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ON WALSH’S BROWNIAN MOTIONS t

by
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England Berkeley, California 94720 4, Place Jussieu - Tour 56

United States 75252 Paris Cedex 05, France

§1. Introduction.

This paper is concerned with the singular diffusions in the plane introduced by Walsh in the

epilogue of [W]. Started at a point z in the plane away from the origin 0, such a process moves

like a one dimensional Brownian motion along the ray joining z and 0 until it reaches 0. Then

the process is kicked away from 0 by an entrance law which makes the radial part ( Rt ) of the

diffusion a reflecting Brownian motion, while randomizing the angular part. For an intuitive

description of how this happens we cannot better Walsh’s account, which we now quote (with

slight changes of notation) from [W, p. 44]:

"The idea is to take each excursion of Rt and, instead of giving it a random sign, to assign it a

random variable 8 with a given distribution in [ 0, 2n), and to do this independently for each

excursion. That is, if the excursion occurs during the interval (u , v ), we replace Rt by the pair

(Rt, ©) for u  v, 0 being a random variable with values in [ 0, 2~). This provides a pro-
cess {(Rt,0398t), t z 0}, where Ot is constant during each excursion from 0, has the same distri-

bution as 0, and is independent for different excursions. We then consider Zt = (Rr, Or ) as a

process in the plane, expressed in polar coordinates. It is a diffusion which, when away from

the origin, is a Brownian motion along a ray, but which has what might be called a round-

house singularity at the origin: when the process enters it, it, like Stephen Leacock’s hero,

immediately rides off in all directions at once."

Our interest in these processes arose from several sources. 
’

(a) Let be the usual filtration of Z (i.e. the usual completion of the natural filtration of Z ).
Let Wr = Rt - (R ), where Lr~ (R ) stands for the local time at zero of the reflecting Brownian
motion R up to time t. Then W is an (FZ) Brownian motion, and, according to Theorem 4.1
below, every (F Z) local martingale M is of the form

t Research supported in part by National Science Foundation Grant DMS88-01808
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t

Mr = jHs ~

o

for some (Fl) previsible process H . An old problem of Yor [Y2, pp. 195-196, Questions 2 and
2’], in which there has recently been renewed interest, is whether every filtration of this type is

generated by a Brownian motion. The filtration (F Z) seems to us a good test case; we have been
unable to find an (Ff) Brownian motion Ur such that FZ = FU, but nor can we prove that no such
Brownian motion exists. Moreover, the structure of (Ftz) at the random times when R leaves 0
makes the construction of any such Brownian motion hard to imagine. We discuss these ques-
tions in greater detail in Section 4.

(b) Let G = (V, E ) be a locally finite undirected graph. A random walk on G is a discrete time
Markov chain Yn with transition probabilities P xy = P (Yn = y x ) given by

P - 11N (x ) if {x, y} E E
~ 

0 otherwise.

Here N (x ) is the number of neighbours of x . . It is sometimes useful to embed Yn in a continuous

process Xt. . A natural way to do this is to use the ’cable system’ of Varopoulos [V] (see also
Frank and Durham [FD], Baxter and Chacon [BC]): each pair of vertices x, y with f x, y } E E is

joined by a line of length 1. Let G be the resulting set. A diffusion Xr is defined on G as fol-
lows. On the interior of each cable, X performs Brownian motion until it reaches an end point
When X is at a vertex x, it makes excursions along each of the cables joining x to other vertices
with equal probability. Thus X has the same behaviour as Walsh’s process in a neighborhood of
each vertex.

(c) Walsh’s process on a finite number of rays also emerges from study of the asymptotic
behaviour of windings and crossing numbers of ordinary planar Brownian motion. This is indi-

cated briefly in Section 5.

(d) Study of the joint distribution of the time spent by a Walsh process up to time t in various
sectors of the plane leads to some interesting extensions of Levy’s arcsine law for the time spent

positive up to t by a one dimensional Brownian motion. We refer to [BwPY1,2] for these

developments.

Due to our interest in Walsh’s process in these various settings, we thought it worthwhile to

record here some basic facts about the process. Section 2 briefly surveys some approaches to con-

struction of a Walsh process Z, then goes into details of one construction in particular, via the

semigroup. In Section 3 we look at the martingale problem description of Z in the case when the

process lives on a finite number of rays. In Section 4 we study the filtration of Z. . Using general

martingale representation theorems we deduce from the results of Section 3 that every mar-

tingale is a stochastic integral of Wt = Rr - 1 2L0t (R ). We conclude Section 4 with a discussion of
some open problems.
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§2. Construction.

Constructions of Walsh’s Brownian motions have been given by Rogers [R] (using resolvents),
Baxter and Chacon [BC] (from the infinitesimal generator), Varopoulos [V] (using Dirichlet space

techniques), and Salisbury [Sa] (using excursion theory). These approaches all rely on a fair

amount of background machinery. A more elementary appmach is to use the intuitive description
of the process to write down the semigroup, then check that this semigroup gives rise to a

diffusion. This was suggested by Walsh [W] in the case of skew Brownian motion, when the pro-
cess lives on just two rays, and sketched also by Frank and Durham [FD] for 3 rays and Van der

Weide [VW] for n rays. This section goes into this construction in detail.

Let E = R2; we will use polar co-ordinates (r 9) to denote points in E . . Let  be a fixed pro-

bability measure on [ 0, 2x). This ~. will be the distribution of angles 0 in Walsh’s description.
To see what the semigroup must be, accept for a moment the existence of Walsh’s process

Zr = (Rr, started at (r,0). According to Walsh’s description, Rr must be a reflecting
Brownian motion starting at r . Starting with r = 0, angle ©r must have distribution ~, indepen-
dent of Rr, for each t > 0. Starting at (r,9) with r > 0 however, ®r must equal 8 if to > t where

To = 0 : Rt = 0}; and given to  t, ®r must be randomized according to ~, independently
of Rt. . This describes the distribution of Zt = (Rr, ®r ) given Zo = (r 9) for any t > 0, hence the

semigroup (Pr , t ~ 0) of Walsh’s process with angular distribution ~,.

To describe the semigroup more compactly, we introduce the following notation. For a func-

tion f E C (E ) we define functions f , f 8 in C (Ri.) by
f (r) = jf (r,8)~.(d6), r >_.0

(2.1 ) f e (r ) = f (r, 9), r z 0, 8 e [ 0, 2~).

Let T’r+, t z 0 be the semigroup of reflecting Brownian motion on R+, and t z 0 be the

semigroup of Brownian motion on R+ killed at 0. Let t > 0. Then it is easy to see that Pr t
described above must act as follows on 

Pr f (0,03B8) - Tr+f (0).
(2.2) 

Pr f (r ~ e) = (r ) + Tr° ~ 9 - f ) (r )~ r > 0, 8 e [ 0, 2n).

We take (2.2) as the formal definition of P~. . We now mention two possible methods to rigorously
establish the existence of a continuous path strong Markov process satisfying Walsh’s description.

Either

(i) take the process created by Walsh’s sample path construction, starting with a reflecting
Brownian motion and an infinite sequence of independent angles with common distribution ~., and

show it has continuous paths and the strong Markov property with semigroup (Pt).

Or 
’

(ii) establish credentials of the semigroup (Pr ) which ensure by general theory that the canonical

presentation of the process with that semigroup has the strong Markov property. Then show this
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canonical process has continuous paths fitting Walsh’s description for the radial and angular parts.
Method (i) is at first quite attractive. It is elementary that Z made this way has continuous paths.
And, by a variation of the argument used already to derive Pt, it is easy to show that this Z is

Markov at fixed times with semigroup (Pt ). But it seems hard to make a convincing argument for
the strong Markov property of Z without first establishing credentials of Pt t and proceeding more
or less according to method (ii).

So in the end it seems simplest just to employ method (ii) from the start, which we now proceed
to do.

Theorem 2.1 (Pt, t > 0) is a Feller semigroup on Co (E ).

Proof. We will check:

(i) Pr : C o (E ) ~ C o (E ).

(ii) and 0 s f s 1 then 0 s Pr f s l. .

(iii) P o is the identity on C o (E ), and P~ PS = Pr +s for s t z 0.

(iv) lim p Pt f 
- f ~~ = 0 for all f E Co (E ).

(i). Let f E Co (E ), and note that f , f e E Co (R+). Let (r 6) E E . . Then, if r > 0, we have

Ptf (r’,03B8’)| 1 ~ I Tr+f {r ) - Tt+f (r’) ( + ( Trof {r ) + Trof (r’) |
+ Tro.f e {r’) I + I Tr° (f e - f e’ )(r’) I. .

The first three terms converge to 0 as (r’, 6’) -~ (r 9) by the Feller property of (Tt+) and (Tto).
For the final term, we have

I Tt ° {f e - f 03B8’ ){r’) I ~ ~f e - f e’ ~~,

and as 1 E C4 (E ) this last term converges to 0 as 8’ -~ 9. If r = 0 then

|Ptf(0,03B8) - Ptf (r’,03B8’) | ~ |T+tf(0) - T+tf(r’)| + | T0t(f03B8’ -f)(r’)|,

~ |T+tf(0) - T+tf(r’)| + 2~f ~~T0t 1 (r’).

As Tto 1 (r’) -~ 0 as r’ --~ 0, we deduce that Pt f is continuous at 0. We have proved that

P tiE C {E ). However as f and sup f o both vanish at infinity, T+t f , Tto f and sup T0tf03B8 all

vanish at infinity, and so Pt 1 E C o (E ).

(ii). If f > 0 then Tt+ f - Tto f >_ 0, and so P~ f z 0. It is easily checked that Pr 1= 1, and by

the linearity of Pt it follows that II Pr f ~~ s ~ f proving (ii).

(iii). That P o is the identity is immediate from the corresponding property of T a and . By

the linearity of Tt +, T0t we have

(2.3) Ptf {r) = Tt+f {r) - T0tf (r) + 
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= T r+f (r ),

and

(2.4) (Pr f )e (r ) = Ptf (r ) = T0t(f03B8 - f)(r).

So, using the semigroup property for (Tr~, (Tr+),

PsPtf (r,03B8) = T+sPtf (r) + T0s((Ptf)03B8 - Ptf)(r)

= T+sT+t+f (r) + T0sT0t(f03B8 - f) (r)

= T+s+tf(r) + T0s+t (f03B8-f)(r) = Ps+tf (r,03B8).

(iv). Since (i)-{iii) hold, it is sufficient to check that

lim Pt f (r 9) = f (r 9) for each f E C° {E ), (r 9) E E.

So let f ~ C0 (E ), {r, 8) E E . . Then, using the corresponding property for Tr+ and we have, if

r > 0,

lim Pt f (r , 8) = limT+t f (r ) + lim T0t fe (r )

= f (r) + fa (r)
= f (r 8).

Similarly, lim Pt f (o, 9) = lim Tr+ f (0) = f (0) = f {0, 8). []
i lo

Remark. Note that Pr is not strong Feller. For example, if f (r 8) = then Ptf is

always discontinuous away from the origin on the line 9 = o. But if ~, is concentrated on a finite

set {81, ... , 9n } then we may define Pr on the reduced state space

?~~1 ~i ~n}~

and on this space Pr is strong Feller.

Using the general theory we may now define a strong Markov process (03A9, F, Ft, Zt, 8r , p Z )
with state space E and semigroup Pr, and such that Z is cadlag. We write Zr = {Rr, Or), and set

Or = 0 if Rr = 0. We now proceed to argue that Zr is a diffusion with the features of Walsh’s

process described in the introduction.

Lemma 2.2. Rr is a reflecting Brownian motion / ((Fr ), P 
Z 
), for any z E E .

Proof . Fix z E E . . Let g ~ C0 (R+), and set f (r , 8) = g (r ). Thus f ~ C0 (E ), f = g ,

f o - f = 0, and f (Zr ) = g (Rr ). Let S be any (Fr )-stopping time. As Z is strong Markov

E z {8 (Rs+r ) ( Fs ) - E Z {f (Zs+r ) I Fs )
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= Ptf {Zs)

= Tr+ g (Rs).

Thus R is strong Markov l ((Fr ), P z ), and has semigroup Tr+. Thus R is a reflecting Brownian
motion I ((Fr ), P Z ). D

Lemma 2.2 shows that R is a.s. continuous. A little more work shows that so is Z . .

Given any process X on E or a subset of E we set

to (X ) = inf {t z 0 Xt = 0}, ,

and we write to = to (Z ).

Lemma 2.3.

(a) For g E Cp (R,~),

E (r’ e) 1 (~o s r g (o) = Tr+ g (r ) - Tro g {r ).

(b). For f e C o (E ),

= 

(c ). ©r is constant on [ o, P Z a.s. for each z e E .

Proof. Since to = to (R ), and R is a reflecting Brownian motion, (a) is evident

For (b) we have

E (r’ ~)f (Zr ) = E (r’ 8) 

- E (r’ e) 1 (’r° s f (~)

= T+tf (r) - T0tf (r),

by (a). Subtracting this last equality from (2.2), we deduce (b).

{c). If z = 0 then to = 0, P z a. s., and there is nothing to prove. So let z o = {r , 9Q) ~ 0 be fixed.

Let 03C4~ = inf{t ~ 0 : Rt s E}. As Z is cadlag and R is continuous, Or is cadlag on [ o, 03C4~], and

since to = lim 03C4~, it is enough to show that ©r is constant on [ 0, 03C4~ ] for each £ > 0. As ©r is cad-

lag on it is therefore sufficient to prove that, for each t > 0, ~ 6, 03C40 > t ) = 0. Let

f e Co (E), with f > 0 on E - {{r, 80), r > 0} and f (r, 84) = 0 for r e (o, ~). Then, by (b), as

fe°=~~
- ~~ ,

and hence ~ 8, to > t ) = o.
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Theorem 2.4. Zt, t z 0 is P z a.s. continuous.

Proof. Using the strong Markov property of Z, Lemma 2.3 (c) implies e is a.s. constant on each

excursion of R from 0. This, together with the continuity of R , implies that Z is continuous. 0

Putting Theorems 2.1 and 2.4 together we deduce

Corollary 2.5. Zt, t z 0, is a Feller diffusion on E .

To finish the job of matching this process Z with Walsh’s description, it should be argued that the

angles associated with different excursions of R away from zero are independent with common

distribution ~,. But now that the strong Markov property of Z has been established, this follows

from the excursion theory of Ito [I], after using Lemmas 2.2 and 2.3(c) to show that for the excur-

sions of Z away from 0, Itb’s characteristic measure of excursions is

2a~

(2.5) n = ~ 
o

where ne is Ito’s law for excursions away from 0 of a reflecting Brownian motion on the ray at

angle 0. We leave details of this argument to the reader.

Remark. In the construction of Z given above we have not used any special properties of

reflecting Brownian motion. The whole argument carries over to the case where Tt+ is the semi-

group of a Feller diffusion X on R+, and Tro is the semigroup for X killed at 0. In particular, the

discussion applies in case Tt+ is the semigroup of a Bessel process of dimension 8 e ( 0, 2 ),

which is our setup in [BwPYI]. Moreover, apart from the continuity results of Lemma 2.2 (b)

and Theorem 2.4, the arguments and results are valid for any Feller process X on R+.

§3. The Martingale Probiem for Z. .

In this section we restrict our attention to the case

(3.1) ~, assigns probabilities p 1, ~ ~ ~ , pn to distinct angles 91, ... 9n

where = 1 and p; > 0 for i = 1, ’ ’ ’ , n . We take as state space for Z the set

En = { (r , 9~ ), r > 0,1 ~ i s n ~. Let qi =1- and define

hi (r ~ e) - 1(r > o) [ q~ 1(e=e;) - Pi ],

g; (r 9) = r h~ (r 8).

Set Wr = Rt - 2 L0t (R ), so W is a Brownian motion.
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Proposition 3.1. Let z E En . For 1 5 i s n, gi (Zr ) is a PZ martingale, with
t

(3.2) gi (Zt ) - gi (z ) + hi (Zs ) dWs.

0

Furthermore,

t

a P Z martingale. .

0

Proof. Write f (r ) = r, r >_ 0, and note that Tto f (r ) = r . So, using the Markov property of Z
at time s with s  t ,

Pt-s gi (Zs )

= hi f (Rs ) by (2.2), since gi = 0,

= Rs hi (Zs ) = gi {Zs )~

Thus gi (Zr ) is a martingale.

Note that hi (Z ) is constant on the excursions of R from 0. So, by the formula for balayage of
semimartingales [MSY Théorème 1], [E, Théorème 2] we can write

t

gi (Zt) = hi (Zt)Rt - gi (z ) + J hi (Zs ) I(R, + At, ,
o

where At is a previsible finite variation process constant on the excursions of R from 0. Now,
gi (Zt) is a martingale, = 

, and all these processes are continuous, so

A = 0, and (3.2) follows on noting that hi (0) = 0. The final part of the proposition is immediate
from (3.2). 0

We now present the law of Z as the solution of a martingale problem. Let no = C (R+, En ),
Z be the co-ordinate maps on and (Fto) be the natural filtration of Z. . We write En) )
for the family of probability measures on no corresponding to the semigroup Pt defined by (2.2).

Let zo E En, and consider the following martingale problem for a probability Q on (S~o, F~):
Q {Zo = z o) - 1

(3.3) 

= I 

t

and gt {Zr )2 - ,~ hi (Zs )2 ~ are (Q martingales , i =1, , ... 

, n.

Theorem 3.2. The martingale problem (3.3) has exactly one solution, which is P Zo.

Proof. By Proposition 3.1, the probability is a solution to (3.3).

Now let Q be any solution. As Z and g~ are continuous, the martingales g~ (Zr ),
t

gi (Zr )2 - hi (Zs)2ds are continuous. Set Y/ = gi (Zr ), and let
0
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t

(3.4) U~ _ ~ ( + 

0

Then U‘ is a martingale IQ, and
t

 U ‘ ~r - j ( qi 2 1 (Y~ > o) + t.

0

So U ‘ is a Brownian motion I (Q , (F ~)). Set (x ) = qi > o) + pi sO), From (3.4) we have,

for0s 5 t, ,

t

(3.5) Yt = Ys + .

s

This SDE has a pathwise unique solution ([N], [L]), and hence a solution which is unique in law.

Write ri (s , t , y o, dy ) for the law of Yi obtained by solving (3.5 ) with YS = this ri does not

depend on Q . Let f ~ C0 (En ); we can easily check that

n

f (Z) = f e; 18i (Z)) + f (0)1(g1(z)=0).

So

n

f (Zt ) - ~ ~i 
i=1

where yrl, ... are bounded measurable functions. Then

n

= 

i=1

n

= ri(s,t,gi(Zs),dyi)03C8i (y).

i=1

So, if Q and Q are both solutions to (3.3), then for any f ~ C0 (En) and 0  s  t we have

E Q ( f = A standard argument, considering products of the form
n

II f ) now shows that Q = Q ’.
i=1 

’

§4. The Filtration of Z.

We continue in this section to consider a Walsh process Z on n rays. Let (S~, F, Fr, P ) be a

probability space carrying the process Z with Zo = 0. Given a process X we write (FX) for the
usual filtration of X. Write Mloc for the space of local martingales null at 0, and let

Wr = Rr - 1 2L0t (R ) be as in Section 3. Given K ~ M2loc, let L (K ) be the stable subspace of

M2loc generated by K.
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Theorem 4.1. The Brownian motion W has the martingale representation property for (FZ),
That is, for each M E Mloc there exists an previsible process H such that

t

Mt = Hs dWs .

o

t

Proof. Set K 1= {gt (Zr ), g; (Zr )2 - J h~ i =1, ~ ~ ~ , n }, KZ = {W }. Theorem 3.2
o

shows that the martingale problem corresponding to K 1 has a unique solution, and hence, by
Jacod [J], we have = Ml. .

t

On the other hand, by Proposition 3.1 the processes gi (Zt ) and g~ (Zr )Z - ~ hi (ZS )2 ds are both
o

stochastic integrals of W. . Thus L (KZ), and so L (K2) = . The result now follows from

the general theory presented in Yor 
’ 

Remarks.

1. . Note that Ff = a classical result of Skorokhod.

2. Although W has the martingale representation property for it is clear that Fl.
For example, the random variable 81 is Ff measurable, but not FW measurable. (In fact, Oi is
independent of 

In Theorem 4.1 we showed that the filtration (Fr ) _ has the following property: there is
an Brownian motion Wr such that every (Fr ) martingale is a stochastic integral of Wr . We
say such a filtration has the Brownian representation property. 

~ This property (and, more gen-
erally, the multiplicity of a filtration in the sense of Davis and Varaiya [DV]) may be thought of
as ’invariants’ of that filtration. That is, they are intrinsic to the filtration (and the probability
measure on it), and do not depend on any representation of the filtration as the natural filtration of
some process. (An example of quantities which are not ’intrinsic’ are the 0 shifts in Markov pro-
cess theory).

To introduce another ’invariant’ of a filtration, we consider first a notion of relative multiplicity
of two a-fields. Let (Q, G, P ) be a probability space, and G be a sub-a-field of G which

contains all G measurable P null sets. For g i, ..., gk in L2 (G) define

k

 g1,g2,...,gk > = closure {.:E fi gi, f e L~ (F)} 

where the closure is taken in L 2 (G). With the convention inf{())} = +00, let

m 1 (G F) = inf {n : L2 (G) =  g 1, ... , > for g 1, ... , g n e L2 (G)} ;

m 2 (G ~ F) - inf{n: : L 2 (G) =  g 1, ... , gn > for g 1, ... , gn E L 2 (G) with

. 

= 0 for  ~7}; ;
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m 3 (G F) - inf{n : there exists a partition A i, ... , An of Q such that

>

m4 (G F) - sup{n : there exists a G measurable partition A i, ... , An of Q such that

Elementary but tedious arguments show that m 1= m 2 = m 3 = m 4. We call the common value of

the m; the multiplicity of G over F, and write it as mult (G F).

Now given a filtration (Ft ), for an (Ft ) optional set r, denote

L r = sup{t ~ (w, t ) E r},

the ’end of r’. . Recall the definitions, for a random time L, ,

FL = 0 (XL X is a bounded (Ft) optional process ) ,

F L+ = 6 (XL: : X is a bounded (Ft ) progressive process ) .

Definition 4.2. The splitting multiplicity of a filtration (Ft ) is defined by

sp mult ((Ft )) = su~ mult ,

where the supremum is taken over all (Ft } optional sets r.

Proposition 4.3. Let Z be the Walsh process on En as in Sections 3 and 4. Then

sp mult ((FZ)) ~ n . .

Proof. Let T = inf{s > 0 : = 1 }, and set

L = sup{s _ T : RS = 0}, Ai = ~©T = ei } , , 1 ~ i _ n .

Then, as 8t = ~ for L  t  T , A; e FL+. Fix i, let g; be as for Proposition 3.1, and let

Mt = 

Then M is a uniformly integrable (Ff) martingale, and ML = 0. So, by Yor [Yl],

E (MT = 0 .

It follows that P (A; = p~ > 0 for 1 s i s n . . So n . , ~

Remark. In fact, if L is as above, we have that F L+ = FL v 6 (A 1, ... , An), so that

mult (FL+ ~ is exactly n . . While this seems intuitively obvious, a formal proof needs some care

(see appendix).
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We conclude this section with some open problems.

Problem 1. Let Bt be a Brownian motion. What is sp mult ((FB))?
This problem seems to us very hard. The trivial bound sp mult > 2 implied by Proposi-

tion 4.3 uses the very simplest last exit times. But none of the various classes of ends of optional
sets we have considered does any better. In particular, Millar [M, Corollary 4.2] shows that for L
the last zero before an arbitrary random time, mult (Ff+ is at most 2.

We also remark that, for a Brownian motion Xt in R~, we only know that sp mult ((FX)) > 2.
Problem 2. For the Walsh process Z on n rays, does there exist an (Ff) Brownian motion B
such that (Ff) = (FB)?

This is a special case of a problem posed by Yor [Y2]: :

Problem 3. Given a filtration (Gt ) with the Brownian representation property and with Go trivial,
does there exist a (Gt ) Brownian motion Br such that (Gt ) _ (F B)?

Problems 1 and 2 are clearly related: if sp mult { (FB) ) = 2 then (FZ) cannot be a Brownian
filtration whenever n > 2. (For n = 2, is Brownian, by the result of Hamson and Shepp
[HS]). On the other hand, if the answer to Problem 2 is ’yes’, then the last exits from 0 of Z
would be ends of optional sets for B with mult (FL+ ~ = n . Thus a positive answer to Yor’s

problem for the filtration would give rise to an interesting class of random times for the
Brownian filtration.

On the other hand, consideration of splitting multiplicities may not be essential for resolution
of Problem 3. If we consider a process whose law is locally equivalent to that of Brownian

motion, then the Brownian motion found by Girsanov’s formula has the representation property.
The splitting multiplicity of this process for its own filtration will be the same as for Brownian
motion. But even in this case, for instance in Tsirelson’s example, we have no affirmative solu-

tion to problem 3; (see Stroock and Yor [SY] for further discussion). Related problems are dis-

cussed by Skorokhod [Sk], where an affirmative solution to Problem 3 is announced.

§S. A Walsh process associated with planar Brownian motion.

We sketch in this section how a Walsh process turns up in the study of windings and crossings
of planar Brownian motion, undertaken in [PY] and [ByPY]. To match notation with [PY],

t >_ 0) will now denote a Brownian motion in the complex plane, rather than a Walsh pro-

cess. Let z 1, ... , zn be n distinct points in the plane, distinct also from the starting point z o of

Z. , Take numbers r l, ... r n > 0, and ~ z o ~. And consider the 2n additive functionals

Uj± (t) = 1(1Zs-zj| ~ Ij±) |Zs-zj|2ds,

where ± is + or -, j =1, 2, ..., n, and Ij = (o, r; ), I + = These are the increasing

processes (or clocks ) associated with the 2n conformal martingales
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Gt (t) + = ~ r 1 dZs.
o { Zs - zi )

As argued in Section 6 of [PY], the t/~. are asymptotically equivalent a.s. as t ~ oo. Indeed,

- 1 ,
U°° (t)

where

U~ (t ) = 1(|Zs| > r~) |Zs|2ds.

The joint asymptotic limit behaviour as t -~ o0 of the Ut (t ) was discussed in [ByPY], in the
framework of log scaling laws for planar Brownian motion developed in Section 8 of [PY]. Now

write just U~ (t ) for U~ (t ), j = 1, ... n , and let L (t ) be any additive functional of the planar
Brownian motion Z with ~ L ~ = 2x, and let h (t ) =11(2 log t ). Then

(Uj (t) h2(t), j = 1, ..., n; ~; L(t) h(t))  (Aj(03C3*), j = 1,...,n,~; 03BB(03C3*) n+1)
where the random variables appearing on the right may be defined as follows, in terms of a Walsh

process started at zero which moves with equal probabilities along each of n + 1 rays labelled

j =1, ... , n , oo: the time when the Walsh process first reaches modulus 1 on ray oo is 6* ; the

occupation time of ray j by the Walsh process up to time a* is A j (6* ); and ~,(6* ) is the local

time at 0 of the radial part of the Walsh process up to time a* . . This is just a paraphrase of

Lemma 4.3 of [ByPY], due to the following consequences of the excursion theory of It6 [I], (or
the method of Section 5 of [PY]), applied to the Walsh process. Firstly, for each j the joint dis-

tribution of A j (c*), and )/(n + 1) can be described, in terms of a standard Brownian

motion B up to the time a when B first hits 1, as that of the time B spent negative before 6, the
time B spent positive before a, and the local time of B at zero before a. And secondly, given
~,(a* ), the variables A j (6* ) are mutually independent.

Similarly, if the processes Uf are evaluated at

= inf{ t = h },

for any additive functional L of Z with I L = 203C0, then we get

(Uj (03C4h) h2, j = 1,...,n,~) (Aj (03C4*), j = 1,...,n,~)

where ~t* = inf{u : ~, (u ) = n+1 }. The right side is now a vector of n + 1 independent stable

(1/2) random variables. As in [ByPY], we could replace the U~ by suitable processes counting

crossing numbers, and the asymptotics would be the same.
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The question now arises: what time should we look at to get say (A j (1), y = 1, ... , n , oo) as the
limit? The answer would seem to be

au = inf{t: = u }

where

U~(t ) = E U~ (t ) .

j e {1,...,n,oo}

And we should expect something like

(Uj(03B1u) u2 (Aj (1)).

This seems to take us beyond the framework of log-scaling laws, because it does not seem reason-
able for to have a log-scaling limit for any u (h ), as required in Th 8.4 of [PY].
This invites creation in the limit of a full Walsh process on n + 1 rays (for the log radial parts) or
even a process on n + 1 copies of a half plane stuck together along the imaginary axis to tell the

winding story as well.

We now sketch such a development, just for the log radial parts. Assume for simplicity that

Zo = 0, and that the n discs centered at zf with radius j , and the complement of the disc of
radius r~ centered at 0, form n + 1 disjoint regions, say R 1,R Z, ... , Rn, Pick n + 1

different rays in the plane, at arbitrary angles. Define a process m(u ), u z 0 on the n + 1 rays by
declaring that is in ray j at radial distance

|log (|Z(t)-zj| rj)| if Z (t) is in Rj at time 03B1u

where au is the inverse of the total clock U~. Notice that m watched only when in ray j is just a

reflecting BM in ray j . , However the switching of w between rays is not instantaneous, as in the

Walsh process, but with delays while Z sticks in one region before switching over to another.

But these delays will vanish in the scaling limit. Thus if we let

= u > 0,

then we should expect that as h -~ o0

d

-~ w°°
h -~oo

where is the Walsh process on the n + 1 rays. Here w°° could be constructed from the

excursions of the ~°° process in Theorem 6.2 of [PY]. But the above conjecture is a bit more del-

icate than that theorem. The time scales of the different processes are being riffled together,

and matching up well due to the universality of the asymptotic local time which appears as the

limit of all good additive functionals. As a final remark, we note that skew Brownian motion

appears in a similar setting in [LY].
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Appendix : The aim of this appendix is to present an improvement of Proposi-

tion 4.3. which may eventually shed some light on Problem 1.

Proposition : Let Z be the Walsh process on En as in Sections 3 and 4.

Then, for g = sup{s ~ 1 : Rs = 0}, we have : :

(a) mult(Fg+IFg) = n.

Consequently, sp n.

The following result will play a crucial rôle in our proof of (a).

Lemma (Lindvall-Rogers [LR], lemma 2) : Let C and (D£,0  e  1) be

o-fields on such that : :

i) (D£,0  c  1) increases with e ;

ii) C and D1 are independent.

Then : : (b) ~ (C v D ) = C v ( ~ D ), up to P-negligible sets.
- --- 

e>0 
c e>0 E £ 

----- 20142014201420142014201420142014201420142014

Proof of the Lemma : : It is obvious that C v ( ~ (CvD).
c0 

In order to prove the converse inclusion (up to P-negligible sets), we need

only show that .

)1L 00 
~ J

is measurable with respect to C v r n D ) (mod P), when H belongs to a
00 ~

family g of r.v’s which is total in L2(C v D1).
This is certainly the case for g = {CD; C E L2(C), D E L2(D1)} thanks to

the independence of C and Dl.
Moreover, for such a variable H = CD, we have :

(C v D )1 = lim v D ]L 00 
~ J Ey0 

= C lim E[DIDc] ]
cy0

= C E[D| ~ D] ( n D£) ,L c>0 J L c>0 
e J

and the lemma is proved.

Remark : H. von Weizsacker [Wei] gives a necessary and sufficient condition
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which ensures that (b) holds.

Proof of (a) . Let be the smallest right-continuous enlargement of (Ft) )
such that g becomes a stopping time.

Then, we have : Hg 
= 

Fg+ (see Jeulin [Je], p. 77).

Define, for e E (0,1), gE 
= g + c(1-g) ; ; this is an increasing family of (Ht) )

stopping times, such that : H = F (see Jeulin [Je], Lemme 5.7, p. 78).
gE gc

Moreover, since is right-continuous, we have :

H = n F .Hg 
= 

c>0 Fge.
Thanks to the Lemma, the property (a) shall be established once we have

proved :

(c) Fg v o~~01} v M£ P)

where M£ = ; and mu 
= 

1 
R 
g +u(1- g ), 

u ~ 1, is the so-called

Brownian meander associated with R ; ;

(d) Fg , , 03981 , M1 are independent ;

(e) MD+ = n M£ is P-trivial.
+ 

(~>0) 
e

The equality (c) follows easily from ; u >- 0} v ) which is

a consequence of Stricker [St].

To prove (d), we begin to show that M1 is independent from Hg 
= 

F , , hence

from Fg v We first remark that the (Ft) ) submartingale P(g  

(t  1) can be computed explicitly. We easily find :

P(g  t|Ft) = 03A6(Rt 1-t),

where 03A6(y) = 2 03C0 y0 dx exp(-x2 2) (see, for instance, [Je], p. 124), and we

deduce from this, using the explicit enlargement formulae (see [Je] again)

that :

(f) Rg+u = 03B2u + u0 ds 1-(g+s) (03A6’ 03A6)(Rg+s 1-(g+s) ), for u  1-g,



291

where ((3u,u ~ 0) is a (Hg+u,u ~ 0) Brownian motion.

In particular, (03B2u, u ~ 0) is independent from Hg.

Now, using Brownian scaling, we deduce from (f) that :

(g) mv = 03B3v + v0 dh 1-h (03A6’ 03A6(mh 1-h) (v  1)
where y = is again a Brownian motion which is independent from

H.
g

Then, from (g), we deduce that the filtrations of m and y are identical,

hence m is independent from H .
Furthermore, since the filtrations of m and y are identical, and the germ

03C3-field of y is trivial, so is M0+, which proves (e).

In order to prove (d) fully, it remains to show that Fg and 01 are inde-

pendent.

However, if we define Ai = ~01 = 9iy, 1 ~ i ~ n, and let Mt = gi(2tA1)’
where gi is defined as in Proposition 3.1, then M is a uniformly inte-

grable (Ft) martingale, and M = 0.
So, by Yor [Y1], ] = 0.

It follows that = 

p., for 1 ~ i ~ n, which proves the independence

of 81 and Fg. 0

Remark : A simple modification of the arguments used above to show (a) allows

to prove

(a’) mult(FL+IFL) = n,

where L is the random time considered in the Proof of Proposition 4.3.

The proof of (a’) is in fact simpler than that of (a) since, instead of having

to consider the Brownian meander (as above), all we need is to remark that

; u ~ T-L) is a BES(3) process up to its first hitting time of 1, and

that this process is independent from FL and OT.
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