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Abstract. The combined longitudinal and torsional plastic waves in a thin-walled

tube of rate-independent isotropic work-hardening material are used to illustrate the

problems involved when the situation ct = c, = c2 occurs. Two examples are presented.

In the first example, the stress paths in the a ~ r plane for the fast and slow simple

waves are examined in the region near the singular point {a*, 0) where cf = c, = c2 .

For tj > J, where v is a nondimensional material constant defined in the paper, there

is no stress path passing through the singular point (o*, 0) other than the <r-axis itself.

For 0 < there is a family of stress paths emanated from (a*, 0) which span an

angle of tan-1 (1 — 2r/)1/3 with the c-axis. In any case, the stress paths for the fast and

slow simple waves are not orthogonal to each other at the singular point. In the second

example, a study is made of the propagation of the plastic wave front into the tube

which is initially prestressed at the stress state (a*, 0). It is shown that the solution

in the region next to a region of constant state is not necessarily a simple wave solution.

In fact, an unloading can occur at the plastic wave front which changes its speed from

c2 to c0 at the onset of the unloading.

1. Introduction. The elastic-plastic wave propagation of combined stress has been

studied by various authors in recent years [1-6]. The governing equations can be written

as a system of first-order partial differential equations in which the characteristic wave

speeds are the fast wave speed c, and the slow wave speed c, . In some problems, the

shear wave speed c2 is also a characteristic wave speed in the plastic region. In any case,

c> < c2 < cf holds and the system is totally hyperbolic provided c, and cf are different

from c2 .

The problems studied in [1-6] do not pay special attention to the situation when

cf = c, - c2 occurs because this particular situation does not happen very often. When

this particular situation happens, one may obtain the result from the general solution

by letting cf and c, approach to c2 . Unfortunately, this limiting process may not work,

and if it does work it sometimes leads to erroneous conclusions. For instance, the fact

that the stress paths for the fast and slow simple waves are orthogonal to each other

for all values of cf and c, may not be true for the special case when cf — c, = c2 . This

fact does not seem to have been mentioned in the literature. Also not mentioned is

the fact that there may be no stress paths passing through the point in the stress space

where ct — c, = c2 other than the trivial one, namely the stress axis itself. These new

facts, and the consequences of these facts, are presented in Sees. 2 and 3 by considering
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the combined longitudinal and torsional waves in a thin-walled tube as an example.

As it turns out, the material constant 17 introduced in Sec. 3 plays an important role in

the analysis. A means for determining this material constant is presented in Sec. 4.

When cf = c, — c2 , the system of the partial differential equations is not totally

hyperbolic. Theorems which apply to a totally hyperbolic system are therefore not

necessarily applicable to this case. For instance, a generalized Lax's theorem on simple

waves [7, 8] states that: if a region is bounded by a characteristic, and the dependent variables

are constants on this characteristic, the solution in the region is a simple wave solution.

If the boundary characteristic in the theorem is the one with cf — c, — c2 , the solution

next to this characteristic is not necessarily a simple wave solution. Therefore, a different

approach is needed to obtain the solution in the neighborhood of this characteristic.

This is illustrated in Sec. 5 by considering the plastic wave propagation in the tube

which is initially pre-stressed at the stress state for which cf = c, = c2 . Indeed, it is

shown that the solution in the region next to the plastic wave front is in general not a

simple wave solution. Moreover, it is shown that an unloading can occur at the plastic

wave front, a phenomenon which would never occur if the system at the wave front

were totally hyperbolic.

2. The basic equations. The governing equations for the combined longitudinal

and torsional waves in a thin-walled tube of rate-independent isotropic work-hardening

materials are derived by Clifton [1] and can be written in matrix notation as (see also [9])

Aw, + Bw, = 0 (1)

where

Tp

A =

2 2

B =

(2)

w

0 0 0

0 p 0 0

0 0 (1 /E) + Ha2/f II ar

0 0 Har (1/m) +

0 0-10 u

0 0 0-1 . v

-10 0 0

L 0 -1 0 0.

The subscripts t and x denote partial differentiation with respect to t and x. u and v are

the longitudinal and the circumferential particle velocities, E is Young's modulus,

n is the shear modulus, and p is the mass density of the tube. In the elastic region II = 0,

while in the plastic region H is positive, and is an increasing function of yield stress k:

k~ = (a/6)' + 7(3)

where 6 = V3 for the von Mises yield condition and 6 = 2 for the Tresca yield condition.

The characteristics c of Eq. (1) are the roots of ||rA — B|| = 0, or

I - v + "Mil - v ?+ (?. - ■0 «
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where

Co = E/p, c\ = n/p. (5)

Since H — 0 in the elastic region, ±c0 and ±c2 are the characteristic wave speeds in

the elastic region. In the plastic region H > 0, and the left-hand side of Eq. (4) is positive

when c = 0, negative when c = c2 , and positive again when c = c0 . Therefore, if ±C/

and ±c, are respectively the fast and slow wave speeds in the plastic region, we must

have [1]

0 < c, < c2 < cf < c0 . (6)

Since c2 ^ c0 , the system is totally hyperbolic in the elastic region. In the plastic

region, the system is totally hyperbolic unless cf = c,. If c, — c,, then in view of Eq. (6)

cf and c, both must have the value c2 . Therefore c, = c, when c2 is the double root of

Eq. (4). Let (a*, r*) be the stress state for which c = c2 is the double root of Eq. (4).

It is easily seen from Eq. (4) that

r* = 0, 1/cj = 1/rjJ + PH*(cr*/0)2, (7a, b)

where

H* = 7/O*/0). (8)

Here H* is the value of H(k) evaluated at k = a*/6 because r* = 0. Since Hk2 is an

increasing function of k (see Eq. (26)), there is only one value of a* satisfying Eq. (7b)

if a* exists. (Here we restrict ourselves to positive <r* only.) When a* exists, a* corre-

sponds to the stress magnitude on the stress-strain curve for a simple tension test where

the slope of the curve is equal to p. (see [1] or Sec. 4).

Since A depends on a and r only, Eq. (1) admits simple wave solutions. According

to the theory of simple waves [10, 11], w of Eq. (1) is a function of c only for a simple

wave solution and dw/dc is proportional to the right eigenvector r defined by

(cA - B)r = 0. (9)

The fact that dw/dc is proportional to r reduces to the following result [4]:

% = ?; (c! ~ ?) / d ~ ?) ■ (10)

Since c as given by Eq. (4) depends on a and r only, Eq. (10) can be integrated. For

c = cf one obtains the stress paths for the fast simple waves and for c = c, one obtains

other stress paths for the slow simple waves. It can be shown that the stress paths for

the fast and slow simple waves are orthogonal to each other.

At the singular point a = a* and t = 0, c — c2 and the right-hand side of Eq. (10)

is indeterminate. In the next section, we will expand the right-hand side of Eq. (10) about

the point (a*, 0) and integrate the resulting equation which is valid in the neighborhood

of (tr*, 0).

3. The stress paths for simple waves near (a*, 0). Before we expand the right-hand

side of Eq. (10) about the singular point (a*, 0), we have to find c of Eq. (4) for (a, r)

in the neighborhood of (<r* 0). To this end, let

  S = o- - <t*, r2 = S2 + r2, (11)
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and consider the values of <j and r such that r « 1. We have

k - a*/d + s/ 9 + 0(r2), ^2)

H(k) = //* + H'*s/6 + 0(r2),

where

if* = (13)

For the present purpose, it is more convenient to write the roots of Eq. (4) in the following

form:

"2 = ^ ("2 + ~2 + PH + pHd'T
c 2 \c2 c0 6

± \ {(--\ + | + p// ~ pHd\2j + C2PHar)2J (14)

where the plus sign is for c, and the minus sign is for cf . Substitution into the above

equation from Eqs. (12) yields, after making use of Eq. (7b),

? = ?2 + p 7 h*s ± {(p V2 h*s) + (k ~ cl) + 0(r2) (15)

where

h* = H* + %a*H'*/d. (16)

If we ignore the higher-order terms, it is seen from Eq. (15) that the contour lines for

constant values of c are parabolas in the s ~ r plane with the s-axis as the axis of the

parabolas.

With c given by Eq. (15), Eq. (10) can now be written, after ignoring the terms

of 0(r), as:

ds/dr = v(s/t) ± {(7?(s/r))2 + 1}1/2 for s2 + r2 « 1, (17)

where n is the non-dimensional material constant defined by

v = h*/(e2H*). (18)

In the next section we will show that 77 > 0 if the stress-strain curve for a simple tension

test is concave to the strain axis.

Eq. (17) can be integrated analytically. Before we present the solution, the following

observations should be noted:

(1) The plus sign in Eq. (17) is for the slow simple wave paths and the minus sign

is for the fast simple wave paths. It is readily shown that

(ds/dr) +• (ds/dr)- = — 1 (19)

provided s and r are not both zero. Therefore the stress paths for the fast and slow

simple waves are orthogonal to each other in the neighborhood of the origin s = 0,

r — 0 not including the origin.

(2) If we replace s by — s, (ds/dr) + becomes — (ds/dr)- . The stress paths for the
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fast simple waves can therefore be obtained from the stress paths for the slow simple

waves by a simple reflection on the r-axis in the s ~ r plane (see Fig. 1). In the following,

it suffices to discuss Eq. (17) with the plus sign in the right-hand side.

(3) If we replace s and r by as and ar respectively where a is an arbitrary constant,

Eq. (17) remains unchanged. Hence all curves are similar. If we know one curve which

is a solution of Eq. (17), the other curves can be obtained by a "homothetic transforma-

tion", i.e. by a uniform enlargement or contraction about the origin.

(4) From Eq. (17) it is seen that ds/dr is constant along the radial line s/r = constant.

Thus all curves intersect the radial line at the same angle. In particular, they intersect

the line s = 0 at 45° and intersect the negative s axis at 90°. For 0 < rj < ds/dr

becomes identical to s/r at

r = s tan cj>* (20)

where

tan <t>* = (1 - 2ii)x/2, 0 < r, < b (21)

5 = CT-O-'

(a) o < y] < 1/2

S = cr- cr'

(t) > 1/2

Fig. 1. Stress paths for fast (dotted lines) and slow (solid lines) simple waves.
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Therefore, the radial line given by Eq. (20) is also a solution of Eq. (17) when 0 < 17 < 5

(see Fig. la).

To integrate Eq. (17) analytically, all we have to do is to use (s/t) as the new de-

pendent variable instead of s. The resulting equations can then be integrated. If we use

the polar coordinate system

s = r cos <t>, t = r sin <f>, (22)

the solution can be expressed as

M1-2' = 1(0? cos 4>y + sin2 <j>)u2 - T) cos <f>\" >2g .

vV (2J?)" |((77 cos 4>)2 + sin2 4>y/2 — (1 — n) cos

for ti 9^ I, and

r_ 2 fl  cos<t> \ (
r„ (4 — 3 cos2 4>)l/2 — cos2 4> CX^ (2 (4 — 3 cos3 4>)w2 — cos <t>)

for v = b ro is an integration constant. In Eq. (23a), the absolute values should be taken

in the numerator and the denominator before applying the exponential powers v and

(1 - „).
For 0 < v < J, the curves in the s — r plane can be divided into two groups. In

Fig. 1(a), the line OM is itself a stress path for slow simple waves and is given by Eq. (20).

The curve PQR is a typical stress path in the region above the line OM. Other stress

paths in this region can be obtained by a uniform enlargement or contraction of the

curve PQR. It can be shown that the curve PQR is nearest to the origin not at point P

but at point Q, where PQR intersects the line ON, even though the curve is everywhere

concave to the s-axis. In the region below OM the curve OL is a typical stress path

for slow simple waves. All curves in this region are tangent to the s-axis at the origin.

It is seen from Fig. 1(a) that at the origin the stress paths for the slow simple waves

(solid arrowheads) and the stress paths for the fast simple waves (dotted arrowheads)

are not orthogonal to each other.

For j7 > 5, the stress paths are all similar to the typical curve PT shown in Fig. 1(b).

The positive s-axis is itself a stress path for slow simple waves. Again, the stress paths

for the fast and slow simple waves are not orthogonal to each other at the origin. In fact,

there is no stress path passing through the origin other than the s-axis itself. It is inter-

esting to point out that, when 77 = 1, Eq. (23a) reduces to an equation for a parabola.

Hence the curves in Fig. 1(b) are parabolas when 17 = 1.

The value of 17 plays a significant role in the wave propagation. To illustrate this,

let us consider a tube, initially pre-stressed at the stress state (<7*, 0), which is subjected

to a constant longitudinal stress <r0 and the torsional stress r0 at the end x — 0 of the

tube. Suppose that <r0 > <x* and r0 is small (see Fig. 1). The resulting wave propagations

are shown in Figs. 2(a) and 2(b). The wave patterns are quite different depending on

whether 0<?j<§or»;>§.

4. The material constant 17. From Eqs. (16) and (18), r/ can be written as

v = (1/02) + (a*/2d3)(H'*/H*). (24)

The function II is related to the slope of the stress-strain curve for the simple tension

test. If a and e are respectively the tensile stress and the strain, and

g(a) = cla/dt (25)
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t

(«) O < I-1 < I / 2 ( k) n > 1/2

Fig. 2. Simple wave solutions.

is the slope which can be expressed as a function of the tensile stress, it is shown in [1]

that

-Hm~ i)' <26)
Substitution of Eq. (26) into Eq. (24) yields the result

(27)

~ i} = (28)

where g'(<r) = dig I da which is negative if the stress-strain curve for the simple tension

test is concave to the strain axis. Hence n as obtained from Eq. (28) is always positive.

Eq. (27) can be rewritten as

2 = d[log (E/g(a) — 1)]

" dtlog (a/ay)]
(29)

where <rr is the initial yield stress. From Eqs. (7b) and (26), g(<r*) = n = E/2(1 + v)

and

E/g(a*) -1 = 1+2,, (30)

where v is Poisson's ratio. Eqs. (29) and (30) suggest how one may determine the value

7j graphically if the relation between (E/g(a) — 1) and (<r/<rY) is drawn on a logarithmic

scale. This is depicted in Fig. 3.
5. The unloading of a plastic wave front. Let us consider the solution of Eq. (1)

subject to the following initial and boundary conditions:

w(x, 0) = w*, u(0, <) = a* + at, t(0, t) = bt, (31)

where w* has the elements (0, 0, a*, 0) and a and b are positive constants. Clearly the

tube is initially at rest and is pre-stressed at the stress state (a*, 0) such that cf = c, = c2 .
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lag ( e/g«r) - I)

log (t + 2i>,) ----- -

log (<r/crr )

Fig. 3. The material constant r;.

Therefore w(x, t) = w* for x > c2t, and the initial disturbance is propagated at the speed

c2 unless an unloading occurs first. Although w(x, t) = w* = constant along x = c2t

which is a characteristic, the solution in the region x < c2t is not necessarily a simple

wave solution. This is so because the system along the line x — c2t is not totally hyperbolic

and Lax's theorem [7, 8] does not apply here.

We will try to find the solution in the region x < c2t and in the neighborhood of

x = c2t. To this end, let

w(x, t) = w* + Vfi(x)(f — x/c2) + |w2(x)(t — x/c2)2 + • • • (32)

where w, and w2 are functions of x only. In particular, we have

<r(x, t) = a* + <Ti(x)(t — x/c2) + 0(t - x/c2f, ^

t(x, 0=0+ Tt(x)(t — x/c2) + 0(t — x/c2f,

and use of this expression for the matrix A of Eq. (2) yields

A = A* + A,(£ - x/c2) + 0(t - x/c2)2 (34)

where

P 0 0 0

0 p 0 0

0 0 1 /pel 0

0 0 0 1/pel

A,

0 0 0 0

0 0 0 0

0 0 2a*h*al/d2 H*iT*Tl

0 0 H*<T*Tl 0 J

If we substitute Eqs. (32) and (34) into (1), rearrange the equation in a power series

of (t — x/c2) and put the coefficients of each term equal to zero, we obtain:

(c2A* — B)Wi(:r) = 0 (35)

(c2 A* — B)w2(a;) = — c^AjW, + BwJ) (36)

where a prime stands for differentiation with respect to x. From Eq. (35) we obtain
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W, =

— <Ti(x)/pC2

— Ti(x)/pc2

ffl (x)

. r^x) _

With w, given by Eq. (37), the right-hand side of Eq. (36) can be written as

—<r[

(37)

—c2(AjWi + Bw{) = -c2
— T i

2 / /)2 . rr* * 2
2a*h*al/d2 + + c^'/pC,

H*a*alT1 + Tj'/pCz

(38)

Now w2 of Eq. (36) has a solutiofi only if the vector on the right hand side, namely

Eq. (38), is orthogonal to every 1 of the following equation [12]:

lr(c2A* - B) = 0. (39)

Since l7* has two independent solutions,

(—l/pc2, 0, 1,0), (0,-1/^,0,1), (40)

the orthogonality of the vector given by Eq. (38) to the vectors given by (40) furnishes

the following two differential equations for a^x) and ti(x):

<r'i = —0(2y<ri + Ti), = —fair!, (41a,b)

where rj is defined in Eq. (18) and

/3 = hPc2H*a* = |cA - 4) 4 (42)
v?2 Cq/ G

The initial conditions for Eqs. (41) are obtained from Eqs. (31) and (33):

<n(0) = a, t i (0) = b. (43)

Since both r\ and /3 are positive constants, we conclude from Eq. (41a) that <r1(x) is a

monotonically decreasing function of x. In view of the fact that <ri = a > 0 at x = 0,

<7i may vanish at certain x, say at x = £. Thus

a,(x) >0, 0 < x < £,

a:(x) <0, £ < X.

It should be noticed that if £ exists, an unloading will occur at x = £. This is so because

if we substitute Eq. (33) into (3), we obtain

k2(x, t) = (<7*/0)2 + 2(cr*/d2)(Ti{x)(t - x/c2) + 0(f - x/c2)\ (45)

Therefore dk/dt < 0 at the wave front x = c2t if ai(x) < 0.

Now Eqs. (41) can be integrated as follows. Elimination of between the two equa-

tions gives

(2, + D(t02 + J82rt - nri' = 0. (46)
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Let

T'i = Pi T" = dp/dx = (dp/dr^p. (47)

Eq. (46) is then reduced to a first-order differential equation which can be integrated.

The result is, after taking into consideration Eq. (43),

p = -^2(r1/6)<1+2',{([r1/6]2<1-2') - [1 - (1 - 2j])a'/b'])/(1 - 2„)|1/2 (48a)

for ri ^ 5 and

V = -PA | (a/by - 2 log (n/b)}1/2 (48b)

for t) = f. Since p = dri/dx, integration of Eqs. (48) yields

* = i- f  ^  (49a)
13b Jrl/b \1+2'{(X2<1-2" - [1 - (1 - 2v)a2/b2])/(l - 2-r])}1/2

for 17 | and

„ xW/b' ^ log X)"" (49b)L f
pb JTl

2(1 —21?)[ 1 _ (1 _ 2v)(,\/t\] = 62n-2,)[l - (1 - 2v)a2/b2\ (50a)

for 7) = 5. Eqs. (49) are the solution for ti(x).

The solution for a^x) can be obtained by several means. We will use the following

approach which is useful in locating the value £. From Eqs. (41a) and (41b),

dcfi/dti = (2?7tr2 + t2)/criTi .

Upon integration, taking into account the initial conditions Eq. (43), we obtain

2
Tl

for i) ^ 5 and

al/rl = a2/b2 - log (b/Tl)2 (50b)

for v = 2- With r 1 (x) given by Eqs. (49), Eqs. (50) furnish the solution for <tl(x).

From Eqs. (50) we notice that ri cannot become zero before <rx does. Otherwise the

left-hand sides of the equations would not be equal to the right-hand sides of the equa-

tions. Hence

0 < ti(x) < b for 0 < x < £.

Also from Eqs. (50) we notice that <ti = 0 when

KGlVfcf1-2" = 1 - (1 - 2r,)a2/b2 (51a)

for t) | and

[Ti(0/b]2 = exp (-a/b2) (51b)

for 17 = 5. Since ri(|)/6 < 1, Eqs. (51a) and (51b) have a solution for ti(£) except possibly

when 0 < j; < ^. When 0 < ?j < |, Eq. (51a) can be written as

[r1({)/&ri-,,) = 1 - (tan $*/tan tY (52)

where 4>* is defined in Eq. (21) and

tan 1p = b/a. (53)
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In view of the fact that tx(£)/6 < 1, Eq. (52) has a solution for ri(£) only when <f>* < \p.

We conclude therefore that an unloading occurs at x — £ for all cases except when

0 < v < I and 4>* > *p- When | exists, £ is determined by substituting n/b of Eqs. (51)

into Eqs. (49) with x in the latter replaced by £. A typical wave pattern when £ exists

is shown in Fig. 4, where N, E and P stand for neutral, elastic and plastic regions respec-

tively. The solution in the region next to x = c2t is clearly not a simple wave solution.

When 0 < tj < \ and <f>* = ip, <r(0, t) and t(0, t) are following the path OM (Fig. 1(a))

and the solution should be a simple wave solution. Indeed, when 0 < tj < 5 and <j>* =

(i.e. (1 — 2ri)1/2 = b/a), Eq. (49a) can be integrated to give

Ti/b = (1 + f3ax)~l (54a)

and Eq. (50a) yields

ai/a = Ti/b. (54b)

Another case when Eq. (49a) can be integrated is the case ?) = 0. Notice from Eq. (28)

that 7? = 0 implies g'(a*) = 0. In other words, 77 = 0 corresponds to the case when the

curvature of the stress-strain curve for a simple tension test vanishes at <x = <7*. An

example of this case is when the material is linearly work-hardening and g{u) — n for

a > gY • A detailed study of wave propagation of combined stress in linearly work-

hardening materials can be found in [13]. When 17 = 0, Eqs. (49a) and (51a) furnish

ri(x) and <T\(x) in the following forms:

ri = 0, a > b:

Tl = (a2 - b2)1/2 csch [cosh"1 (a/6) + (a2 - b2)1/2l3x], (55a)

crj = (a — b2)l/2 coth [cosh-1 (a/b) + (a — b2)1/2/3x]. (55b)

r] = 0, a = b:

t] = 0, a < b:

ti = o-j = 6/(1 + fibx). (56)

ri = (62 — a2)172 sec [sin-1 (a/6) — (62 — a)1/2px], (57a)

c 1 = (b2 - a2)172 tan [sin"1 (a/b) - (62 - o2),/2/S«], (57b)

0 < x < (62 — a2)1/2fc = sin"1 (a/6). (57c)

I x

Fig. 4. Unloading at a plastic wave front.
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Notice that when a < b, an unloading occurs at x = £ and £ is given by Eq. (57c). Notice

also that since

cosh""1 (a/b) = csclT1 (6/(a2 — 62)1/2) = coth"1 (a/(a2 — b2)l/2),

sin-1 (a/b) = sec-1 (b/(b2 — a2)I/2) =p tan-1 (a/(fr2 — a2)172),

the solutions given by Eqs. (55) and (57) satisfy the initial conditions (Eq. (43)).

6. Concluding remarks. In this paper unexpected phenomena in elastic-plastic

wave propagation are presented for the particular situation in which cf = c, = c2 occurs.

The problem of combined longitudinal and torsional waves in a thin-walled tube is used

as an example because this is the simplest problem in combined stress waves which

possesses most features of more complicated combined stress waves. It is expected that

phenomena similar to the ones presented here can be found in other types of combined

stress waves [3, 6] and other types of materials [5].
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