ ., (%)

({:i)(—l)j = (—=1)"**~1 (see Graham et al. 1994, p- 169), the proof is completed.
O

It should be noted that the double generating function ®€(z, ¢, ) is expressed
in terms of the double generating functions of the sooner/later waiting time random
variables;

Cbe(z,t;ot)zm(l—n(l—zi)Hs(t,z,lga)), @)
i=1%1 -

i=1

J
CDS(Z,I,(!):m 1+Z( 1)] Z H(I_Z[u)
i=1%1

I<ij<--<ij<v u=1

EivyeensEi: .
X H U Zigs ey Zigs 5 Qs e e s 0) | ®)
Efqyenns & . . . .
where H™'! Ut iy, e Zijs J3 ips ooy oz,-j) are the double generating functions
N . Eipsensbif .
of the later waiting time random variables Tril,_w,,.j’ (Js iy oens aij), j=12,...,v

Inoue and Aki (2005b) have also given the inversion formulae (7) and (8) by a
completely different technique. In the special case of v = 1, the results of the present
subsection reduce to the ones derived by Koutras (1997). As by-products of the results
presented in Theorem 1, the generating function of the expected value E [Tr"' (x; 00)]
can be expressed as

Z E[TF (x; oc)]z zy

Tlyeens r,>0

— v+x—1 1
_Hz 1(1—Zt Z b7 (V—x)

jVX+1

Eiseens & . .
X § Hziucbtl lj(Zils'-~1Zij»1aai17-~'saij)'

I<ij<--<ij<v u=1
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2.3 The tail probability of waiting time

The probability generating function and the double generating function of the tail
probability P (7 (x; &) > n) will be denoted by ﬁf (t, x; o) and ﬁe(t, Z,x;a);
ie.,

o
ﬁf(z‘,x; o) = ZP (T,?(x; o) > n) t",
n=0

[ee)
o= 33 Pfca =g

1., 7y >0 n=0

Note that the above series are absolutely convergent at least |f| < 1 and |z;| < 1,

. . . . —&
i =1,2,...,v.Itiseasy to see that the double generating function H ~ (¢, z, x; &) can
be captured through 1 Zigsooos Zipy 5 Gy ey @), L <0 < v <0 S0,
j=v—x+41,...,v. The next theorem provides the detail.

Theorem 2 The double generating function ﬁe(t, Z,x; a) of the tail probability

p (Tf (x; ) > n) can be expressed in terms of the double generating functions
EitsesEi- &i 27 .
CDI] [J(Zilv"-7Zijst;ai1a~~-7aij)Of(Xr[ll(ail)a"-7Xr,'j(aij));lfll <<

ij<v,j=v—x+1,...,vas

. : v i1
= S — 1)) v
(I,Z,x:“) Hrzl(l_zi) Z ( ) (v—x)

j=v—x+1

J
Ei1yesbi s
X Z HZiuq’" Y(Ziys s Zijy 1 iy s ) (9)

I<ij<--<ij<vu=1

Proof We have

o
HE(tz,x:0) = Z ZP(T,.e(x;u)>n)["ZT...Z‘r)v

1 1 HEG )
= - JZ, X5 0).
A=n]l_(d—z) 1-1
In view of Theorem 1, the proof is completed. O

It is noteworthy that the formula (9) produces expressions of ®€ (z, #; ) in terms
of the double generating functions of the tail probabilities of sooner/later waiting time
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random variables as

%
1—2) —
o€z, 150 = [ | ﬂ HE (1.2, 1: ),

i=1 <
R ]
& i—1
® (z,t,a)=TZ(—1)j > Jla-z
=1%o I<ij<--<ij<vu=l
T E( yeeny Ej. .
XH U Ziy e Zigs 5 g e @),

S5 Ei i . . .
where H "V (8, ziy e Tijs J3 Qips ooy aij) are the double generating functions

of the tail probabilities P(T;, 7 (ji oy, ....a1)) > n). j = 1,2, v,
J

3 Conditional distributions

Let Z1, Z,, ..., Z, be a sequence of n i.i.d. random variables taking values in I' =
{0, 1, ..., m} and the probabilities p; = Pr(Z; =i),1 <t <nandi =0,1,...,m.
We are going to investigate the conditional distribution of the waiting time T}¢ (x; o),
given the numbers M, ; = 5; (0 <s; <n)of“i” (i =0, 1,...,m)intheni.i.d. trials.
Since M, ; is a sufficient statistic for p; (i =0, 1, ..., m), the conditional distribution
which we are searching for does not depend on p; (i =0, 1, ..., m). When the condi-
tional distribution is considered and no confusion is likely to arise, we will use the nota-

tion H,?(t,x, POy ---s Pmi0), He(t, Z,X, POs - - - » Pm a),ﬁf(t,x, POy - Pm; 00),
ﬁe(t, Z,X, POy« Pms @), @ (2,1, po, ..., pm; @) and ¢, (2, po, ..., pm; o) instead
of H,?(t, x;a), HE(t, z, x; ot),ﬁf(t, X; a),ﬁs(t, z,x;a), d(z,t; ) and ¢y, (2; ).
Again we write

o0
HE(t, %, po, ... pm; @) = D P(TF (x; @) =n) ", (10)
n=0
Hs(t, Z,X, POy -y Pms 0) = Z Hf(t,x; ot)zT Y (11
Flyeesby=>0

We will study the generating functions of the quantities

ap(n, s, x; @) = ( )P (Tr ;@) =n| My o0=s0, ... Mym=sm) (12)

SO0 - -+ s Sm

and

aﬁ(nasa-x;a) = ( )P (Tr€(-x;a)>n|Mn,O=S0’ MR M"l,mZSm)v (13)

S0s+ -5 Sm

where s = (sg, ..., Sm).
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Corollary 1 The generating function of af (n, s, n; o) takes on the form

o
DD D aus.xa)yyy -yt

Iy ry>0 n=0 so+-+sp=n

v . j
o ierier] AP VN I SN | ETIEE
i=1 i

j=v—x+1 I<ij<--<ij<v u=1

EipsennBi m Yo Ym___.
Xq) (lev"‘azljvzl:()ylts Z:"l:()yi“”’ 71=0y[_9al]’-‘~7alj

Proof Replacing P (T,.€ (x; ot) =n) in (10) by

P (T,.e(x;ot) =n)
= > P(If@a)=n|Myo=s50..... Mym = sm)

S0+t Sm=n
XP(Mn,O =50, Mn,m = Sm)

n
= > ( )PS" o pr P(TE (s @) =n | My 0=50, ..., Mym=s5n)
SOy - vy S

so+-+Sm=n
and exploiting the expression (11), we have
o
& . &€ . m
HE(t.x, po.....pmio) =D, > af(s.xie)t" p’ - py
n=0 so+--+Sm=n
or equivalently

o0
HEé(t,2,x, po, ..., pm; @) = Z Z z a,a.(n,s,x;a)

Flyeesry=>0 n=0 so+--+sm=n

ngo...p‘;;"tnz’il ...Z]};"’
Setting p; = yi/ > ity yi (i =0, 1, ..., m) in the above expression, we get

HE( 7, x, =2, m

Zi:Oyi .“72;';0%‘
o0 t n
& 50 S, at T
= ap(n,s,x;a)y, y’”(—) FARERRE A
z z Z r 0 m zlr_r;oyi 1 v

Flyeers ry=>0 n=0 s1+--+sy=n

;o)

which manifestly yields the desired result by replacing 7 by >/ ;. O
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Similarly, in view of (13) we have the following corollary.

Corollary 2 The generating function of E,‘? (n, s, x; o) takes on the form

Z z z afm,s,x;a)yy -yt gy

F1yeesby =0 n=0 so+-+sm=n
v . J
- Y e () s T
vV u
; 1 —z; V—X
[1i=i( Zi) j=v—x+1 I<ij<--<ij<v u=1

Eiy sy & . m Yo ) .
x @11 ij (Zil""’ZiI’ZiZOyit’—Z'-"Oyf""’ {'1myi’ail""’aif)'
i

i=0

4 Waiting time problems for runs

Let Zy, Z», ..., Z, be a sequence of n i.i.d. random variables taking values in I' =
{0, 1, ..., m} with the probabilities p; = Pr(Z; =i),1 <t <nandi =0,1,...,m.
Fori =1,2,...,m,lete; = {(i,i,...,i)} be the “i ”-run of length k;. In the litera-
_/_/
ki

ture, there are different ways of counting runs (see Fu and Koutras 1994; Balakrishnan
and Koutras 2002). It depends on the practical problem which way of counting should
be adopted. The important and frequently used ways of counting runs are the “non-
overlapping”, the “at least” and the “overlapping” scheme, which are called the Type
L, IT and III counting scheme, respectively (see Balakrishnan and Koutras 2002; Inoue
and Aki 2005a). As stated previously, the «; represents the type of counting scheme
employed for the “7 ”-run of length k;; o; = N will indicate the non-overlapping
counting, o; = A the at least scheme and o; = O overlapping one.

Inoue and Aki (2005a) derived the double generating function of X2 (@), ...,
X;" (em)) as

1
O¢(z, 1) = , (14)
1 — pot — 200, Oz, pits ;)
where
pit — (pi)ki + (pikiz(1 — p;t) _N
1 — (pin)ki ' '
pit — (pin*i(1 —zj)
Zi, pit; @) = = A, 15
Q(zi, pi i) 1= (pil)kf(l ) o (15)
pit = (pin) (1 = zi) — (pit)’z —0
[ 1= pitzi — (pinki(1 — z;) ' '
fori =1,2,....m
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Proposition 2 The double generating function HE(t, z, x; &) of T,.€ (x; o) is given by

HE(t,z,x;0) = m;
Hi:l(l - Zi)
m ‘ ] _ j
<1+ > (—1)/""+"(m _x) > Jlwa-0
j=m—x+1 I<ij<--<ij<m u=I
1
X . (16)

1 - (1 - Zf;:] Piu) t— Zf;:] 0(zi,, pi,t; i)
where Q(z;, pit,a;), i =N, A, 0,i =1,2,...,mare as in (15).

Expanding the double generating function (16) in a multiple Taylor series around
z = 0 and picking out the coefficient of z; - - - z,,,, we get the explicit expression for

the probability generating function H f 1"_""1’8’" (t, x5 00).

m
) i — 1
Hyyom (e, xs o) = 1 —pyim (Y
e =14 D0 (=1 .

j=m—x+1
1—1t
X
i . kiu — ; ’
I<ij<--<ij<m | _t+zj 1 (leit) ((1 )kPlut)
u= — piu[ iy

or equivalently

m

, i—1
H81 ,,,,, Em fxia) = -1 j—m+x—1 J
s = Y0 (=D -

Jj=m—x+1

w=t " 1= (p0k

X

; Nk —
I<ii<o<ijsm | _ 1 4 z] 1 (szit) ((1 )k1.71ul)
u= f— piu[ Ty

Needless to say, the probability generating function H f ’1.:-,

ofaj,i =1,2,...,m.For x = 1, x = m, the corresponding distributions are called
sooner/later geometric distributions of order (ky, ka, . .., ky,), respectively. Further-
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.....

more, we obtain the explicit expression for the expected value of Tff ) 18”‘ (x; o) by
Elyenns

differentiating H,

.....

v

E[Tfl ''''' i’sm(x;ot)]= > (—Ujmﬂl(i:i)

Jj=m—x+1

SR S —

&
J ]
I<ij<--<ij<m piuu(

1 —pi,)

u=1 1 - pik;u
Example 1 Birthday problems: Suppose that we interview people at random one by
one, until we find r people with a common birthday. How many people should we
have to interview? Specially, the case of r = 2 was investigated by many authors
(see for example Johnson and Kotz (1977) and references therein). However, there
are relatively few papers dealing with the general case (r > 2) and general arbitrary
probabilities p1, ..., p3es, p1 + - - + p3es = 1. The results presented in this section
will provide useful clues to the general birthday problems, since this problem can
be captured through the distribution of sooner waiting time. The double generating
function of the sooner waiting time 7;f (1; &) is expressed as

1 zas (1t
[i5d -z L= (p1z1i+ -+ p3eszzes ) 1

where ¢; = {(i)},; = N,i =1,2,...,365.

Inoue and Aki (2005b) derive the probability generating function and the
expected value of T,.e (1; ). Furthermore, in the special case where p; = 1/365,
i =1,2,...,365, the expected value E[T;" ;" (1; )], r = 2,3,...,9 is given
numerically in the article.

Example 2 Coupon collector’s problems: Suppose that there are m distinct types of
coupons bearing the numbers “17, “2”,...,“m” and that the coupon of type “i” is
collected with probability p; (> 0),i =1,2,...,m, p1+---+ p, = 1. We are inter-
ested in the total number of coupons until one collects x different types of coupons.
When x = m, the later waiting time distribution is known as the coupon collector’s
problem. In the special case where p; = 1/m,i = 1,2,...,m, the probability

generating function and the expected value of Tf'"‘i’g’" (x; o) are expressed as

ceey

m . .
- . i _1fm\(J—1 jt
wiesa= 3 o ()07 Sl

j=m—x+1 J
E1,ees€m - j—m4x—1 m j—l m
EIT{" 7" ()l = D (=) : -,
j=m—x+1 JJNm =X ]

where ¢; = {(i)},; = N,i =1,2,...,m.
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5 Scan statistics

We consider scan statistics, which are closely related to the sooner waiting time
distribution of compound patterns. This section serves as an illustration of how the
general theory presented in Sects. 2 and 3 can be employed for evaluating the distribu-
tions related to the scan statistics. Assume that the counting of all compound patterns
g (i =1,2,...,v)treated in this section are performed in the non-overlapping sense.
We will suppress «; (i = 1,2, ..., v) in the notations introduced in Sects. 2 and 3.

5.1 Moving window scan statistics

Let Zy, Z», ..., Z, be a sequence of n i.i.d. random variables taking values in I' =
{0,1,...,m}. Assume that p; = Pr(Z; = i),t > landi =0, 1, ..., m. The scan
statistic S, (w) of moving window of length w for the sequence Zi, Z», ..., Z, is
defined as

i+w—1

Sy (w) = max Zijlfifn—w—i—l
j=i

We would like to study the unconditional probability P(S,(w) < r) and the condi-
tional probability P(S,(w) < r| My = S0, ..., Mp.m = Sm) in terms of the distri-
bution of the sooner waiting time. For illustrative purposes we consider the examples
and proceed to the evaluation of the distributions by exploiting the results of Sects. 2
and 3.

Example 3 Assumethatw = 3,m = 2andr = 5. Then we can treat the unconditional
probability P(S,,(3) < 5) through the relation P (S,(3) <5) = P(Tﬁ‘l”gﬁ’f**’s“ (1)>n),
where 1 = {(1,2,2)}, &2 = {(2, 1,2)}, &3 = {(2,2, 1)}, ea = {(2, 2, 2)}. Easily we
have ®®(z,t) = Pi(z,t; &)/ Po(z, 1), where

Pi(z,1) = 1 + pat + pa(p1 + p)t* — pipat’ — pipat’
Po(z, 1) = 1 — (po + p1)t — popat® — pa(pt + pop2 + pop)t® + pop1p3t?

+popipat® — pipa? (1 + P1P2f2) 21— PPt

—(pat)? [1 - pit — pfp2t3] (p1tz3 + patza) .

Using Theorem 2, the double generating function of the tail probability P (7,F (1) > n)

can be expressed as
4

. Zi Pi(z,t)
1= ’ 1
H (t,z,1) il:[l(l_Zi) Py(z, 1) "
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Expanding (17) in amultiple Taylor series and picking out the coefficient of 1" 71222324,
we have

D P($,(3) <5) 1"

n=0
B 1+ pat + pa(p1 + p)t* — pipat — pipit’
1= (po+ pDt — popat® = p2(p} + pop1 + pop2)t® + pop1 p3t* + popip3t°

Example 4 (Continuation of Example 3) We consider the conditional probability
P(S,(3) <5|M,,0 =50, My,1 =51, M, = 52). Using Corollary 2 and the expres-
sion (17), we have

00

—&€1,€2,83,84 S0 ..S1..52 ,n
D 2L @it ey
n=0 so+s1+s2=n

B L+ ot + yo (1 + y2)i2 — y1y3e® — yiyst
1— (o + 1)1 — yoy2r2 — y2(y% + yoy1 + yoy2)13 + yoy1y3t4 + yoy?yit6

5.2 Linear and circular ratchet scan statistics

Let Zy, Z», ..., Z, be a sequence of n i.i.d. random variables taking values in I' =
{1, 2, ..., m} with the probabilities

pi=Pr(Z;=i), 1<t<nandi=1,2,...,m.

Fora given w (< m),lete; = {(i), @+ 1),...,( +w— D}, fori =1,2,...,m —
w+land g = {(0),G@+1,....,m),),...,.(w+i—1—m)}, fori = m —
w +2,...,m. Then we define M, (w) = maxi<j<mu—w+1 X, and define MS(w) =
maxj<j<m X i (see Krauth 1999). The statistics M,, (w) and M (w) are called the lin-
ear/circular ratchet scan statistics, respectively. Specially, the statistic M, (1) is called
disjoint statistic, when ¢; = {(i)},i = 1, ..., m. The linear/circular ratchet scan sta-
tistics are often applied to the problems in epidemiology (see Glaz et al. 2001). Krauth
(1999) gives bounds for upper tail probabilities for the linear and circular ratchet scan
statistics.

Let us consider the circular ratchet scan statistic. The probability P (M,f (w) < r)

.....

probability P (Mg (w) <r). OBserving that

1

¢ (z,1) = : :
1 — z;_nzl PiZ{(lesl) . _Zlgl(léem) P

@ Springer



Waiting time distributions of compound patterns 515

and using Theorem 2, the double generating function of the tail probability P(T,.s
(1) > n) can be expressed as

v

.2, ) = [[ —— %@ 1)

i =2z)
m
Zi 1
= . . , (18)

il:[l (I—zi) 1- >, pizf(lem oo ghicen)

where
1, wvistrue,
Iw) = i 0, otherwise.

Expanding (18) in a multiple Taylor series and picking out the coefficientof 1"z} - - - 2},

we can evaluate the tail probability P (Mf; (w) < r), which nowadays can be easily
achieved by computer algebra systems.
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