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On Wavelet Denoising and its be expressed in the form of
Applications to Time Delay Estimation
s(t) = a(t) sinfwot + 6(¢)] 1)
P. C. Ching, H. C. So, and S. Q. Wu
wherea(t) is the transmitting signal envelope, ahd, + ¢'(t)] is
the radian frequency modulation function. In most radar applications,
Abstract—In this correspondence, the application of dyadic wavelet a(t) is simply a rectangular pulse envelope function. However,
decomposition in the context of time delay estimation is investigated. the analysis developed here is not restricted to this particular case
We consider a model in which the source signal is deterministic and oy \e shall show that the GCC approach and other conventional
the received sensor outputs are corrupted by additive noises. Wavelet hods fail f I b f deli defici .
denoising is exploited to provide an effective solution for the problem. methods fail to perform we ecau_s? oI modeling : € 'C'enc'es_'
Denoising is first applied to preprocess the received signals from two Whereas the proposed wavelet denoising-based algorithm can give
spatially separated sensors with an attempt to remove the contamination, a viable and effective solution.
and the peak of their cross correlation function is then located from which The new method consists of two steps. Wavelet denoising is first

the time delay between the two signals can be derived. A novel wavelet . . . .
shrinkage/thresholding technique for denoising is introduced, and the applied to each received signal to recover the corresponding source

performance of the algorithm is analyzed rigorously. It is proved that the ~Waveform. The process essentially optimizes the mean-square error
proposed method achieves global convergence with a high probability. between the source signa{t) and its estimatei(t) restored from
Simulation results also corroborate that the technique is efficient and the noisy signal and subject to the condition that it is highly probable
performs significantly better than both the generalized cross correlator o+ 5(t) is at least as smooth agt). We then cross correlate the
(GCC) and the direct cross correlator (CC). o . S . .
two restored signals, and the delay estimate is found by locating the

Index Terms—benoising, time delay estimation, wavelet decomposition. peak of the correlation function. The method can be considered to be
a special type of GCC method where its prefilter requires poiori
information of the signal and noise spectra. It has the advantage that
) ) ) ) accurate TDOA estimation can be obtained for deterministic input
_Extraction of the time difference of arrival (TDOA) betweensjgnals, and it also has great potential to operate in environments
signals received at two spatially separated sensors has been W"Jﬁi@re the corrupting noises are correlated.
applied to sonar and radar to find the position and speed of a targefhe corespondence is organized as follows. Section Il briefly
transmitter [1]. A recent application is found in a global positioningntroduces the periodic wavelet transform (WT). Section IIl describes
system where the location of a radiating object can be determingghove| wavelet denoising approach, whereas Section IV presents the
using differential satellite path delay measurements [2]. proposed time delay estimation method and then verifies its global

There are many existing time delay estimation (TDE) algorithmgonyergence. Finally, Section V gives the simulation results, and
such as the generalized cross correlation (GCC) [3], [4] and paragynclusions are stated in Section VI.

eter estimation techniques [5], [6]. The transmitted sigr{a) and

additive noises at the two sensors are all taken to be jointly stationary,

mutually uncorrelated, and zero mean processes. In the GCC system, Il. WAVELET TRANSFORM

each received signal is fed through a prefilter before taking crossSuppose the signad(¢), as described by (1), is corrupted by

correlation. It has been proved that the CémnRao lower bound white noisece(t) with power ¢® and a sensor outputs the noisy

can be achieved if the prefilter is designed properly. This methaghta sequence(to), «(t1), ---, 2(t,—1) within the time interval

however, requires estimation of both the source and noise speclpa.l], i.e., z(tx) = s(tr) + ce(te), tx = k/n, n = 27F"

which often gives rise to a large delay variance, particularly for shaghd J + 1 is a predetermined positive integer that describes the

data lengths. Furthermore, the GCC assumessiftatis a Gaussian hardware capability. For notational convenience, let us write),

process, and thus, it is not appropriate for use in situations whefg:), ande(k) instead ofz(#x), s(t1), ande(t;), as wel asx =

the source signal is deterministic. Another approach tackles the TREO), «(1), ---, z(n—1))", s = (s(0), s(1), ---, s(n—1))", and

problem in a discrete-time domain and employs an FIR filter to model= (¢(0), ¢(1), ---, e(n — 1))*.

the TDOA whose estimated value is obtained by interpolating theit is well known that a periodic wavelet transform is a linear

filter coefficients. This method is capable of tracking nonstationagrthonormal transform; hence, there exists»an orthonormal matrix

delays by simply making the filter adaptive [6], [7]. W formed by some QMF coefficients, sas, c1, -, can—1 [9].
Wavelet analysis has recently been shown to be a useful matfi@is matrix transforms the sample vectorinto

matical tool for many practical applications [8]-[10]. The aim of this

correspondence is to develop a novel technique based on wavelet w=Wx 2

denoising to provide accurate TDOA measurement when the source

input is a deterministic signal, specifically for a radar signal that cavherex can be reconstructed by

. INTRODUCTION

. : . =W'w=W'w,+sW'w.. 3
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Ill. WAVELET DENOISING Otherwise, the noisy coefficients are shrunk by some soft thresholds.

One of the recent breakthroughs in wavelet theory and its apgiiS Well known that for any givem € (0. 1), the corresponding
cations owes to Donoho and Johnstone (DJ) [10], who demonstrale@Ptimized in the Neyman—Pearson sense. .
that wavelet denoising is a powerful tool for removing the noisy L€t @ € (0. 1) and\ = /2erfinu(a) [where erfnu(x) is the
component of a corrupted data sequence. In this section, we first fi¥erse function of ety) = 2/(y/7) [ exp(~t*)dt], instead of

scribe the fundamentals of DJ's denoising method and then introdtsing DJ’s thresholds, we define three different thresholds/shrinkages
a novel thresholding technique for denoising, which is proved to §§ follows.

efficacious. Threshold I
. A . .
A. DJ Soft and Hard Thresholding [10] TG k) = 4 k) exp <_ lw(j, k)] — /\)’ it lw(s, Bl 2 A
Define an estimator of ass = W' w,. The componenir, (j, k) 0, otherwise.
of W, is given by (8)
ey = Jwlii k), i 0< ) <o Threshold II:
el k)= {mso’, B ifjo<j < 41 ) '
wherej,, is a critical separating point, and: (j, k) can be calculated w,(j, k) = {0 herwi 9)
either by the so-called soft threshold, shown in (5) at the bottom of ’ otherwise.
the page, or the hard-threshold Threshold Ill:
gy Jw(, k), if Jw(y, k)| > 0y/2 log n, ] sgnw(y, k))(Jw(y, k)| = X), if jw(y, k)| > A
@ k)= otherwise ©  wm = i
’ ) 0, otherwise.
(10)

Donoho and Johnstone [10] proved that these two simple coef-

ficient selection rules actually give the best spatial adaptation, apflese three thresholds, although similar to DJ's soft and hard
the theoretical risk performance of this method can hardly be furth@fresholding rules, have some intrinsic differences. Whés small,

improved. Threshold | behaves like a hard threshold but is more flexible.
Specifically, when|w(j, k)| is very close to\, Threshold | will
B. A Novel Thresholding for Denoising allow w,(j, k) to take on an approximated valuewf(j, k) instead

Generally speaking, DJ’s soft threshold and hard threshold ha¥ Setting it to zero. Hence, Threshold | essentially adds some
similar characteristics. They suppress the wavelet coefficients of b&igsticity to the soft and hard thresholds while suppressing the Gibbs
the input source signal and additive noise in high scales simull€nomenon caused by alternating overshoot and undershoot of a
neously. If the source signal is smooth enough, this thresholdiﬁBeCiﬁC region. Thresholds Il and Il are the same as hard and soft
technique will perform reasonably well since the source signal wiliresholds, exceat priori information of noise distribution is used to
only contribute to a few wavelet coefficients, whereas the noig;efine the shrinkage instead of simply choosing a constant threshold
components tend to distribute evenly to each and every wavefet2 log n. The respective outcomes as a result of using any of
coefficient. However, most practical source signals are actually igese thresholds differ somewhat as well, but which particular one
that smooth at some spatial points. Radar and ultrasound sigril@uld be used is rather empirical and depends largely on individual
are typical examples. Hence, special attention is required for thgdePlication. It is noteworthy that the thresholding parameteran
wavelet coefficients associated with singularity points because tHe§ made scale dependent in order to further improve the denoising
carry important information about the transmitted signal. WaveforRgrformance, provided that knowledge ) is known in advance.
restoration might suffer severe distortion if these terms are ignord@. this correspondence, we only examine Threshold Il since the
Moreover, the critical value ofi, is difficult to select, which is theoretical analysis for Thresholds | and Il is very complicated. The
particularly true as its corresponding wavelet spectrum is usuaflfpw chart of the proposed denoising method can be summarized as
distributed in the middle scales. In our study, we apply the idea fHlows.

Neyman and Pearson [11] and propose a new thresholding technique
to resolve the problem. First of all, the following binary test is applied:

Ho: w(j, k) ~ N(0, o) versusHi: w(j, k) ~ N(ws(4, k), o). @

(7) Reduce noise power by smoothing the signalj
If P{w(y, k)|H1}/P{w(y, k)|Ho} > P{Ho}/P{H:}, H: is as- ‘
sured; otherwiseH, is taken. The motivation behind this test is T
that we want to keepu(j, k) whenever its compositiom, (j, k) {Remove DC component of the signal |
is found to be significant. Since the periodic wavelet transform is ‘

an orthonormal transformy (7, &) will be independently distributed ‘
as N (ws(j, k), o). Therefore, if w,(j, k) is sufficiently small,

Estimate average power of the signal and noiseJ

Wavelet transform of the pre-processed signal 1
Index the resultant wavelet coefficients, w ( j k) |

Choose confidence level o and compute threshoid A

w(j, k) will be approximately i.i.d. as\'(0, #). Now, we choose Apply Neyman-Pearson test to each wavelet coefficient
i i i i . — Threshold the wavelet coefficients |
the cqnfldence |ntervql ag—\, A Wlth cgnfldence levelae = |Obtain the noise froe wavelst coeficients, w,(j.&) |
P(lw(j, )| < ). If w(y, k) € [=A, A], it will be regarded as total ;
noise with a probability of1—«) rejectingH,, even though it is true. |Inverse wavelet transform to recover source signal |

By, k) = {sgr(w(j, EN(w(y, k)| — o2 log n), if |w(y, k)| > ov2]logn )
s\Js 0’

otherwise.
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IV. TIME DELAY ESTIMATION BY WAVELET DENOISING Using the definition of cross-correlation functigft;m) and £ (m)

Let s(t), as defined in (1), be a signal emanating from a remofé&" beTsimpIy expre§sed fﬁm) = (1/n)8],,82m and f(m) =
source that is received by two spatially separated sensors. TA&™) $ims2m, WNer€s ., 32, s1m, andss,, are the correspond-
received signals are usually corrupted by additive noises. Supp#¥@ data blocks of length — [m|. Then, we have

t 2 (t i i : .
z1(t) and z2(t) are the sensors outputs in which they can be Elf(m) — f(m)[?

expressed as T4 T
E”Sipms‘lm - S{mS%n ||2

x1(t) = s(t) + ni(t) (11) = N2
T'_,)(f) = /59(7" bl 'T) —|— no (f) (12) _ E”(éhn - S]‘ln)TéQWI + STm (éQm - Szm)||2
- n2
where n(t) and n2(t) are the corrupting white Gaussian noises, i s 9 i 5
3 € (0,1) is an attenuation constant, and the parametés the < 2E||81m = stmll”l[S2m tZHS‘"’” El[$om — s2m|l
TDOA that needs to be determined. It is obvious that if the cross- S o e '"'; . . )
correlation functionf(u) of s(t) and 8s(t — 7) is known, 7 can < 2E[[8: — s|"[7s| +i||s|| Ells2 = gs(7)l
be derived from the unique peak ¢f«). However, it is difficult 5 n
to obtain the exact cross-correlation function and to locate its peak < = (p1(n) + p2(n))Es (19)
because of contamination due to noise. Let us consider the discrete '
version of model (11) and (12), i.e., where E, = [|s(t)|*dt = 1/n||s||* denotes the energy of(?).
1 (k) = s(k) + ni (k), k=0,1,-,n—1 (13) Therefore, whenn or the observation interval tends to infinity,

the mean square errde|f(m) — f(m)|*> will become null, which
illustrates that thq estimat(fr(u) is consistent. The above inequality
For simplicity, we assume that, (k) andns (k) are i.i.d.A°(0, oy) also implies thatf(m) uniformly converges tof (m) with a high
and i.i.d. A'(0, 02), respectively. These assumptions enable matherobability. This convergence property is particularly helpful for peak
matical analysis to be derived rigorously, but in theory, they can Igstimation. In fact, it can be proved that if the discrete pedkof

xo(k) =Bs(k — 7) + na(k), k=0,1,.--,n—1. (14)

relaxed to accommodate colored noises as well. {f(m)} is close to the true peak of f(u), then the peakd of
WT Time Delay Estimation MethodThe time delay estimation {f(m)} will also be close tor with a high probability. Therefore,
process is described step by step as follows. the peak of an interpolation function ¢f(m) will be much more

closer to the true peak.
e Use the WT Denoising Method to process each

of the data blockg = (k)} and {z=2(k)}. V. SIMULATION RESULTS

Putsy = (51(0), $:1(1), ---, §1(n — 1))T and Computer simulations had been carried out to evaluate the per-

. . . . . formance of the wavelet denoising-based cross correlation approach
= (82(0), 82(1), -- -, 32(n — 1))T. That means : -

S_z (B2 _)’ %2(1) 9_ (_n ) o ! with the proposed new threshold (WD-CC-NT) for time delay es-

is the estimate of the original soursewhile sz is the timation. Comparisons were made with the direct cross-correlator

estimate of the delayed and attenuated versios, of (CC), generalized cross-correlator with maximum likelihood prefilters

(GCC-ML), and SCOT prefilters (GCC-SCOT). Cross correlation

denoted byjs(7). with wavelet denoising using DJ's soft threshold (WD-CC-DJ) was

e Construct the estimated cross-correlation function also examined in order to contrast the two thresholding rules. The
source signal was given by (1) witlh, = 1607 and 6(¢) = 0.

f(u) of f(u) by its estimated samplin values,
f(u) of f(u) by piing The envelopeu(t) had a value of 10 for € [0,0.2] and O for

n—m-—1

; 1 c (INE (T t € (0.2, 1]. The actual delay was set ©292968 75 and 3 = 1,
Fm) = n ; S1(k)3a (k +m), whereas the sampling interval was fixed at'2 The corrupting
noise sequences; (k) and n»(k) were white Gaussian processes
m=1-n2-n--,01--,n-1L produced by a random number generator. The average powék pf
e Find the peak: of f(u)_ was 10, and different signal-to-noise ratios (SNR’s) were obtained

by proper scaling of the noise sequences. Prior to applying wavelet
transform, the received signals were smoothed by taking averages of

From [10] and [12], we can write their adjacent samples. By so doing, the noise power was reduced,

E|81 —s||> <pr(n) (15)  but the noise became nonwhite. For simplicity, we still applied
and Threshold Il in the wavelet denoising procedure, although it could be
B8z — Bs(r)|[2 < pa(n) (16) modified for correlated noise [15]. Daubechies h2 wavelet (its four fil-
: - ter coefficients are 0.4829629131445341, 0.836516 3037378077,
where 0.224 143868042013 4+0.129 409522 551 260 3) was used while
the threshold\ was calculated with the confidence level= 0.95.
pi(n) =(2log(n)+1)|o; + Z min{o}, wl(j, i)}} (17) Al results provided were averages of 200 independent tests.
Ji Fig. 1 compares the mean square delay errors versus SNR of the
and five methods. As expected, the error of all these methods decreased
) e e oo as SNR increased. Although it has been proved [10] that soft
p2(n) = (2 log(n) + 1) |73 + Z min{oy, Frwi(j, i)} |. (18) thresholding has an optimum risk performance, the delay estimates
Jt

obtained using this threshold were less accurate than the other
With more restrictive conditions, say(t) and the wavelet function four methods. This is probably because of the constant threshold
are both very smooth, it can be shown [12] that the error bound car/2 log(n), which, in most cases, is too large to retain all pertinent
be further reduced, viza, (n) = O(log?(n)) = pa2(n). signal information. Another reason might be due to the fact that
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Fig. 1. Mean square delay error versus SNR.
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DJ's analysis is actually based on worst-case measurement. It can
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phenomenon will disappear if we use a smaller threshold. Therefore,
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It is perhaps worthy of note that should priori information
of the source signal be available, it is possible to derive a scale-
dependent threshold that could provide better denoising performance.
Preliminary results have confirmed this observation, and further
details will be reported elsewhere.

VI.

This correspondence considers the time delay estimation problem
under a noisy environment. The source signal is assumed to be
deterministic rather than stationary Gaussian process. A new method
for time delay estimation that makes use of wavelet denoising is
proposed. The new method is verified to be globally convergent with
a high probability and is computationally efficient. Simulation results
show its superiority to other conventional methods, including the
commonly used direct cross correlation method.

CONCLUSIONS
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