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On Wavelet Denoising and its
Applications to Time Delay Estimation

P. C. Ching, H. C. So, and S. Q. Wu

Abstract—In this correspondence, the application of dyadic wavelet
decomposition in the context of time delay estimation is investigated.
We consider a model in which the source signal is deterministic and
the received sensor outputs are corrupted by additive noises. Wavelet
denoising is exploited to provide an effective solution for the problem.
Denoising is first applied to preprocess the received signals from two
spatially separated sensors with an attempt to remove the contamination,
and the peak of their cross correlation function is then located from which
the time delay between the two signals can be derived. A novel wavelet
shrinkage/thresholding technique for denoising is introduced, and the
performance of the algorithm is analyzed rigorously. It is proved that the
proposed method achieves global convergence with a high probability.
Simulation results also corroborate that the technique is efficient and
performs significantly better than both the generalized cross correlator
(GCC) and the direct cross correlator (CC).

Index Terms—Denoising, time delay estimation, wavelet decomposition.

I. INTRODUCTION

Extraction of the time difference of arrival (TDOA) between
signals received at two spatially separated sensors has been widely
applied to sonar and radar to find the position and speed of a target
transmitter [1]. A recent application is found in a global positioning
system where the location of a radiating object can be determined
using differential satellite path delay measurements [2].

There are many existing time delay estimation (TDE) algorithms,
such as the generalized cross correlation (GCC) [3], [4] and param-
eter estimation techniques [5], [6]. The transmitted signals(t) and
additive noises at the two sensors are all taken to be jointly stationary,
mutually uncorrelated, and zero mean processes. In the GCC system,
each received signal is fed through a prefilter before taking cross
correlation. It has been proved that the Cramér–Rao lower bound
can be achieved if the prefilter is designed properly. This method,
however, requires estimation of both the source and noise spectra,
which often gives rise to a large delay variance, particularly for short
data lengths. Furthermore, the GCC assumes thats(t) is a Gaussian
process, and thus, it is not appropriate for use in situations where
the source signal is deterministic. Another approach tackles the TDE
problem in a discrete-time domain and employs an FIR filter to model
the TDOA whose estimated value is obtained by interpolating the
filter coefficients. This method is capable of tracking nonstationary
delays by simply making the filter adaptive [6], [7].

Wavelet analysis has recently been shown to be a useful mathe-
matical tool for many practical applications [8]–[10]. The aim of this
correspondence is to develop a novel technique based on wavelet
denoising to provide accurate TDOA measurement when the source
input is a deterministic signal, specifically for a radar signal that can
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be expressed in the form of

s(t) = a(t) sin[wot+ �(t)] (1)

wherea(t) is the transmitting signal envelope, and[wo + �0(t)] is
the radian frequency modulation function. In most radar applications,
a(t) is simply a rectangular pulse envelope function. However,
the analysis developed here is not restricted to this particular case
only. We shall show that the GCC approach and other conventional
methods fail to perform well because of modeling deficiencies,
whereas the proposed wavelet denoising-based algorithm can give
a viable and effective solution.

The new method consists of two steps. Wavelet denoising is first
applied to each received signal to recover the corresponding source
waveform. The process essentially optimizes the mean-square error
between the source signals(t) and its estimatês(t) restored from
the noisy signal and subject to the condition that it is highly probable
that ŝ(t) is at least as smooth ass(t). We then cross correlate the
two restored signals, and the delay estimate is found by locating the
peak of the correlation function. The method can be considered to be
a special type of GCC method where its prefilter requires noa priori
information of the signal and noise spectra. It has the advantage that
accurate TDOA estimation can be obtained for deterministic input
signals, and it also has great potential to operate in environments
where the corrupting noises are correlated.

The corespondence is organized as follows. Section II briefly
introduces the periodic wavelet transform (WT). Section III describes
a novel wavelet denoising approach, whereas Section IV presents the
proposed time delay estimation method and then verifies its global
convergence. Finally, Section V gives the simulation results, and
conclusions are stated in Section VI.

II. WAVELET TRANSFORM

Suppose the signals(t), as described by (1), is corrupted by
white noise�e(t) with power �2 and a sensor outputs the noisy
data sequencex(t0); x(t1); � � � ; x(tn�1) within the time interval
[0; 1], i.e., x(tk) = s(tk) + �e(tk), tk = k=n, n = 2J+1,
and J + 1 is a predetermined positive integer that describes the
hardware capability. For notational convenience, let us writex(k),
s(k), and e(k) instead ofx(tk), s(tk), and e(tk), as wel asx =
(x(0); x(1); � � � ; x(n�1))T ; s = (s(0); s(1); � � � ; s(n�1))T , and
e = (e(0); e(1); � � � ; e(n � 1))T .

It is well known that a periodic wavelet transform is a linear
orthonormal transform; hence, there exists an�n orthonormal matrix
W formed by some QMF coefficients, say,c0; c1; � � � ; c2N�1 [9].
This matrix transforms the sample vectorx into

w =Wx (2)

wherex can be reconstructed by

x =W
T
w =W

T
ws + �WT

we: (3)

The component ofw is usually indexed dyadically, i.e.,w =
(w(j; k); j = �1; 0; 1; � � � ; J; k = 0; 1; � � � ; 2j � 1)T ; ws and
we are the wavelet coefficient vectors of the digital source signals

and the white noisee, respectively. SinceW has a very special struc-
ture, the above transformation can be implemented by a pyramidal
scheme with considerably less computation.
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III. W AVELET DENOISING

One of the recent breakthroughs in wavelet theory and its appli-
cations owes to Donoho and Johnstone (DJ) [10], who demonstrated
that wavelet denoising is a powerful tool for removing the noisy
component of a corrupted data sequence. In this section, we first de-
scribe the fundamentals of DJ’s denoising method and then introduce
a novel thresholding technique for denoising, which is proved to be
efficacious.

A. DJ Soft and Hard Thresholding [10]

Define an estimator ofs ass =WT
ws. The componentws(j; k)

of ws is given by

ws(j; k) =
w(j; k); if 0 � j � j0
ŵs(j; k); if j0 < j � J + 1

(4)

wherej0 is a critical separating point, and̂ws(j; k) can be calculated
either by the so-called soft threshold, shown in (5) at the bottom of
the page, or the hard-threshold

ŵs(j; k) =
w(j; k); if jw(j; k)j � �

p
2 log n,

0; otherwise.
(6)

Donoho and Johnstone [10] proved that these two simple coef-
ficient selection rules actually give the best spatial adaptation, and
the theoretical risk performance of this method can hardly be further
improved.

B. A Novel Thresholding for Denoising

Generally speaking, DJ’s soft threshold and hard threshold have
similar characteristics. They suppress the wavelet coefficients of both
the input source signal and additive noise in high scales simulta-
neously. If the source signal is smooth enough, this thresholding
technique will perform reasonably well since the source signal will
only contribute to a few wavelet coefficients, whereas the noisy
components tend to distribute evenly to each and every wavelet
coefficient. However, most practical source signals are actually not
that smooth at some spatial points. Radar and ultrasound signals
are typical examples. Hence, special attention is required for those
wavelet coefficients associated with singularity points because they
carry important information about the transmitted signal. Waveform
restoration might suffer severe distortion if these terms are ignored.
Moreover, the critical value ofj0 is difficult to select, which is
particularly true as its corresponding wavelet spectrum is usually
distributed in the middle scales. In our study, we apply the idea of
Neyman and Pearson [11] and propose a new thresholding technique
to resolve the problem. First of all, the following binary test is applied:

H0: w(j; k) � N (0; �) versusH1: w(j; k) � N (ws(j; k); �):
(7)

If Pfw(j; k)jH1g=Pfw(j; k)jH0g > PfH0g=PfH1g; H1 is as-
sured; otherwise,H0 is taken. The motivation behind this test is
that we want to keepw(j; k) whenever its compositionws(j; k)
is found to be significant. Since the periodic wavelet transform is
an orthonormal transform,w(j; k) will be independently distributed
as N (ws(j; k); �). Therefore, if ws(j; k) is sufficiently small,
w(j; k) will be approximately i.i.d. asN (0; �). Now, we choose
the confidence interval as[��; �] with confidence level� =
P(jw(j; k)j � �). If w(j; k) 2 [��; �], it will be regarded as total
noise with a probability of(1��) rejectingH0, even though it is true.

Otherwise, the noisy coefficients are shrunk by some soft thresholds.
It is well known that for any given� 2 (0; 1), the corresponding�
is optimized in the Neyman–Pearson sense.

Let � 2 (0; 1) and� =
p
2�erfinv(�) [where erfinv(�) is the

inverse function of erf(y) = 2=(
p
�)

y

0
exp(�t2)dt], instead of

using DJ’s thresholds, we define three different thresholds/shrinkages
as follows.

Threshold I:

ws(j; k) =
w(j; k) exp � �

jw(j; k)j � �
; if jw(j; k)j � �

0; otherwise.
(8)

Threshold II:

ws(j; k) =
w(j; k); if jw(j; k)j � �

0; otherwise.
(9)

Threshold III:

ws(j; k) =
sgn(w(j; k))(jw(j; k)j � �); if jw(j; k)j � �

0; otherwise.
(10)

These three thresholds, although similar to DJ’s soft and hard
thresholding rules, have some intrinsic differences. When� is small,
Threshold I behaves like a hard threshold but is more flexible.
Specifically, whenjw(j; k)j is very close to�, Threshold I will
allow ws(j; k) to take on an approximated value ofws(j; k) instead
of setting it to zero. Hence, Threshold I essentially adds some
elasticity to the soft and hard thresholds while suppressing the Gibbs
phenomenon caused by alternating overshoot and undershoot of a
specific region. Thresholds II and III are the same as hard and soft
thresholds, excepta priori information of noise distribution is used to
define the shrinkage instead of simply choosing a constant threshold
�
p
2 log n. The respective outcomes as a result of using any of

these thresholds differ somewhat as well, but which particular one
should be used is rather empirical and depends largely on individual
application. It is noteworthy that the thresholding parameter� can
be made scale dependent in order to further improve the denoising
performance, provided that knowledge ofs(k) is known in advance.
In this correspondence, we only examine Threshold II since the
theoretical analysis for Thresholds I and III is very complicated. The
flow chart of the proposed denoising method can be summarized as
follows.

ŵs(j; k) =
sgn(w(j; k))(jw(j; k)j � �

p
2 log n); if jw(j; k)j � �

p
2 log n

0; otherwise.
(5)
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IV. TIME DELAY ESTIMATION BY WAVELET DENOISING

Let s(t), as defined in (1), be a signal emanating from a remote
source that is received by two spatially separated sensors. The
received signals are usually corrupted by additive noises. Suppose
x1(t) and x2(t) are the sensors outputs in which they can be
expressed as

x1(t) = s(t) + n1(t) (11)

x2(t) =�s(t� �) + n2(t) (12)

where n1(t) and n2(t) are the corrupting white Gaussian noises,
� 2 (0; 1) is an attenuation constant, and the parameter� is the
TDOA that needs to be determined. It is obvious that if the cross-
correlation functionf(u) of s(t) and �s(t � �) is known, � can
be derived from the unique peak off(u). However, it is difficult
to obtain the exact cross-correlation function and to locate its peak
because of contamination due to noise. Let us consider the discrete
version of model (11) and (12), i.e.,

x1(k) = s(k) + n1(k); k = 0; 1; � � � ; n� 1 (13)

x2(k) =�s(k � �) + n2(k); k = 0; 1; � � � ; n� 1: (14)

For simplicity, we assume thatn1(k) andn2(k) are i.i.d.N (0; �1)
and i.i.d.N (0; �2), respectively. These assumptions enable mathe-
matical analysis to be derived rigorously, but in theory, they can be
relaxed to accommodate colored noises as well.

WT Time Delay Estimation Method:The time delay estimation
process is described step by step as follows.

� Use the WT Denoising Method to process each

of the data blocksfx1(k)g andfx2(k)g:

Put ŝ1 = (ŝ1(0); ŝ1(1); � � � ; ŝ1(n� 1))T and

ŝ2 = (ŝ2(0); ŝ2(1); � � � ; ŝ2(n� 1))T : That meanŝs1

is the estimate of the original sources while ŝ2 is the

estimate of the delayed and attenuated version ofs;

denoted by�s(� ):

� Construct the estimated cross-correlation function

f̂(u) of f(u) by its estimated sampling values,

f̂(m) =
1

n

n�m�1

k=0

ŝ1(k)ŝ2(k +m);

m = 1� n; 2� n; � � � ; 0; 1; � � � ; n� 1:

� Find the peak̂� of f̂(u):

From [10] and [12], we can write

Ejjŝ1 � sjj2 � �1(n) (15)

and

Ejjŝ2 � �s(� )jj2 � �2(n) (16)

where

�1(n) = (2 log(n) + 1) �21 +
ji

minf�21 ; w
2

s(j; i)g (17)

and

�2(n) = (2 log(n) + 1) �22 +
ji

minf�22 ; �
2w2

s(j; i)g : (18)

With more restrictive conditions, say,s(t) and the wavelet function
are both very smooth, it can be shown [12] that the error bound can
be further reduced, viz.�1(n) = O( log2(n)) = �2(n).

Using the definition of cross-correlation function,f̂(m) andf(m)

can be simply expressed aŝf(m) = (1=n)ŝT1mŝ2m and f(m) =
(1=n)sT1ms2m, whereŝ1m; ŝ2m; s1m, ands2m are the correspond-
ing data blocks of lengthn � jmj. Then, we have

Ejf̂(m)� f(m)j2

=
EkŝT1mŝ2m � s

T
1ms2mjj

2

n2

=
Ek(ŝ1m � s1m)T ŝ2m + s

T
1m(ŝ2m � s2m)k2

n2

�
2Ekŝ1m � s1mk

2kŝ2mk
2 + 2ks1mk

2Ekŝ2m � s2mk
2

n2

�
2Ekŝ1 � sk2k�sk2 + 2ksk2Ekŝ2 � �s(� )k2

n2

�
2

n
(�1(n) + �2(n))Es (19)

whereEs = js(t)j2 dt � 1=njjsjj2 denotes the energy ofs(t).
Therefore, whenn or the observation interval tends to infinity,
the mean square errorEjf̂(m) � f(m)j2 will become null, which
illustrates that the estimator̂f(u) is consistent. The above inequality
also implies thatf̂(m) uniformly converges tof(m) with a high
probability. This convergence property is particularly helpful for peak
estimation. In fact, it can be proved that if the discrete peakm� of
ff(m)g is close to the true peak� of f(u), then the peakm̂ of
ff̂(m)g will also be close to� with a high probability. Therefore,
the peak of an interpolation function of̂f(m) will be much more
closer to the true peak� .

V. SIMULATION RESULTS

Computer simulations had been carried out to evaluate the per-
formance of the wavelet denoising-based cross correlation approach
with the proposed new threshold (WD-CC-NT) for time delay es-
timation. Comparisons were made with the direct cross-correlator
(CC), generalized cross-correlator with maximum likelihood prefilters
(GCC-ML), and SCOT prefilters (GCC-SCOT). Cross correlation
with wavelet denoising using DJ’s soft threshold (WD-CC-DJ) was
also examined in order to contrast the two thresholding rules. The
source signal was given by (1) withwo = 160� and �(t) = 0.
The envelopea(t) had a value of 10 fort 2 [0; 0:2] and 0 for
t 2 (0:2; 1]. The actual delay was set to0:292 968 75 and� = 1,
whereas the sampling interval was fixed at 2�11. The corrupting
noise sequencesn1(k) and n2(k) were white Gaussian processes
produced by a random number generator. The average power ofs(k)
was 10, and different signal-to-noise ratios (SNR’s) were obtained
by proper scaling of the noise sequences. Prior to applying wavelet
transform, the received signals were smoothed by taking averages of
their adjacent samples. By so doing, the noise power was reduced,
but the noise became nonwhite. For simplicity, we still applied
Threshold II in the wavelet denoising procedure, although it could be
modified for correlated noise [15]. Daubechies h2 wavelet (its four fil-
ter coefficients are 0.482 962 913 144 534 1, 0.836 516 303 737 807 7,
0.224 143 868 042 013 4,�0.129 409 522 551 260 3) was used while
the threshold� was calculated with the confidence level� = 0.95.
All results provided were averages of 200 independent tests.

Fig. 1 compares the mean square delay errors versus SNR of the
five methods. As expected, the error of all these methods decreased
as SNR increased. Although it has been proved [10] that soft
thresholding has an optimum risk performance, the delay estimates
obtained using this threshold were less accurate than the other
four methods. This is probably because of the constant threshold
� 2 log(n), which, in most cases, is too large to retain all pertinent
signal information. Another reason might be due to the fact that



2882 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

Fig. 1. Mean square delay error versus SNR.

DJ’s analysis is actually based on worst-case measurement. It can
be seen that the performance of the two generalized cross correlators
was worse than that of the direct cross-correlation method. This is
because larger variances had arisen when prefilter coefficients were
computed using the spectral estimates of the received signals. This
finding agrees with previous studies in [13] and [14]. On the other
hand, the WD-CC-NT method has attained the best performance
for all SNR conditions. Actually, for a wide range of values of
�; � 2 (0:7; 0:997), WD-CC-NT gave very similar results. This
means that the choice of the confidence level is not that critical,
and nearly minimum delay estimation error can be acquired if�

is selected as described previously. When SNR is less than�

20 dB, the performance of WD-CC-NT seems to deteriorate. It is
because in this case, the threshold, which is chosen according to
(9), becomes fairly large. Hence, thresholding of wavelet coefficients
essentially removes a considerable amount of corrupting noises, but
at the same time, it also suppresses the source signal. However, this
phenomenon will disappear if we use a smaller threshold. Therefore,
there is a great potential in exploiting the denoising method for many
applications if we can classify the input signal and optimize the
threshold accordingly.

It is perhaps worthy of note that shoulda priori information
of the source signal be available, it is possible to derive a scale-
dependent threshold that could provide better denoising performance.
Preliminary results have confirmed this observation, and further
details will be reported elsewhere.

VI. CONCLUSIONS

This correspondence considers the time delay estimation problem
under a noisy environment. The source signal is assumed to be
deterministic rather than stationary Gaussian process. A new method
for time delay estimation that makes use of wavelet denoising is
proposed. The new method is verified to be globally convergent with
a high probability and is computationally efficient. Simulation results
show its superiority to other conventional methods, including the
commonly used direct cross correlation method.
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