CHAPTER 27

On Wave Deformation After Breaking

Toru Sawaragi Professor of Civil Engineering Osaka University, Osaka, Japan

Koichiro Iwata Lecturer of Civil Engineering Osaka University, Osaka, Japan

ABSTRACT

Waves will dissipate their energy rapidly after breaking. In this paper, the three factors, (1) formation of a horizontal roller,(11) bottom friction, and (111) turbulence with air entrainment, which will contribute to the energy dissipation, are dealt with experimentally and theoretically The horizontal roller formed by a plunging breaker is approximated as a Ramkine-type vortex by experiments, and it is calculated that 158-30% of wave energy is dissipated due to the formation of horizontal

roller alone from a breaking point to a point of the roller disappearance. A bottom shear stress due to a breaker is measured by the shear meter deviced by the authors and it

A bottom shear stress due to a breaker is measured by the sinear meter deviced by the authors and it is clarified that the energy dissipation due to bottom friction is a little Main part of the energy dissipation is taken to be caused by the turbulence with air entrainment. It is indicated that an incident monocromatic wave is transformed into a higher frequency wave due to the turbulence. Furthermore, a new basic equation for breaking waves with a turbulence term expressed by a Reynolds stress is presented. The theoretical curves computed numerically have a consistent agreement with the uncomputed numerically have a consistent agreement. with the experimental results

1 INTRODUCTION

Phenomenon of wave breaking and wave deformation after breaking has been a matter of great interest to coastal engineers as well as investigations in the hydrodynamic field. Therefore, so far, in the experimental and theoretical approaches, numerous investigations have been done to clarify the mechanism

of wave deformation in a surf cone In the theoretical treatments, many investigations have assumed model waves such as solitary wave and bore with some appropriate assumptions that waves have their critical heights as progressive waves,etc However, these theoretical works could not explain sufficiently the mechanism of wave deformation after breaking. In the experimental investigations various studies have been carried out mainly on a sloping breaking. In the experimental investigations Various studies have been carried our mainly on a sloping beach model. There necessarily exist, in the sloping beach model, return flow, wave set-up and set-down, wave shoaling and wave reflection Since these factors interact very complicatedly, the important characteris-tics of turbulence caused by wave breaking, can not be clarified in details. Mason(1951)already pointed out the necessity of experimental investigations on a horizontal bottom Galvin (1969) carried out some ex-periments on a composite slope consisted of an approach rame with a 1/15 slope leading up to a horizontal surface and showed facts about the characteristics at the breaking point. But the mechanism of wave deformation after breaking was not discussed

As above mentioned, these foregoing investigations seem to be unable to clarify the mechanism of wave deformation or wave energy dissipation in a surf zone Thus, the application of a more special experimental method to reveal the characteristics of turbulence itself or a more reasonable theoretical treatment will be required

The present paper is to clarify the mechanism of wave deformation and energy dissipation in experi-mental and theoretical treatments

2 REHAVIOR OF WAVES AFTER BREAKING

2-1 Equipment and Procedure

Experiments were conducted to clarify such hydrodynamic behaviors of waves at a breaking point and after breaking as breaker types, scale of splash and horizontal roller, wave height attenuation, etc., by using an indoor wave tank in 0.7m width,0 95m height and 30m length At one end of the tank was installed a flap-type wave generator which was controlled by an electric dynamic shaker and could generate waves

COASTAL ENGINEERING

in different periods and amplitudes At the other end of the tank, a horizontal bottom was installed and connected to the channel bottom with a slope of 1/18 as shown in Fig -1 in this horizontal bottom, there are no return flow and shoaling effect as observed in a sloping beach Therefore, turbulence it-self caused by breaking can be deduced Wave heights were measured by resistance-type wave gauges A wave height in deep water, H, is calculated by the small-amplitude wave theory (Wiegel, 1964)from a measured wave height in front of the wave generator For each experimental run, by using a high speed cine-camera(100-200 frames/sec), the breaking region was filmed through a grid on glass walls of the channel with the camera axis kept at the still water level From these films, the scale of the horizontal roller, the domain of the roller existence, the scale of splash and the region of air entrainment in the breaker were decided. To obtain the movement of water particles in the breaker, particles of a mixture of xylen and carbontetrachloride with zinc oxide for coloring, with a specific gravity corresponding to that of the water, were introduced in the surf zone Point to point movement of the particles was then recorded on films, from which each particle velocity was obtained by superposition of projected film frames to give a distance and a time interval of movement Wave heights in the breaking zone was estimated as ten-wave averages from wave gauge recorders compareing with film analyses The incident waves were forced to break themselves on a hori-

Ho

3 5~11 5 cm

6 0~12 0 cm

7 5~13 5 cm

Table - 1.

h

7 cm

11 cm

14 cm

zontal bottom or just at the corner between the elevated horizontal bed and the sloping bed The test program is shown in Table-1.

2-2 Experimental Results

Breaker type and breaker height A breaker is classified into a

plunging breaker and a spilling breaker

as shown in Fig -2 But a surging

breaker (or a collapsing breaker)

occurring in a sloping beach is not observed in this case Therefore, the surging breaker is a particular breaking pattern in a sloping beach. The transient region between the two breaker types is given as follows

```
H_{0} / h_{b} = 0.72
```

----- (1)

Test program

To

0 8, 1 0, 1 2 sec

0 8, 1 0, 1 2 sec

0 8, 1 0, 1 2 sec

Ho/Lo

0 016~0 115

0 031~0 105

0 033~0 105

 $H_0 / h_b = 0.72$ (1) Fig -3 shows the relation between wave steepness, H₀/L₀, and the ratio, H₀/h₀ of breaker height H₀ and water depth h₁ It is recognized that H₀/h₀ becomes larger as H₀/L₀ is larger and that H₀/h₀ for a plung-ing breaker is larger than that for a splilling breaker <u>Characteristics of turbulence after breaking</u> The pattern of wave deformation after breaking is clearly different between a plunging breaker and a splilling breaker. In case of the plunging breaker, as shown in Fig -4(a), there exist a horizontal roller and a splash. The horizontal roller draws air bubble deep into the water body and the air bubble rises rapidly upwards as the roller disappears On the other hand, in case of the splilling breaker, as shown in Fig -4(b), keeping the symmetry of wave forms at the crest, a white cap is observed at the cusped-crest and the air entrainment is limited on the wave front face. In Fig -4, the origin of X is just a breaking point and X_pX_vX_b and X_a indicate a point where a wave crest touches down the water, a roller disappears, a splash tolches down the water and air bubble disappears from the water body, respectively. Fig -5 shows the relation of X_p/L,X_v/L,X_c/L,X_c/L, K_b/A_c and H_c/L_o and H_o/L_o Judging from Fig -3, X_a/L for a X_a/L is established and that X_a/L is largely affected by h/L_o and H_o/L_o Judging from Fig -3, X_a/L for a

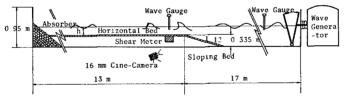
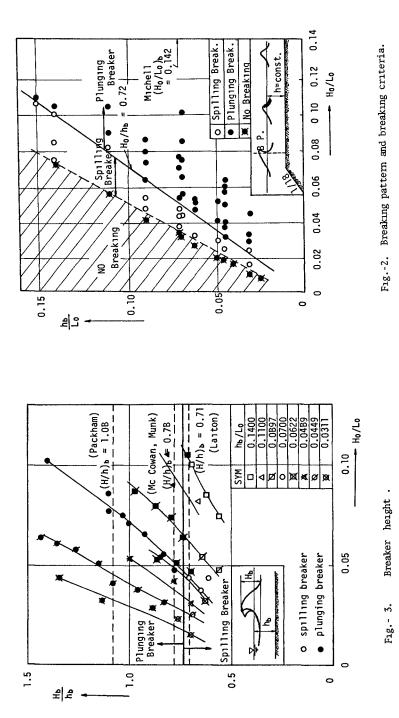


Fig.- 1 Laboratory installation

482



483

X_B/L

Xv/L

Xs'/L

XA'/L

20

15

10

05

0 0

ho/Lo X8/L X4/L Xs/L XA/L

. • ¥

A Δ

spilling brea

*

٦

0 0 31 | 🔶

062 • ð 0 ×

4

140 🛛 🗖 🗖

0045 Ŷ δ 0 ¤

0,020 090 X ٠ ×

s

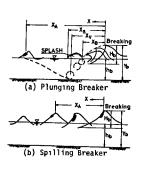
. .

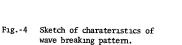
XA/L

v /L

0 10 - Ho/Lo

¥,





Relation among $X_B/L, X_V/L, X_S/L, X_A/L$ and H_0/L_0 F1g -5

0 05

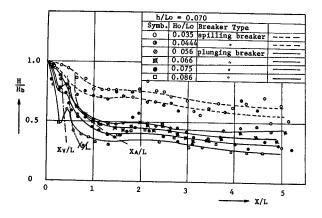


Fig.-6. Wave height attenuations after breaking $(h/L_0=0~070)$

plunging breaker is recognized to be larger than that for a spilling breaker Fig -6 shows a wave height attenuation after breaking. It is made clear that the degree of wave height attenuation becomes larger as $\mathbb{H}_{/L}$ is larger and that it is closely connected to the turbulence of breaking waves That is, the wave height attenuation for $X/L \leq X_{/L}/L$ is larger than that for $X/L \geq X_{/L}/L$ In case of a plunging breaker, the wave height attenuation is the largest for $X/L \leq X_{/L}/L$, which indicates that some of the energy is transmitted into the kinematic energy of the horizontal roller

3 EFFECT OF HORIZONTAL ROLLER ON WAVE ENERGY DISSIPATION

The hydrodynamic characteristics of the roller were made clear by the above-mentioned experiments in Section 2 As shown in Fig -7, the distribution of the angular velocity of the roller is approximated as a Rankine type vortex so that the angular velocity can take a maximum value at r = r. In the experiments, r_0 is nearly equal to 0 444, as shown in Fig -8. Now, consider the effect of the horizontal roller on

Now, consider the effect of the horizontal roller or wave energy dissipation The kinematic energy, Er, of this roller is defined as follows (Hino,1971)

$$E_{r} = \frac{1}{4} \Re(q_{o}r_{o})^{2} (1 + 4\ln(a/r_{o})), \dots (2)$$

where q =angular velocity at a=r₀, **9**= water density If⁰the breaking wave energy⁰ is assumed to be ex-

10ws

pressed as the same expression as before breaking, the energy dissipation from the breaking point to the point of the roller disappearance, E₁, is given as fol-

$$E_{L} = \frac{1}{8} g_{g} (H_{b}^{2} - H_{v}^{2}) L \qquad (3)$$

where H_{χ} =wave height at a point of the roller disappearance. Therefore, the rate of energy transmitted to this roller, ξ_{γ} , is given in Eq (4)

$$\mathcal{E}_{r} = \frac{E_{r}}{E_{L}} = \frac{2\mathcal{T}(q_{o}r_{o})^{2}(1 + 4\ell_{n}(a/r_{o}))}{gL(H_{b}^{2} - H_{V}^{2})}$$

Now, putting the relation of $r_0=0.44H_h$ into Eq (4), the following expression is obtained

$$\mathcal{E}_{\gamma} = \frac{1 \ 216q_0^2 (1 + 4 \ l_n (a/r_0))}{gL (1 - (H_{\gamma}/H_0^2))} \quad \dots \dots \dots (5)$$

Fig -9 shows the theoretical values of Eq (5) and the experimental results The theoretical values show that $\mathcal{E}_{\mathbf{r}}$ takes a larger value as $q'_{\mathbf{r}}/ql$ becomes larger and $a'_{\mathbf{r}}$ becomes larger. The experimental results indicate that 15%-30% of the energy dissipation of wave is transmitted to the kinematic energy of the roller. Therefore, it is concluded that the most of the energy will be dissipated by the other factors such as bottom friction, splash and turbulence with air entrainment, etc

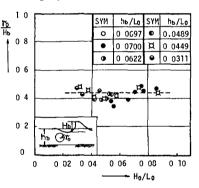


Fig -8 Relation between r_0/H_b and H_0/L_o .

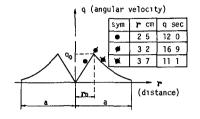


Fig -7 Distribution of an angular velocity of horizontal roller

----- (4)

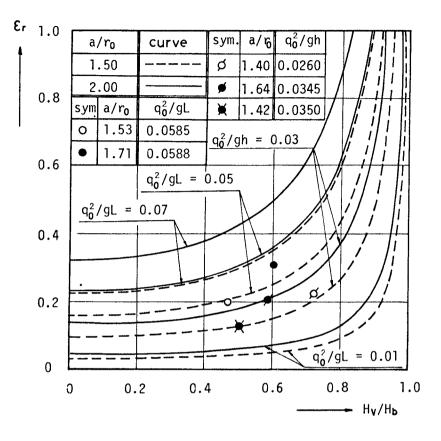


Fig.-9. Relation between \mathcal{E}_r and H_v/H_h .

4 EFFECT OF BOTTOM FRICTION ON WAVE ENERGY DISSIPATION

4-1 Equipment and Procedure

A bottom shear stress due to wave motion was measured by the shear meter deviced by the authors A schematic view of the shear meter is shown in Fig -10 A small raised channel was set transversely from wall to wall of the shear meter is shown in Fig -10 A small raised channel was set transversely from wall to wall of the frame below the shear plate To prevent flow through gaps under the plate, the channel was filled with mercurry until its meniscus touched the underside of the shear plate as Eagleson (1962) already deviced If the flow under the shear plate is not stopped, the pressure gradient is different between above and below the shear plate, which causes a force acting in the opposite direction to the original wave force

A shear force acting on the shear plate is measured by converting the force into a moment of the supporting shaft. The shear plate is subjected to a force due to wave pressure gradient in addition to the shear force. Therefore, the force due to the pressure gradient is calculated from the pressure dif-ference measured by pressure measuring tubes. Before measuring bottom friction force due to breaking waves, the shear meter was checked under various laminar conditions, and it is recognized that the results coincide well with the theoretical values as shown in Table-2, in which theoretical values are calculated by using the theory of Iwagaki-Tuchiya-Chin (1965)

4-2 Experimental Results

Fig -11 shows time profiles of a bottom shear stress and a wave, and it indicates that the time prifiles of the shear stress due to a plunging breaker is very asymmetric as compared with those in the case of a spilling breaker Fig.-12 shows change of non-dimensional maximum bottom shear stresses which act in the wave propagation direction and its opposite direction for the two type of breakers. In Fig.-12, X is a distance from a breaking point and the dotted lines express the shear stress estimated by th smooth laminar boundary layer theory(Iwagaki- Tuchiya-Chin,1965)given as follows the

$$\frac{\zeta_{\text{b max}}}{\$gH} = \frac{\sqrt{2\gamma}}{g \sinh(kh)} \left(\frac{\pi}{T}\right)^{3/2} , \qquad (5)$$

where, $\gamma =$ kinematic fluid viscosity, ζ_{b} max = maximum bottom shear stress, k=2 π /L, \mathcal{G} = fluid density and H=wave height at the depth of h

H=wave height at the depth of h From this figure, it will be pointed out that the maximum bottom shear stresses in the region for $X \leq X_A$ are considerably larger than those in the region for $X > X_A$ Therefore, it is made clear that the bottom shear stresses become larger due to the turbulence with air entrainment As shown in Fi -11, the time profiles of the bottom shear stresses are very asymmetric, and then the coefficient of the bottom friction used earlier can not be applied Then, the newly defined bottom friction coefficient, \widehat{C}_{f} , is used in this study, which is defined as follows

$$\hat{c}_{f} = \frac{1}{2\pi} (\Theta_{c} \hat{c}_{fc} + \Theta_{c} \hat{c}_{ft}) , \qquad (6)$$

$$\hat{c}_{fc} = 2 |\overline{\zeta}_{bc}| / |\overline{U}_{bc}^{2}| , \quad \hat{c}_{ft} = 2 |\overline{\zeta}_{bt}| / |\overline{U}_{bt}^{2}| , \qquad (7)$$

$$\Theta_{c} + \Theta_{t} = 2\pi.$$

where θ = phase, U_b = horizontal bottom particle velocity moving toward wave propagation direction, U_b = horizontal bottom particle velocity moving toward anti-wave propagation direction, Z_b = bottom shear bt stress acting toward wave propagation direction, Z_b = bottom shear stress acting toward wave propagation direction, Z_b = bottom shear stress acting anti-wave propagation direction, Z_b = bottom shear stress acting toward wave propagation direction, Z_b = bottom shear stress acting anti-wave propagation direction, Z_b = bottom shear stress acting anti-wave propagation direction, Z_b = bottom shear stress acting anti-wave propagation direction, Z_b = bottom shear stress acting toward wave propagate Fig -14 shows the relation among C_b. C_b and Reynolds number Re (= U_b -1/y) It is shown that C_b, C_b = 0 become larger as Re is smaller but, the experimental values are generally lavger than the theoretical value, C_f = 4 5 Rg based on the smooth laminar boundary layer theory(Iwagaki-luching-Ghin, 1965) The coefficient of bottom frinction, f, already used in the fields observations is defined as follows (Putnam-Johnson.1949).

lows (Putnam-Johnson, 1949).

COASTAL ENGINEERING

$$f = \zeta_{b \max} / S u_{b \max}^{2} , \qquad (8)$$

where C_{0} = maximum bottom shear stress, U_{0} = maximum horizontal particle velocity at the bottom Fig -15 shows the relation between f and Keyholds number $R_{rr}(= U_{0}^{2} \cdot \pi_{2}T/_{\nu})$, in which the straight line indicates the theoretical values based on the smooth laminar boundary layer theory. The experimental values after breaking indicate 2 - 4 times larger than the theoretical value, f = 2 08R_{eT}^{-2} (Iwa-ext-takinima-mivel.1965) gaki-kakinuma-miyai, 1965)

Now, the energy dissipation due to bottom friction is discussed The mean energy loss, $\overline{E}_{\rm fb}$, due to the bottom friction per unit area is calculated by the following equation

$$\overline{E}_{fb} = \frac{1}{T} \int_{0}^{t} \overline{U}_{b} \overline{\widetilde{c}}_{b} dt , \qquad (9)$$

where \overline{U}_{i} and \overline{C}_{i} are a mean value of horizontal particle velocity and a shear stress at the bottom in the region of the same sign under wave motion, respectively. On the other hand, the following relation is derived by the energy balance for a wave

$$\frac{d}{dx}(C_g E) = E_{fb} + E_{ft}$$
, -----(10)

where C = group velocity of wave, E = wave energy, and $E_{\phi \overline{e}}$ mean energy loss due to some other causes than the bottom friction If E and C, satisfy Eq (11),the ratio, \mathcal{E} , of energy loss due to the bottom friction to the total energy loss for dx is represented by Eq.(12) as follows'

$$E = \frac{1}{3} g H^{2}$$

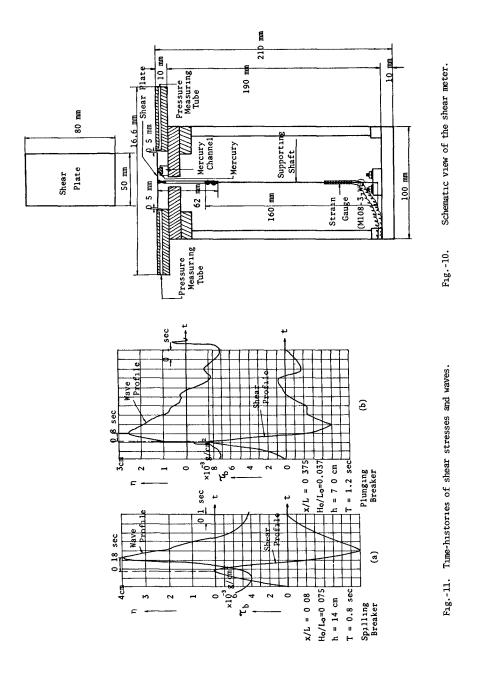
$$C_{g} = C$$

$$E = \frac{\overline{E}_{fb}}{\frac{d}{dx}(C_{g}E)} = \frac{4 \int_{\overline{C}}^{\overline{C}} \overline{U}_{b} dt}{gH \cdot T C (dH/dx)}$$
(11)

Using the experimental values for wave height attenuation and shear stresses, § is calculated by Eq (12) as shown in Table-3 From this calculation, it is clear that the energy loss due to the bottom friction is quite small, that is , while a wave propagate to the distance about the twice wave length, the rate of the energy loss due to the bottom friction takes 9% of the total energy at most After all, it is concluded that the energy dissipation due to a horizontal roller and bottom friction is a little. Therefore, the authors have to admit that the turbulence with air entrainment is the most important factor for a wave decay after breaking

h (cm)	28		(water temperature = 8°c)					
T (sec)	0.8		10			12		
h/Lo	0 28		0 179			0 124		
H (cm)	04	1 25	10	1 16	1 56	0 66	1 19	1 57
(F _b max)ex (9r)	0 260	0 920	0 690	0 868	1 130	0 521	1 137	1 389
(Tь max)ex (gr/cm²)	0 164	0 572	0 454	0 570	0 743	0 354	0 723	0 944
(Tь max)theo.(gr/cm²)	0 176	0 500	0 500	0 520	0 780	0 376	0 678	0 895
<u>(Tь max)ex</u> (Tь max)theo.	0.942	1 140	0.910	0.982	0 953	0 942	1 070	1 050

Table -2. Comparison of measured shear stresss with theoretical values under laminar boundary condition (ex =experiment, and theo =theory)



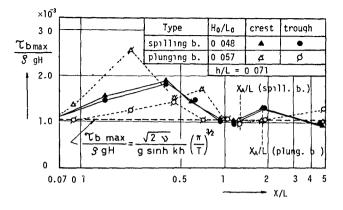


Fig.-12. An example of relations between $\zeta_{b\mbox{ max}}/\mbox{ggH}$ and X/L

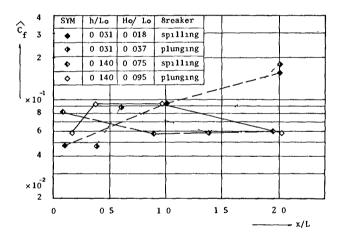


Fig.-13. Change of the coefficient, \widehat{C}_{f} as wave propagates

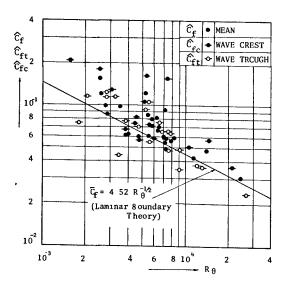


Fig -14. Relation among $\hat{C}_{f}, \hat{C}_{ft}, \hat{C}_{fc}$ and R_{Θ} .

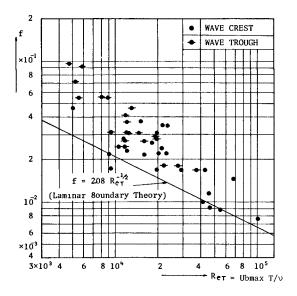


Fig.-15. Relation between f and R_{eT}.

COASTAL ENGINEERING

RUN	h cm	T sec	Ньcm	Hcm	x/L	C/√gh	€x10 ²	Breaker
5	7	12	50	44	0 25	1 07	08	spilling
	н	"	H	27	1 40	0 97	40	
"	н	"		26	2 10	0 94	89	"
6	7	12	80	50	0 30	1 07	06	plunging
н	н	н	н	32	1 50	1 14	4.2	"
в	ų	-	-	27	2 20	1 03	55	*
13	14	08	63	54	0 85	0 87	17	spilling
п	n		0	4.9	1 30	099	22	
н	н			46	2 00	094	77	"
14	14	08	95	54	0 95	094	10	plunging
н	u I			5.0	130	099	1.9	
=	-	ц	н	47	2.05	0.94	26	"

Calculated results of & Table -3

5. EFFECT OF TURBULENCE ON WAVE ENERGY DISSIPATION

5-1 Fourier Analysis of Wave Profile

It is necessary to measure an accurate time-history of water particle velocity in order to clarify the characteristics of turbulence. It will be impossible on account of a lack of precise measuring instru-ments Since a wave profile is thought to be as an expression of turbulence after breaking, it will be expected that some features of turbulence can be deduced by analysing wave profiles. The authors adopt Fourier analysis as one method, which can deduce characteristics of frequencies of a wave. Wave profiles were recorded by a magnetic-tape with sample time was 16 sec , and data were cut dis-cretely at each 1/30 sec interval. The Fourier analysis was carried out by FFT method (Cooley-Tukey, 1965)

1965)

Figs.-16 - 18 show changes of wave height spectra as waves propagate At the breaking point, the wave is composed of harmonic frequencies against the monocromatic frequency of incident waves and immediately after breaking wave heights of the harmonic frequency waves become larger than those of the monocromatic incident waves As shown in Fig -19, however, the higher frequency waves disappear in a short time as the wave propagate after breaking. In the case of h/L=0.0311, as shown in Fig -17 and-18, the incident waves are transformed into higher frequency waves, such as twice or three times frequency waves of the incident waves, regardless of breaker types in the distance of three times the wave length from the breaking point. But, in the case of $h/L_{\pm}=0.140$ (see Fig -16), the above-mentioned fact can not be observed. This means that the relative water depth, h/L_{\pm} plays an important role to transform a wave into a higer frequency wave rather than the breaking pattern , although this mechanism is not yet clear Figs.-16 - 18 show changes of wave height spectra as waves propagate At the breaking point, the wave

5-2. Basic Equation for Breaking Wave

The mechanism of transformation of the monocromatic incident waves into higher frequency waves is very complicatedly Therefore, the authors avoid a direct discussion of this mechanism and only discuss a wave height attenuation by using the following turbulence model, Two-dimensional Navier-Stokes equation with terbulence terms is given as follows(Ishihara-Homma,

1957)

$$\begin{split} & \mathcal{G} \frac{D}{D} \frac{U}{t} = -\frac{\partial P}{\partial x} + \mu \nabla^2 U + \left(-\frac{\partial^P xx}{\partial x} + -\frac{\partial^P zx}{\partial z} \right) \\ & \mathcal{G} \frac{D}{D} \frac{V}{t} = -g - \frac{\partial P}{\partial z} + \mu \nabla^2 V + \left(\frac{\partial^P zx}{\partial x} + -\frac{\partial^P zz}{\partial z} \right) \end{split} \right\}$$

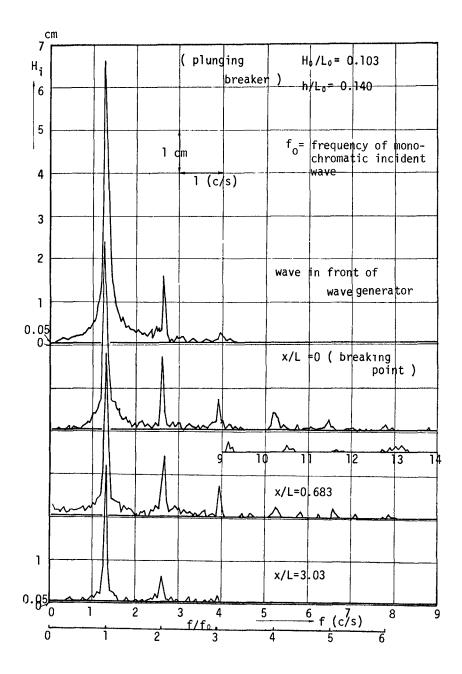
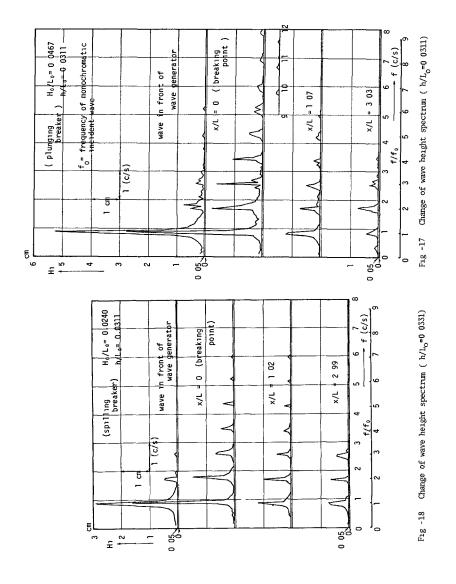


Fig.-16. Change of wave height spectrum. $(h/L_0=0.140)$



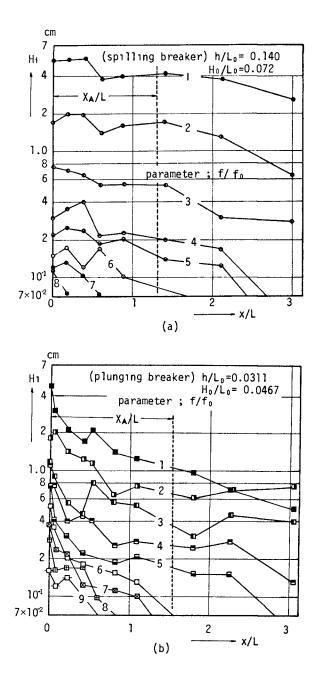


Fig.-19. Attenuation of wave heights of harmonic frequency waves as waves propagate.

where, P_{χ_1}, P_{χ_2} and P_{χ_2} = Reynolds stresses, $\bigtriangledown^2 = \frac{\partial^2}{\partial \chi_2} + \frac{\partial^2}{\partial \chi_2}$, μ = coefficient of fluid viscosity, g= gravity acceleration, t=time coordinate, p=pressure, V^2 vertical velocity of a water particle, U= horizontal velocity of a water particle, x = horizontal coordinate and z= vertical coordinate with the origin at the bottom On the assumptions that (1) DV/Dt=0,(11) terms due to molecular viscosity are considerably small as compared with terms due to Reynolds stress,(11) ($O(\partial P_{\chi_X}/\partial x)$ and $O(\partial P_{\chi_X}/\partial x)$) \gg ($O(\partial P_{\chi_Z}/\partial z)$ and $O(\partial P_{\chi_X}/\partial z)$), Eq. (13) is transformed into the following equation

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + g \frac{\partial ?}{\partial x} - \frac{\partial}{\partial x} (P_{xx} + P_{zx}) = 0, \qquad (14)$$

where?= wave profile Assuming that P, and P, are able to be represented by the equation(15), the equation(14) is transformed into Eq.(16) as follows 2 211 2 211 2 1, 2

$$P_{xx} = L_1^2(\frac{\partial U}{\partial x}) \left| \frac{\partial U}{\partial x} \right| \propto -L_x^2(\frac{U}{h})$$

$$P_{zx} = L_2^2(\frac{\partial U}{\partial z}) \left| \frac{\partial U}{\partial z} \right| \propto -L_2^2(\frac{U}{h})$$
, (15)

and

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + g \frac{\partial \gamma}{\partial x} + \frac{\partial}{\partial x} (K(\gamma + h^2)(\frac{U}{h})^2) = 0 , \qquad (16)$$

in which L and L = mixing length and $L_x^2 + L_z^2 = K (h + \gamma^2)^2$ is assumed , where K is defined as the coefficient of curbulence intensity. Therefore, the basic equations for a breaking wave are given as follows

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + g \frac{\partial \gamma}{\partial x} + \frac{\partial}{\partial x} (K (h + \gamma)^2 (\frac{U}{h})^2) = 0$$
and from the law of mass conservation
$$\frac{\partial \gamma}{\partial t} + \frac{\partial}{\partial x} (U (h + \gamma)) = 0$$

Now. change the variables as follows

then, Eq.(19) is obtained from Eq (17) by means of the finite difference method(Keller-Levine-Whitham, 1960) as follows *

The numerical procedure is , in outline, to compute a wave height and velocity on a set of net points ($\chi_1^{-}T_1^{+}$). In the calculation, the spatial net and time net are chosen to be uniform, $\chi_1^{-1}\Delta X$ and $T_1^{+}=K\Delta T$, where ΔT and ΔX are chosen to satisfy a stability condition, the so-called Courant condition, Stated as follows *

$$\Delta T^* \leq \min_{P_1} \left(\frac{\Delta X}{U^*(P_1) + \sqrt{H^*(P_1)}} \right)$$
(20)

)

The calculation is carried out by using the mesh width of ΔX^{\oplus} 0 02 and ΔT^{\oplus} 0.004, for which it was confirmed that the solutions, were convergent and stable Unknown values, H(P) and U(P) at a point P, are calculated from the known values at point Q_1 and R_1 as shown in Fig.-20 by using Eq (19)

How the shown values at point c_1 and c_1 as shown in Fig.-20 by using Eq (19) Fig.-20 by using Eq (19) Fig.-21 shows the calculated values for wave height attenuation, in which the theoretical value of Horikawa-Kuo(1966) based on the energy method is also shown In this calculation, a solitary wave (Boussinesq,1872) is used as an initial wave condition From this figure, it is recognized that the degree of wave height attenuation becomes larger as K becomes larger and that the theoretical value for K=0 5 fairy agrees with the value of Horikawa-Kuo for β =5 Furthermore, Fig -22 shows that the theoretical values calculated by using experimental data as initial wave conditions considerably coincides with experimental results and that K for a plunging

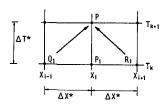


Fig -20 Mesh points

with experimental wave considerance consider

6 CONCLUSION

In this paper, wave deformation after breaking is discussed The energy dissipation after breaking is dominated by turbulence with air entrainment in the case of a spilling breaker. In the case of a plunging breaker, some of the wave energy are dissipated by the formation of horizontal roller in addition to the turbulence with air entrainment Due to this turbulence, a monocromatic incident wave is transformed into a higher frequency wave in some condition. This mechanism is unknown and it is required to clarify the characteristics of turbulence after breaking by a future investigation

REFERENCES

Mason, M A Some Observations of Breaking Wave, Gravity Waves, N B S Circular, 521, 1951.

Galvin, C J Breaker Travel and Choice of Design Wave Height, Proc. of ASCE, WW2, May, 1969

Wiegel, R L Oceanographical Engineering, Prentice-Hall, Englewood, Cliff, N J., pp 11-21, 1964

Hino,M and T Yamazaki, Formation of Roller and Energy Dissipation at Vertical Plate due to Wave, Proc of 18th Conf on Coastal Eng. in Japan, 1971 (in Japanese)

Eagleson, P.S. Laminar Damping of Oscillatory Waves, Proc. of ASCE, Vol 88, No. HY3, 1962

lwagakı,Y ,Y Tuchıya and K Chin Experimantal Study on Wave Attenuation due to Bottom Friction (3), Proc of 12 th Conf on Coastal Eng in Japan, 1965 (in Japanese)

Putnam,J A and J W Johnson The Dissipation of Wave Energy by Bottom Friction, Tran A G U , Vol.30, No 1,Feb ,1949.

Iwagaki,Y ,T. Kakinuma and H Miyai. On Bottom Friction Coefficient in Coastal Beaches, Proc. of 12th Conf on Coastal Eng in Japan, 1965 (in Japanese)

Cooley,J W. and J W Tukey An algorithm for the machine calculation of complex Fourier series, Math , Compt.,19, pp $\,297\text{-}\,301,1965$

Ishihara, T and H.Homma Applied Hydraulics, Vol.1, Maruzen-Press, Tokyo, pp 35-40, 1957 (in Japanese)

Keller,H B ,D A Levine and G B Whitham Motion of a Bore over a Sloping Beach, Jour. of Fluid Mech , Vol.7, 1960

Boussinesq,J Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal,en communiquant au liquide contenu dans ce canal de vitesses sensiblement pareilles de la surface au fond, Liouville's J Math Vol.17, 1872

¢

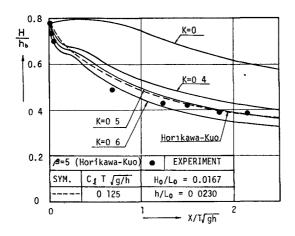


Fig -21. Theoretical values of wave height attenuations.(By using solitary wave as an initial wave condition) % f(x) = 0

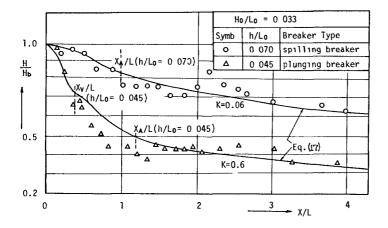


Fig.-22. Comparison of calculated theoretical values with experimental results. (By using experimental data as an initial wave condition)