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ON WAVEWISE ENTROPY INEQUALITIES FOR

HIGH-RESOLUTION SCHEMES. I: THE SEMIDISCRETE CASE

HUANAN YANG

Abstract. We develop a new approach, the method of wavewise entropy in-
equalities for the numerical analysis of hyperbolic conservation laws. The
method is based on a new extremum tracking theory and Vol′pert’s theory
of BV solutions. The method yields a sharp convergence criterion which is
used to prove the convergence of generalized MUSCL schemes and a class of
schemes using flux limiters previously discussed in 1984 by Sweby.

1. Introduction

In this paper, a new version of [29], we consider the entropy consistency of TVD
and TVB high-resolution schemes for Cauchy problems of scalar conservation laws
of the one space variable: {

wt + f(w)x = 0,
w(x, 0) = w0(x).

(1.1)

We assume that f ∈ C2, and that w0 ∈ BV .
Let us partition the real line for the space variable into cells of equal size. The

jth cell is centered at xj = jh+c, where j = 0,±1,±2, . . . , c is a constant, and h is
the space stepsize. For an arbitrary function vj defined on the set of the grid points
of the mesh, we use ∆+ and ∆− to denote the forward and the backward difference
operators, respectively: ∆±vj = ±(vj±1−vj). The corresponding divided difference
operators are denoted by D± = 1

h∆±. Let uj(t) be the numerical approximation
to the exact solution w(xj , t) or its cell average on the jth cell w̄(xj , t), t ≤ ∞. A
semidiscrete conservative scheme has the form

d

dt
uj(t) = −D+gj− 1

2
,(1.2)

where

gj+ 1
2

= g(uj−p+1, uj−p+2, . . . , uj, . . . , uj+p, h).(1.3)

Here, g is Lipschitz continuous with respect to its first 2p arguments and is consis-
tent with the conservation law in the sense that

g(u, u, . . . , u, h) ≡ f(u).(1.4)
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The collection of points {xj−p, xj−p+1, . . . , xj+p} is said to be the stencil of the
scheme at the point (xj , t), and the integer p the size of the stencil of the scheme.
The scheme is said to be self-similar if g is independent of h.

We often extend the domain of a numerical solution {uj(t) : j = 0,±1,±2, . . .}
to the entire upper half plane R×R+ by setting u(x, t) = uj(t) for xj−1/2 < x <
xj+1/2.

Difficulties in regard to two important issues, nonlinear stability and entropy
conditions, have hampered the advance in the analysis of high-order schemes. One
can ease these difficulties with some stepsize-dependent limiters. For example, the
works of Coquel and LeFloch [5], Johnson, Szepessy and Hansbo [12], Cockburn,
Coquel and LeFloch [3], Cockburn and Gremaud [4], and Chen and Liu [2] all use
stepsize-dependent limiters. These results are usually more general (multispace
dimensions, nonconvex fluxes, systems, etc.). However, since these limiters smear
discontinuities, especially the contact discontinuities (see [27] and [28]), one rarely
uses them in computations.

Throughout this work, we only consider TVB self-similar schemes, and we abide
by the following concept of convergence: A TVB scheme (1.2)-(1.4) for the Cauchy
problem (1.1) converges if for each initial function w0 in BV, and for each sequence
of initial data {ukj (0), j = 0,±1,±2, · · · }∞k=1 such that they are uniformly in BV and

converge in L1
loc(R) to w0, and such that the stepsizes hk → 0 as k →∞, then the

corresponding sequence of numerical solutions {ukj (t), j = 0,±1,±2, . . .}∞k=1 of the

scheme converges in L1
loc(R×R+) to the unique entropy solution w of the problem

(1.1). By the Lax-Wendroff Theorem, entropy consistency implies convergence.
The dominant approach in the analysis of entropy consistency has been the

method of cell entropy inequalities (CEI). In the works [10, 14, 6, 17, 21], CEI was
successfully used to prove the convergence of large classes of first-order schemes
such as monotone schemes and E-schemes. Through the pioneering work [18] of
Osher, in the last decade, CEI was further developed and applied to prove the
convergence of a variety of high-resolution schemes for convex conservation laws.
See also [19, 20, 16] and the references therein.

The advantages of CEI are that the method mimics the elegant proof of the Lax-
Wendroff Theorem, and that the method can be extended, at least in principle, to
multi-dimensional cases and systems.

A disadvantage is that the method demands too much. For example, in the
nonconvex case, the current uniqueness theory (see Vol′pert [26] and Kružkov [13])
requires the entropy inequalities for an entire class of entropy functions. The cor-
responding cell entropy inequalities exclude all but E-schemes which are only first-
order accurate (see [17] and [20]). Even in the convex case, this may necessitate
unnatural restrictions (see [18]).

The recent interesting works of Bouchut, Bourdarias and Perthame [1], and
Jiang and Shu [23] show that some self-similar schemes other than those in the
form of (1.2)-(1.4) are more accommodating of cell entropy inequalities. However,
the current paper will stick to the self-similar schemes in the form of (1.2)-(1.4),
which contain most classical high-resolution schemes.

In this paper, we propose a new approach, the wavewise entropy inequalities
(WEI), for a large class of TVD schemes. Roughly speaking, the WEI convergence
criteria state that a scheme converges if it does not produce expansion shocks. As
applications of the new approach, we solve two open problems concerning high-
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ON WAVEWISE ENTROPY INEQUALITIES 47

resolution schemes: We prove the convergence of generalized MUSCL schemes and
the high-resolution schemes using Osher-Chakravarthy flux limiters.

In addition to providing sharp convergence criteria, the WEI rigorously describes
and justifies a widely observed phenomenon: If a nonlinearly stable (say TVD)
conservative scheme fails to converge, it produces expansion shocks. Moreover,
the WEI provides a theoretical foundation for the extremely important practice of
using Riemann (shock tube) problems as test problems for the numerical analysis
of conservation laws.

The drawbacks of the WEI method are: 1. The method relies on TVD assump-
tions which rule out the possibility of applying its current version to some interest-
ing self-similar uniformly high-order schemes. 2. Applications of the WEI method
to high-resolution schemes for multi-dimensional conservation laws are even more
remote. In this respect, according to the well-known Goodman-LeVeque Barrier
Theorem (see [9]), two-dimensional TVD schemes are at most first-order accurate.
To the author’s knowledge, no self-similar scheme of higher than first-order accuracy
has been proven to be TVB.

The paper is organized as follows. In §2 we review some properties of the dis-
continuities of BV weak solutions of conservation laws. In §3 we give four WEI
convergence criteria and prove the first two and the last one of them. In §4 we
present the applications. The proof of the third WEI criterion can be found in the
Supplement to the paper, which contains the sections §6 to §8 and an appendix.

We point out here that when the first version of the IMA preprint [29] was com-
pleted by the end of 1989, Professor P. L. Lions kindly informed the author that
in an independent work [private communication], with different techniques, he and
P. E. Souganidis proved some convergence results for MUSCL schemes in the frame-
work of Hamilton–Jacobi equations. It is understood that in one space dimension,
entropy solutions of a hyperbolic conservation law correspond to viscosity solutions
of the Hamilton–Jacobi equation with the same flux function. From their note [15],
it is clear that, besides totally different techniques, the results of the two works
for MUSCL schemes are also different: Our result is valid for any convex flux, for
E-scheme building blocks, and for time-dependent problems; while the results in
[15] are valid for strictly convex fluxes, for monotone-scheme building blocks, and
for steady-state problems.

2. Review of discontinuities of weak solutions

Unlike the method of CEI, the WEI method is a discrete version of the following
simple observation concerning a weak solution w. Let U(w) be an arbitrary convex
entropy function, and let F (w) be its entropy flux: F ′(w) = U ′(w)f ′(w). If w is
smooth in an area Ω, then Ut + Fx = 0 holds there. Hence there is no need to
worry about the entropy conditions at the area of smoothness of w as long as it
is a solution. In other words, the entropy consistency of a weak solution is solely
determined by the entropy conditions of its discontinuities. In order to find the
discrete version of this observation, we devote this section to a brief review of some
of the key properties of these discontinuities. The main source for our review comes
from Vol′pert’s celebrated BV solution theory [26].

For completeness, we consider conservation laws wt+f(w)x = 0 in several spatial
dimensions. Hence, we assume that x ∈ Rn, f is a vector of n components: f =
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(f1, f2, . . . , fn)T , and f(w)x =
∑

∂
∂xi

fi(w). We use (a•b) to denote the dot product
of two vectors a and b. Let w− and w+ be any two distinct numbers in the domain
of f . If a is a unit vector that satisfies

(w+ − w−)at + ((f(w+)− f(w−)) • ax) = 0,(2.1)

where at and ax are the t-component and x-component of a, respectively, then the
function

W (x, t) =

{
w+ if ((x, t) • a) > 0,
w− if ((x, t) • a) < 0

(2.2)

is a traveling discontinuity which is a weak solution of the conservation law, and a
is normal to the discontinuity. Define

F (u, v) = [f(u)− f(v)]sgn(u− v).(2.3)

If W (x, t) satisfies

|w+ − c|at + (F (w+, c) • ax) ≤ |w− − c|at + (F (w−, c) • ax)(2.4)

for all real constants c, then W is an admissible traveling discontinuity. Otherwise it
is a traveling expansion shock. Let f [w;w−, w+] be the linear function interpolating
(f(w) • ax) at w = w− and w = w+. It is easy to see that the condition (2.4) for
all c is equivalent to the following inequality:

sign(w+ − w−)(f [w;w−, w+]− (f(w) • ax)) ≤ 0(2.5)

for all w between w− and w+. In the case of one spatial dimension, (2.2), (2.1) and
(2.5) are reduced to

W (x, t) =

{
w− if x < st,
w+ if x > st,

(2.6)

s(w+ − w−) = f(w+)− f(w−),(2.7)

and

sign(w+ − w−)(f [w;w−, w+]− f(w)) ≤ 0(2.8)

respectively. In the last inequality, we have scaled a so that ax = 1.
To see the properties of discontinuities of BV weak solutions of conservation

laws, let us review some aspects of the BV solution theory of Vol′pert [26]. For
any set E ⊂ Rn, µ(E) is its Lebesgue measure. With Br(x0) we denote the ball
centered at x0 with the radius r. Let a be a unit vector in Rn, and Ra(x0) be the
half space ((x− x0) • a) > 0 in Rn. A point of density (resp. rarefaction) for the
set E is a point x for which

lim
r→0

µ(E ∩Br(x))/µ(Br(x)) = 1 (resp. 0).

If w(x) is a function defined on a set E ⊂ Rn and x0 is not a point of rarefaction
for E, then LEw(x0) will denote the approximate limit of the function w(x) at the
point x0 with respect to the set E: ∀ε > 0, x0 is a point of rarefaction of the set

{x : |w(x) − LEw(x0)| > ε, x ∈ E}.
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Definition 2.1. Let w(x) be a function defined on Rn.
(α) A point x0 ∈ Rn is said to be regular if there exists a unit vector a such that

law(x0) and l−aw(x0) exist and are finite. Here, law(x0) = LRa(x0)w(x0).
(β) The point x0 is said to be a point of jump for w(x) if it is regular and

law(x0) 6= l−aw(x0). The set of the jump points for w(x) is denoted by Γ(w).
(γ) If x0 ∈ Γ(w), then the value a appearing in the definition (α) is called the

normal to Γ(w) at the point x0. We let a = (at, ax) where at is the time component
of a, and ax the space component.

We now apply the preceding concepts for the BV functions of n+1 variables to a
BV weak solution w(x, t) of the conservation law. For any (x0, t0) ∈ Γ(w), let a be
the normal to Γ(w) at the point (x0, t0). Let w+ = law(x0, t0), w− = l−aw(x0, t0).
We then call W , defined by (2.2), the traveling discontinuity associated with w at
the jump point (x0, t0).

Denote by Hn the n-dimensional Hausdorff measure. The following basic result
holds:

Lemma 2.2 (Vol′pert [26]). A necessary and sufficient condition for a weak solu-
tion w ∈ BV of wt + f(w)x = 0 to be an entropy solution is that (2.4) holds for
Hn–almost all points in Γ(w).

Throughout this paper similarity transforms and the self-similar property of the
schemes play important roles. Let Sεx0,t0 be the similarity transform centered at a
point (x0, t0):

Sεx0,t0((x, t)) = (x0 + εx, t0 + εt).

This induces a transform T εx0,t0 in the set of the functions ψ defined on a domain
Ω ⊂ Rn ×R:

T εx0,t0ψ = ψ ◦ Sεx0,t0 |Ω

if Sεx0,t0Ω ⊂ Ω, where φ |Ω denotes the restriction of φ to the set Ω.
Define wε(x, t) by

wε(x, t) = (T εx0,t0w)(x, t)
= w ◦ Sεx0,t0((x, t))
= w(x0 + εx, t0 + εt).

We make the following preliminary observation, which turns out to be one of the
foundations of the WEI method.

Lemma 2.3. Let (x0, t0) be a jump point of a BV weak solution w in the sense of
Definition 2.1. If {εk}∞k=1 is a sequence of positive numbers such that limk→∞ εk =
0, then the sequence {wεk} converges in L1

loc to the traveling discontinuity W asso-
ciated with the jump point (x0, t0).

Proof. Fix any positive number R; by the definition of the jump points, for any
δ > 0, there exists a number ε(δ) such that if r < ε(δ)R,

µ({(x, t) : |w(x, t) −W (x−x0

ε(δ) ,
t−t0
ε(δ) )| > δ

2VR
} ∩Br(x0, t0))

µ(Br(x0, t0))
<

δ

4MVR
,
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where Vγ = µ(Bγ(0, 0)) for any γ > 0. Therefore, for all k with εk < ε(δ) and
rk = εkR,∫

BR

|wεk(x, t) −W (x, t)| dxdt

=

(∫
Brk (x0,t0)

∣∣∣∣w(x, t) −W
(
x− x0

εk
,
t− t0
εk

)∣∣∣∣ dxdt
)

µ(BR(0, 0))

µ(Brk(x0, t0))

< 2MVrk
VR
Vrk

δ

4MVR
+

δ

2VR
Vrk

VR
Vrk

= δ.

This proves the lemma.

3. WEI criteria for convergence

In this section, we present, in order of ascending practicability but descend-
ing generality, four WEI criteria for convergence of semidiscrete TVB and TVD
schemes. The first one is based on Lemma 2.3, and each successive one is based
on the preceding one. The relatively easy proofs of the first two and the last are
contained in this section. The proof of the third is contained in the Supplement at
the end of this issue.

The first criterion, valid for conservation laws wt + f(w)x = 0 in several spatial
dimensions, is as follows.

Theorem 3.1. (A necessary and sufficient condition for convergence of TVB
schemes) A TVB scheme (1.2)–(1.4) for the Cauchy problem (1.1) converges if and
only if there exists no sequence of numerical solutions of the scheme that converge
in L1

loc(R×R+) to a traveling expansion shock.

Proof. The “only if” part is trivial. For the “if” part, we argue by contradiction.
Assume that a TVB self-similar scheme (1.2)-(1.4) does not converge for some
given BV initial condition. The Lax-Wendroff Theorem implies that there is a
subsequence {uν}∞ν=1 that converges in L1

loc(R
n × R+) to a weak solution w of

(1.1) that is not the entropy solution. Suppose that the space step of uν is hν , and
that limν→∞ hν = 0. Lemma 2.2 implies that there is a jump point (x0, t0) of w
that violates the entropy condition (2.4). Let W be the expansion shock associated
with w at (x0, t0). Let {Rk}∞k=1 be an increasing sequence of positive numbers such
that limn→∞Rn =∞. First, by Lemma 2.3, for any k, one can choose a sufficiently
small positive number εk so that∫

BRk

|wεk(x, t)−W (x, t)| dxdt < 1

2k+1
.

Next, since the scheme is self-similar, for all ε > 0, {T εx0,t0u
k}∞k=1 is also a sequence

of numerical solutions of the same scheme, and it converges to wε in L1
loc(R

n×R+)
as k→∞. Hence, one can choose νk so that both∫

BRk

|T εkx0,t0u
νk(x, t)− wεk(x, t)| < 1

2k+1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON WAVEWISE ENTROPY INEQUALITIES 51

and
hνk
εk

< 1
2k

hold for each k. These two inequalities imply that∫
BRk

|T εkx0,t0u
νk(x, t)−W (x, t)| < 1

2k
.

Now clearly, {T εkx0,t0u
νk}∞k=1 converges to W in L1

loc(R
n ×R+).

For TVD self-similar schemes of one spatial dimension, we may enhance our
result by using the property that the total spatial variation of u(x0 + εx, t0 + ε)
is the same as that of u(x, t0 + ε) for any function u with bounded total spatial
variation. In the following, we suppose TVu(t) is the total spatial variation of u at

the time t, DTVu(t1, t2)
def
= TVu(t1) − TVu(t2) is the decay of TVu(t) from t1 to

t2, {εk}∞k=1 is a sequence of positive numbers such that limk→∞ εk = 0, w− and
w+ are two distinct real constants in the domain of f , and W (x, t) is a traveling
discontinuity defined by (2.2) with the two states w− and w+. For any constant

B > 0, we define Ψ̂w−,w+,B to be the set of the sequences of numerical solutions

{uk}∞k=1 generated by a TVD self-similar scheme, such that the following conditions
hold:

(i) uk(x, t)→W (x, t) in L1
loc(R×R+) as k →∞,

(ii) |TVuk(t)| < B for all t and k, and
(iii) DTVuk(0, 1) < εk for each k.

We call W (x, t) the limit of Ψ̂w−,w+,B, and w−, w+ the two states of Ψ̂w−,w+,B.
Here is our second criterion for convergence.

Theorem 3.2. (A necessary and sufficient condition for convergence of TVD
schemes) A TVD self-similar scheme given by (1.2)–(1.4) for conservation laws of
one spatial variable converges if and only if for all triples of numbers {w−, w+, B}
with B > 0, the set Ψ̂w−,w+,B = ∅ when its limit W (x, t) is a traveling expansion
shock.

Proof. Again, the “only if” part is trivial. It suffices to prove the contrapositive of
the “if” part. Assume the convergence of a TVD self-similar scheme given by (1.2)–
(1.4) fails. It follows from Theorem 3.1 that there exists a sequence of numerical
solutions {uν} of the scheme that converges in L1

loc(R×R+) to a traveling expansion
shock W of the form (2.6). Moreover, the total spatial variations of the numerical
solutions are bounded by a positive number B. Since the scheme is TVD, for any
positive integers n and ν, there is an integer m(n, ν) such that 0 ≤ m(n, ν) ≤ n− 1
and

DTVuν (m(n, ν)/n, (m(n, ν) + 1)/n) ≤ 1

n
DTVuν (0, 1) ≤ B/n.

Let tn,ν = m(n, ν)/n, and xn,ν = stn,ν . For each k, one can first choose a sufficiently
large n = nk so that B/nk < εk. Then, since uν → W in L1

loc(R ×R+), one can
choose a sufficiently large ν = νk so that∫ 1

0

∫ st+1

st−1

|uνk(x, t) −W (x, t)| dxdt < εk/n
2
k.

For simplicity we set x̂k = xnk,νk , t̂k = tnk,νk , and ûk(x, t) = T
1/nk
x̂k,t̂k

uνk(x, t). We

then have ∫ nk

0

∫ st+nk

st−nk
|ûk(x, t)−W (x, t)| dxdt < εk
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since T csα,αW (x, t) = W (x, t) for any positive constants α and c. Moreover, TVûk(t)
≤ B and DTVûk(0, 1) = DTVuν (m(n, ν)/n, (m(n, ν) + 1)/n) < εk hold since the
total spatial variation of u(x0 + εx, t0 + ε) is the same as that of u(x, t0 + ε) for any

function u with bounded total spatial variation. Therefore, {ûk}∞k=1 ∈ Ψ̂w−,w+,B.
The lemma is proved.

Remark. It is not clear whether the same result holds for n spatial dimensions
because T εx0,t0 increases the spatial variation by a factor ε1−n.

Our next two criteria demand the following TVD condition of Tadmor [25].

Assumption 3.3. The numerical fluxes gj+ 1
2
(t), j = 0, ±1, ±2, . . . , satisfy

gj+ 1
2
(t) ≥ f(uj) ≥ gj− 1

2
(t) if uj(t)− uj±1(t) ≥ 0,

and

gj+ 1
2
(t) ≤ f(uj) ≤ gj− 1

2
(t) if uj(t)− uj±1(t) ≤ 0.

Corollary 3.4. Let u be a scheme of the form (1.2)–(1.4) that satisfies Assumption
3.3, and let ε be a positive constant.

(i) If

min(sign(∆+uj(t))∆−uj(t), |∆+uj(t)|) < ε(3.1)

holds for an integer j, then

|gj± 1
2
(t)− f(uj(t))| < |gj+ 1

2
(t)− gj− 1

2
(t)|+ Cε.

(ii) If

min(|∆−uj(t)|, |∆+uj(t)|) < ε(3.2)

holds for an integer j, then

|gj± 1
2
(t)− f(uj(t))| < Cε.

Proof. First suppose (3.1) holds for some j. It is easy to see that by suitably
adding ε to or subtracting it from uj+1(t) or uj−1(t) when necessary, and denoting
the modified u by u and the correspondingly modified gj± 1

2
(t) by gj± 1

2
(t), one can

achieve ∆−uj(t)∆+uj(t) < 0. Then, by Assumption 3.3 ,

|gj± 1
2
(t)− f(uj(t))| ≤ |gj+ 1

2
(t)− gj− 1

2
(t)|.(3.3)

Since the numerical flux function g is Lipschitz continuous, |gj± 1
2
(t)−gj± 1

2
(t)| < Cε.

Therefore, the conclusion of (i) follows from (3.3) and the triangle inequality.
Next, one can prove (ii) similarly by using the fact that, because of (3.2), uj(t)

becomes a local spatial minimum ( maximum ) if one adds ( subtracts) ε to (from)
both uj−1(t) and uj+1(t).

We need to introduce the concepts of asymptotic traveling discontinuities and
asymptotic traveling expansion shocks ( we use “asymptotic” instead of “discrete”
to avoid a confusion with Jennings’s discrete shocks [11]). For this purpose, we
need the following notion of paths to be the boundaries of the transition areas of
the discontinuities.

Definition 3.5. A gridpoint-valued function xI(t) = I(t)h + c, 0 ≤ t ≤ 1, is said
to be an ε-path of the first type with respect to u if the following conditions hold:
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(i) There is a finite partition of [0, 1]:

0 = τ0 < τ1 < · · · < τn = 1

such that I(t) is a constant integer on each subinterval (τν−1, τν).
(ii) For all j between I(τν−) and I(τν+), uj(τν) = uI(τν−)(τν) = uI(τν+)(τν).

Moreover, uI(τν+)(τν) is monotone with respect to ν.
(iii) The inequality min(sign(∆+uI(t)(t))∆−uI(t)(t), |∆+uI(t)(t)|) < ε holds.
(iv) The total variation of the function uI(t)(t) of t for 0 ≤ t ≤ 1 is bounded by ε.

Definition 3.6. A gridpoint-valued function xI(t) = I(t)h + c is said to be an
ε-path of the second type with respect to u if the following conditions hold:

(i) I(t) is a monotone function of t on the interval [0, 1] with the property that
there is a finite partition of [0, 1]:

0 = τ0 < τ1 < · · · < τn = 1

such that I(t) is a constant integer on each subinterval (τν−1, τν). Moreover,
|I(τν+)− I(τν−)| = 1 for ν = 1, · · · , n− 1.

(ii) There is a constant A such that for any t ∈ [0, 1], |uj(t)− A| < ε holds if xj
is in the stencil of the scheme at (xI(t), t).

We have the following lemma relating the numerical flux to the exact flux along
an ε-path of either type.

Lemma 3.7. Suppose that {uj(t)}∞j=−∞ is a numerical solution generated by a
scheme (1.2)−(1.4) that satisfies Assumption 3.3. Let xI(t) = I(t)h + c to be an
ε-path of either type. We then have∫ 1

0

|gI(t)± 1
2
(t)− f(uI(t))|dt < Cε,(3.4)

where C depends on the Lipschitz coefficients of g only.

Proof. The conclusion for an ε-path of the second type follows directly from the
consistency relation (1.4), the Lipschitz condition of the numerical flux, and condi-
tion (ii) in Definition 3.6. For an ε-path of the first type, using (1.2) and conditions
(i), (ii) and (iv) in Definition 3.5, we get∫ 1

0

|gI(t)+ 1
2
(t)− gI(t)− 1

2
(t)|dt = h

∫ 1

0

∣∣∣∣ ddtuI(t)(t)
∣∣∣∣ dt ≤ εh.(3.5)

With condition (iii) in Definition 3.5, apply Corollary 3.4 and obtain

|gI(t)± 1
2
(t)− f(uI(t)(t))| < |gI(t)+ 1

2
(t)− gI(t)− 1

2
(t)|+ Cε.

We complete the proof by integrating the last inequality from 0 to 1 and applying
(3.5).

Let {ukj (t), j = 0,±1,±2, . . .}∞k=1 be a sequence of numerical solutions gener-

ated by a semidiscrete schemes associated with a sequence of meshes {xkj , j =

0,±1,±2, · · · }∞k=1, where xkj = jhk + ck and hk → 0 as k → ∞. Let {εk} be a
sequence of positive numbers such that εk → 0 as k →∞.

Definition 3.8. A sequence of pairs of εk-paths of either type, {x(k)(t), y(k)(t)}∞k=1,

where x(k)(t) = xkIk(t) = Ik(t)hk+ck , y(k)(t) = xkJk(t) = Jk(t)hk+ck, and 0 ≤ t ≤ 1,

is said to be an asymptotic traveling wave (ATW) of {uk} if x(k)(t) < y(k)(t), and
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if there is a linear function x(t) = st+ r and two distinct constants L and R such
that:

(i) In the case s = 0, for each k, if either path of the pair {x(k)(t), y(k)(t)}, say
x(k)(t), is of the second type, then x(k)(t) is a constant depending only on k.

(ii) Both x(k)(t) and y(k)(t) converge to x(t) uniformly on the t-interval [0, 1] as
k →∞.

(iii) ukIk(t)(t) and ukJk(t)(t) converge to L and R, respectively, on the t-interval

[0, 1] as k →∞.

For each k, denote by Ω̂k the region xIk(t)−hk/2 < x < xJk(t)−hk/2, 0 ≤ t ≤ 1.

We call the sequence {Ω̂k} the transition region of the ATW, x(t) the limit path of
the ATW, L and R the two states of the ATW, and |R − L| the amplitude of the
ATW.

Next we consider entropy properties of an ATW. Following Osher [17], for any
convex entropy U(w) and its flux F (w), we adopt the numerical entropy flux

Gj− 1
2
(t)

def
= F (uj) + U ′(uj)[gj− 1

2
− f(uj)].(3.6)

By Lemma 3.7, Gj− 1
2
(t) satisfies the following

Corollary 3.9. If the numerical scheme satisfies the conditions of Lemma 3.7,
then ∫ 1

0

|GI(t)− 1
2
(t)− F (uI(t)(t))| dt < Cε,

where xI(t) = I(t)h+ c is an ε-path of either type.

In [17], Osher proved the following equality:

h

(
d

dt
U(uj(t)) +D+Gj− 1

2
(t)

)
=

∫ uj+1(t)

uj(t)

U ′′(w)(gj+ 1
2
− f(w)) dw.(3.7)

Let φ(x, t) be a smooth function with a compact support in the domain −∞ <
x <∞, 0 < t < 1. Set φj(t) = φ(xj , t). Consider

Φ̂k
def
=

∫ 1

0

Jk(t)−1∑
j=Ik(t)

hk

(
d

dt
U(ukj (t)) +D+G

k
j− 1

2
(t)

)
φj(t)dt,(3.8)

We have the following fundamental result.

Lemma 3.10. Suppose that {uj(t)}∞j=−∞ is a numerical solution generated by a

scheme (1.2)−(1.4) that satisfies Assumption 3.3. Let {Ik(t)hk + ck, J
k(t)hk + ck}

be an ATW of {uk} with the limit path x(t) = st+ r and the two states L and R.
We have

lim
k→∞

Φ̂k = [F (R)− F (L)− s(U(R)− U(L))]

∫
x=st

φ(x, t) dt,(3.9)

where Φ̂k is defined by (3.8).

Proof. Without loss of generality, assume that r = 0. Let

Φ̂k1 =

∫ 1

0

Jk(t)−1∑
j=Ik(t)

hk
d

dt
U(ukj (t))φj(t) dt
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and

Φ̂k2 =

∫ 1

0

Jk(t)−1∑
j=Ik(t)

hkD+G
k
j− 1

2
(t)φj(t) dt.

It suffices to prove

Φ̂k1 → −s(U(R)− U(L))

∫
x=st

φ(x, t) dt(3.10)

and

Φ̂k2 → (F (R)− F (L))

∫
x=st

φ(x, t) dt.(3.11)

A summation by parts of Φ̂k2 leads to

Φ̂k2 =−
∫ 1

0

 Jk(t)−1∑
j=Ik(t)+1

Gkj− 1
2
(t)∆−φj(t)

 dt

+

∫ 1

0

(
GkJk(t)− 1

2
(t)φJk(t)−1(t)−GkIk(t)− 1

2
(t)φIk(t)(t)

)
dt

(3.12)

The first integral in (3.12) tends to 0 since Gk
j− 1

2

(t) is uniformly bounded, |∆−φj | ≤
Chk, and limk→∞(Jk(t)− Ik(t))hk = 0. The second integral tends to∫

x=st

(F (R)− F (L))φ(x, t) dt

since Corollary 3.9 implies that Gk
Jk(t)− 1

2
(t) → F (R) and Gk

Ik(t)− 1
2
(t) → F (L)

respectively in L1([0, 1]), and since condition (ii) in Definition 3.8 implies that both
φJk(t)−1(t) and φIk(t)(t) tend to φ(st, t) uniformly for 0 ≤ t ≤ 1. This completes
the proof of (3.11).

We now turn to the proof of (3.10). Without loss of generality, let xkJk(t) =

Jk(t)hk + ck be εk-paths of the first type, and let xkIk(t) = Ik(t)hk + ck be εk-paths

of the second type.
Consider separately the following three situations, which exhaust all possibilities:
(i) s > 0. We notice that φ(x, t) has compact support spt(φ) in {(x, t) ∈ R×R+ :

0 ≤ t ≤ 1}: Define

Ikmax = max
t
{Ik(t) : (xkIk(t), t) ∈ spt(φ)},

Jkmax = max
t
{Jk(t) : (xkJk(t), t) ∈ spt(φ)},

Ikmin = min
t
{Ik(t) : (xkIk(t), t) ∈ spt(φ)},

and
Jkmin = min

t
{Jk(t) : (xkJk(t), t) ∈ spt(φ)}.

It follows that for sufficiently large k, and for the xkj such that

min(Ikmin, J
k
min) ≤ j ≤ max(Ikmax, J

k
max),

the line segment {(xkj , t): 0 ≤ t ≤ 1} crosses each boundary of Ω̂k an odd number
of times. Suppose that it crosses the right boundary at

t = tk,j1 , . . . , tk,j
2θk
j

+1
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



56 HUANAN YANG

and that uk,ji
def
= ukj (tk,ji ). Suppose also that it crosses the left boundary at t

k,j
,

and that uk,j
def
= ukj (t

k,j
). An integration by parts leads to

Φ̂k1 =−
∫ 1

0

Jk(t)−1∑
j=Ik(t)

hkU(ukj (t))
d

dt
φj(t)dt+

maxt(J
k(t)−1)∑

j=mint(Ik(t))

hkU(uk,j)φj(t
k,j

)

−
maxt(J

k(t)−1)∑
j=mint(Ik(t))

hk

2θkj+1∑
i=1

(−1)i+1U(uk,ji )φj(t
k,j
i ).(3.13)

The first term on the right tends to zero since (xkJk(t) − xkJk(t))→ 0 uniformly, and

U(ukj (t)) d
dtφj(t) is uniformly bounded. The second term tends to U(L)

∫
x=st φdx

since uk,j → L uniformly. The third term tends to −U(R)
∫
x=st

φdx since, by

condition (iv) of Definition 3.5, the total variation of U(uk,ji ) in i tends to zero

uniformly in j, and since U(uk,ji ) tends to U(R) uniformly in i and j. This proves
(3.10) in the case s > 0.

(ii) s < 0. The proof is parallel to that of case (i) and is omitted.
(iii) s = 0. We assume that the line segment {(xkj , t): t′ ≤ t ≤ t′′} crosses the

right boundary at

t = tk,j1 , . . . , tk,j
πk
j

.

Proceed similarly to case (i). Since Ik(t) is a constant ( see (i) in Definition 3.8 ),
it suffices to consider the term

−
maxt(J

k(t)−1)∑
j=mint(Ik(t))

hk

πkj∑
i=1

(−1)i+1ωjU(uk,ji )φj(t
k,j
i ),(3.14)

where ωj for each j is a real constant with |ωj| = 1. Since the total variation of

U(uk,ji ) with respect to i is uniformly bounded,∣∣∣∣∣∣
πkj∑
i=1

(−1)i+1ωjU(uk,ji )φj(t
k,j
i )

∣∣∣∣∣∣
has an upper bound that is independent of k and j. Therefore, the term (3.14)
tends to zero since in this case hk(maxt(J

k(t) −mint(I
k(t))) tends to zero. This

proves (3.10) in the case s = 0, and completes our proof of the lemma.

Corollary 3.11. With the conditions of Lemma 3.10, we have the following dis-
crete Rankine-Hugoniot condition:

f(R)− f(L) = s(R − L).(3.15)

Moreover,

lim
k→∞

Φ̂k =

∫ R

L

U ′′(w)(f [w;L,R]− f(w))dw

∫
x=st

φ(x, t) dt.(3.16)

Proof. First, choose U(w) = w, and F (w) = f(w). We have

Gkj+ 1
2
(t) = gkj+ 1

2
(t).

This and the definition of the numerical scheme imply that Φ̂k ≡ 0. Hence, the
relation (3.9) becomes the discrete Rankine-Hugoniot condition (3.15).
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Next, for general U , applying (3.15), we obtain through an integration by parts,

F (R)− F (L)− s(U(R)− U(L)) =

∫ R

L

[F ′(w) − sU ′(w)] dw

=

∫ R

L

(f ′(w) − s)U ′(w) dw =

∫ R

L

U ′(w)d(f(w) − f [w;L,R])

=

∫ R

L

U ′′(w)(f [w;L,R]− f(w)) dw.

The combination of this relation and (3.9) yields (3.16).

Definition 3.12. An ATW {xk(t), yk(t)} of {uk} is called an asymptotic traveling
discontinuity (ATD) of {uk} if the ATW is essentially monotone in space. Namely,

(i) for each k, and for any integers p and q such that Ik(t) ≤ p < q ≤ Jk(t), and
for 0 ≤ t ≤ 1,

−(ukq(t)− ukp(t))sign(R− L) ≤ εk,
and

(ii) for each k and t ∈ [0, 1], if j is an integer such that Ik(t) ≤ j ≤ Jk(t) and
that (ukj+1(t)− ukj (t))(R − L) < 0, then

ukj (t), ukj+1(t) ∈ Nεk ({w : f(w) = f [w;L,R]}) ,
where Nδ(S) denotes the δ-neighborhood of a set S ∈ R. An ATD of {uk} is called
an asymptotic traveling expansion shock (ATES) of {uk} if (2.8) with w− = L and
w+ = R fails. In the last case we also say that {uk} harbors the ATES {xk(t), yk(t)}.

We are now ready to state our third WEI criterion for convergence.

Theorem 3.13. A semidiscrete scheme of the form (1.2)–(1.4) satisfying Assump-
tion 3.3 converges if the scheme is unable to create a sequence of numerical solutions
{uk} that harbors an ATES.

The proof of this theorem is contained in the Supplement to this paper.
We now turn our attention to convex conservation laws, i.e., the case f ′′(w) ≥ 0.
We call a pair of numbers {L,R} a rarefying pair if L < R and f [w;L,R] > f(w)

when L < w < R. We call a collection of data {vj}n+p
j=−p a rarefying collection with

respect to the pair {L,R} if L = v0 ≤ v1 ≤ · · · ≤ vn = R, and L ≤ v−1, and

R ≥ vn+1. We let ḡj+1/2
def
= g(vj−p+1, vj−p+2, . . . , vj+p), where g is the function

(1.3) in its self-similar form. We add superscripts to denote a sequence of rarefying
collections and the corresponding numerical fluxes.

Our fourth, and last, WEI criterion for convergence is as follows.

Theorem 3.14. A semidiscrete scheme of the form (1.2)–(1.4) satisfying Assump-
tion 3.3 converges for convex conservation laws if, for any rarefying pair {L,R},
there is a constant δ > 0 such that the quadrature inequality

n−1∑
j=0

(vj+1 − vj)ḡj+1/2 + δ <

∫ R

L

f [w;L,R] dw(3.17)

holds for all rarefying collections {vj}n+p
j=−p with respect to the pair {L,R}.

Proof. We prove the contrapositive. Hence, we assume the scheme does not con-
verge. By Theorem 3.13, there exists a sequence of numerical solutions {uk} that
harbors an ATES {xkIk(t), x

k
Jk(t)}. Since f is convex, the two states L and R of
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the ATES form a rarefying pair {L,R}. The essentially monotone property of the
ATES implies that, for each k and each t ∈ [0, 1], there are two integers lk(t) and
rk(t) with Ik(t) ≤ lk(t) < rk(t) ≤ Jk(t) such that

L+ εk ≤ uklk(t)+1(t),(3.18)

ukrk(t)−1(t) ≤ R− εk,(3.19)

L− εk < ukj (t) < L+ εk when Ik(t) ≤ j ≤ lk(t),(3.20)

R− εk < ukj (t) < R+ εk when rk(t) ≤ j ≤ Jk(t),(3.21)

and

ukj (t) ≤ ukj+1(t) when lk(t) ≤ j ≤ rk(t)− 1.(3.22)

Moreover, since xIk(t) and xJk(t) are εk-paths,

ukIk(t)−1(t) > ukIk(t)(t)− εk if ukIk(t)+1(t) ≥ ukIk(t)(t) + εk,(3.23)

and

ukJk(t)+1(t) < ukJk(t)(t) + εk if ukJk(t)−1(t) ≤ ukJk(t)(t)− εk.(3.24)

For any fixed t ∈ [0, 1] and any positive integer k, construct the data {vj}n+p
j=−p in

the following way. Set l′ = lk(t) + 1 if lk(t) = Ik(t) and ukIk(t)−1(t) ≤ ukIk(t)(t)− εk.

Otherwise, set l′ = lk(t). Set r′ = rk(t) − 1 if rk(t) = Jk(t) and ukJk(t)+1(t) ≥
ukJk(t)(t) + εk. Otherwise, set r′ = rk(t).

Let n = r′− l′. Then set v0 = L, vn = R, and vj = ukl′+j(t) for l′+1 ≤ j ≤ r′−1.
Also set

v−1 =

{
L if ukl′−1(t) < L,

ukl′−1(t) otherwise,
(3.25)

and

vn+1 =

{
R if ukr′+1(t) > R,

ukr′+1(t) otherwise,
(3.26)

Finally, set vj = ukl′+j(t) for −p ≤ j ≤ −2 and for n + 2 ≤ j ≤ n + p. In the

notations {vj}n+p
j=−p, and later in ḡj+ 1

2
, we ignore the apparent dependence on k,

as this will not be harmful to the proof. It is straightforward to verify that the
data {vj}n+p

j=−p form a rarefying collection with respect to the rarefying pair {L,R}.
Moreover, by (3.20), (3.21), (3.23) and (3.24), the construction also implies that
|vj − ukl′+j(t)| < 2εk when −p ≤ j ≤ n+ p, and, in particular, vj = ukl′+j(t) when
j 6= −1, 0, n, n+ 1.

With the relation (3.7) applied to (3.8), the limit in Corollary 3.11 becomes∫ 1

0

Jk(t)−1∑
j=Ik(t)

∫ ukj+1(t)

uk
j
(t)

U ′′(w)(gj+ 1
2
(t)− f(w)) dwφj(t)dt

→
∫ R

L

U ′′(w)(f [w;L,R]− f(w)) dw

∫
x=st

φ(x, t) dt.(3.27)
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It is known that for convex problems, the entropy condition for U(w) = w2/2 is
sufficient for convergence. For this U(w), (3.27) becomes

∫ 1

0

Jk(t)−1∑
j=Ik(t)

∫ ukj+1(t)

uk
j
(t)

(gj+ 1
2
(t)− f(w)) dwφj (t) dt

→
∫ R

L

(f [w;L,R]− f(w)) dw

∫
x=st

φ(x, t) dt.

(3.28)

Since φ(x, t) is smooth with compact support, since the total spatial variations of
uk(x, t) have a uniform bound B, and since |xkIk(t)−st|+ |xkJk(t)−st| < εk, we have∣∣∣∣∣∣

∫ 1

0

Jk(t)−1∑
j=Ik(t)

∫ ukj+1(t)

uk
j
(t)

(gj+ 1
2
(t)− f(w)) dw(φ(st, t) − φj(t)) dt

∣∣∣∣∣∣ < Cεk,(3.29)

where C is independent of k.

Claim. For the data {vj}n+p
j=−p,

∣∣∣∣∣∣
Jk(t)−1∑
j=Ik(t)

∫ ukj+1(t)

uk
j
(t)

(gj+ 1
2
(t)− f(w)) dw −

n−1∑
i=0

∫ vi+1

vi

(ḡi+ 1
2
− f(w)) dw

∣∣∣∣∣∣ ≤ Cεk,
(3.30)

where ḡi+ 1
2

= g(vj−p+1, vj−p+2, . . . , vj+p) and g is the function in (1.3) in its self-

similar form.

In fact,∣∣∣∣∣∣
Jk(t)−1∑
j=Ik(t)

∫ ukj+1(t)

uk
j
(t)

(gj+ 1
2
(t)− f(w)) dw −

n−1∑
i=0

∫ vi+1

vi

(ḡi+ 1
2
− f(w)) dw

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
i′−1∑

j=Ik(t)

∫ ukj+1(t)

uk
j
(t)

(gj+ 1
2
(t)− f(w)) dw

∣∣∣∣∣∣+
∣∣∣∣∣∣
Jk(t)−1∑
j=j′

∫ ukj+1(t)

uk
j
(t)

(gj+ 1
2
(t)−f(w))dw

∣∣∣∣∣∣
+

∣∣∣∣∣
n−1∑
i=0

[∫ uk
i′+i+1

(t)

uk
i′+i(t)

(gi′+i+ 1
2
(t)− f(w)) dw −

∫ vi+1

vi

(ḡi+ 1
2
− f(w))dw

]∣∣∣∣∣
= A1 +A2 +A3.

If A1 contains only one term, then |ukIk(t)+1(t)− ukIk(t)(t)| < 2εk. Therefore, A1 <

Cεk. If A1 contains more than one term, then in each term of A1, |ukj+1(t)−ukj (t)| <
2εk. Hence, by Corollary 3.4 (ii), |gj+ 1

2
(t)−f(ukj (t))| < Cεk holds. Therefore, A1 <

Cεk holds in all cases, where C is again independent of k. Similarly, A2 < Cεk. To
prove A3 < Cεk, it suffices to notice that, among the n terms in the summation,
there are at most 2p nonzero terms, and that the absolute value of each term is
bounded by Cεk. Hence, the claim is true.
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Let φ(x, t) ≥ 0, and
∫
x=st

φ(x, t) dt > 0. Combining (3.17), (3.29) and (3.30),
and using the triangle inequality, we arrive at

lim
k→∞

∫ 1

0

Jk(t)−1∑
j=Ik(t)

∫ ukj+1(t)

uk
j
(t)

(gj+ 1
2
(t)− f(w)) dwφj(t) dt

≤
[∫ R

L

(f [w;L,R]− f(w)) dw − δ
]∫

x=st

φ(x, t) dt.

This contradicts (3.28), and proves the theorem.

4. Applications

In this section we apply Theorem 3.14 to two classes of schemes for convex
problems. The building blocks for both classes are the so-called E-schemes [17].
Let gE(·, ·) be the flux of any E-scheme, i.e., it is Lipschitz continuous, and satisfies

sgn(wj+1 − wj)(gE(wj , wj+1)− f(w)) ≤ 0(4.1)

for all w between wj and wj+1. We now turn to our first example.

Example 4.1. Consider the class of generalized MUSCL schemes

d

dt
uj = − 1

h
∆+g

E(uj−1 + sj−1h/2, uj − sjh/2).(4.2)

In [18] Osher proposed and analyzed this class with the CEI approach. A nonlinear
slope limiter was introduced to enforce a cell entropy inequality for uj+1 < uj . Let
ũj+ 1

2
satisfy ∫ uj+1

uj

f ′(w)(w − ũj+ 1
2
) dw = 0.

Osher [18] proved that a generalized MUSCL scheme (4.2) for the convex problem
(1.1) converges provided that for each j,

0 ≤ hsj
∆+uj

,
hsj

∆−uj
≤ 1(4.3)

and that if uj > uj+1, the nonlinear slope limiter

−hsj ≤ 2 max(min((uj − ũj+ 1
2
), (ũj− 1

2
− uj)), 0)(4.4)

holds.
With WEI, we are able to prove the convergence without using the nonlinear

slope limiter (4.4). In fact we can do even better by proving the following result.

Theorem 4.2. A generalized MUSCL scheme with an E-scheme building block con-
verges provided that the slope sj satisfies: sj = 0 if uj is an extremum;

0 ≤ hsj
∆+uj

,
hsj

∆−uj
≤ 2(4.5)

if uj−1 is a maximum or uj+1 is a minimum; and (4.3) holds if uj < uj+1.

Proof. Tadmor [25] shows that the numerical solution satisfying the conditions of
the theorem obeys Assumption 3.3. Hence, the WEI criterion is applicable. Let
{L,R} be a rarefying pair and the data {vj}n+p

j=−p be a rarefying collection with

respect to the pair. Then Osher’s cell entropy inequality
∫ vj+1

vj
(ḡj+1/2−f(w)) dw ≤
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0 holds for 0 ≤ j ≤ n− 1 since vj ≤ vj+1, which implies
∑n−1
j=0 (vj+1 − vj)ḡj+1/2 ≤∫ R

L f(w) dw (see [18]). Hence, the inequality (3.17) holds for any positive constant

δ <
∫ R
L (f [w;L,R]−f(w)) dw, and such a δ does exist because {L,R} is a rarefying

pair. This proves the theorem.

Example 4.3. In [24] Sweby investigated a large class of high-resolution schemes
using flux limiters. Here we consider the semidiscrete version of these schemes.
The building block is again an arbitrary E-scheme (4.1). We borrow the following
notations from [24]:

(∆fj+ 1
2
)+ = f(uj+1)− gE(uj , uj+1),

(∆fj+ 1
2
)− = f(uj)− gE(uj , uj+1),

r+
j = (∆fj− 1

2
)+/(∆fj+ 1

2
)+, r−j = (∆fj+ 1

2
)−/(∆fj− 1

2
)−.

We also set

(Dfj+ 1
2
)± = (∆fj+ 1

2
)±/∆+uj.

The numerical flux of the semidiscrete version of the schemes with flux limiters has
the following form:

gj+ 1
2

= gE(uj , uj+1) +
1

2
ψ(r+

j )(∆fj+ 1
2
)+ +

1

2
ψ(r−j+1)(∆fj+ 1

2
)−.(4.6)

Here the function ψ defines the flux limiter of the scheme. Sweby [24] identified
the class of functions ψ for the scheme (4.6) to be second-order accurate away from
nonsonic extrema and TVD. The convergence of these schemes has been an open
problem owing to the subtler issue of entropy consistency.

Consider the following Chakravarthy and Osher limiters:

ψc(r) =

 0, r < 0,
r, 0 ≤ r < c,
c, r ≥ c.

(4.7)

In the special case c = 1, by adding artificial compression/rarefaction (ACR), and
using CEI, Osher and Chakravarthy [19] were able to prove the convergence of the
modified schemes for the convex problem (1.1). In the following, by applying the
WEI criterion, we first show that without the addition of ACR, the schemes still
converge.

Theorem 4.4. The numerical solutions of the schemes (1.2)-(1.4) converge for the
convex problem (1.1) provided that the numerical flux gj+ 1

2
satisfies:

(i) gj+ 1
2
≥ f(uj) if uj − uj±1 ≥ 0, and gj− 1

2
≥ f(uj) if uj − uj±1 ≤ 0.

(ii) When uj+1 > uj, gj+ 1
2

is defined by (4.6) where gE is the numerical flux

function of any E-scheme, and ψ(r) = ψ1(r) is defined by (4.7).

Proof. Let uj+1 be a spatial maximum; thus r−j+1 ≤ 0. Hence, it follows from (4.7)

that ψ(r−j+1) = 0. Therefore

gj+ 1
2

= gE(uj , uj+1) +
1

2
ψ(r+

j )(∆fj+ 1
2
)+ ≤ gE(uj , uj+1) + (∆fj+ 1

2
)+ = f(uj+1).

Replacing j with j − 1 in the preceding inequality, we see that if uj − uj±1 ≥ 0,
then gj− 1

2
≤ f(uj). Similarly, if uj − uj±1 ≤ 0, then gj+ 1

2
≤ f(uj). These two

inequalities and condition (i) of the theorem verify Assumption 3.3. Next, let {L,R}
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be an arbitrary rarefying pair. Using Theorem 3.14 to prove the convergence of the
scheme, we need to show that there exists a δ > 0 such that for any rarefying
collection {vj}n+p

j=−p with respect to the pair {L,R}, the inequality (3.17) holds.
For convenience, define

f̄ [c, d]
def
=

∫ d

c

{f [w; c, d]− f(w)} dw,(4.8)

and

Sj+ 1
2

def
=

∫ vj+1

vj

[gj+ 1
2
− f(w)] dw.(4.9)

Since f is convex,

f̄ [a, b] + f̄ [b, c] ≤ f̄ [a, c] if a ≤ b ≤ c.(4.10)

Applying the facts that ψ(r) ≤ 1 and ḡE(vj , vj+1) ≤ min(f(vj), f(vj+1)) to (4.6),
we get

Sj+ 1
2
≤ f̄ [vj , vj+1] if 0 ≤ j ≤ n− 1.(4.11)

Summing over (4.11) and using (4.10) and the fact that {vj}n+p
j=−p is a rarefying

collection with respect to the pair {L,R}, we obtain that, for 1 ≤ i ≤ n− 1,

n−1∑
j=0

Sj+ 1
2
≤
n−1∑
j=0

f̄ [vj , vj+1] ≤ f̄ [L, vi] + f̄ [vi, R] ≤ f̄ [L,R].(4.12)

We assume that no δ > 0 exists with the aforementioned property. Then there
exists a sequence of rarefying collections {vνj , j = −p,−p+ 1, . . . , nν + p}∞ν=1 with
respect to the pair {L,R} such that

lim
ν→∞

nν−1∑
j=0

Sνj+ 1
2

= lim
ν→∞

nν−1∑
j=0

f̄ [vνj , v
ν
j+1] = f̄ [L,R].(4.13)

Claim. The inequality (4.13) implies that there exists a sequence of integers {jν}
satisfying 0 ≤ jν ≤ nν − 1 such that

lim
ν→∞

vνjν = L and lim
ν→∞

vνjν+1 = R.(4.14)

For, otherwise, there exists a constant ρ > 0, a subsequence of the rarefying col-
lections, still denoted by {vνj , j = −p,−p + 1, . . . , nν + p}∞ν=1, and a sequence of
integers {iν} satisfying 1 ≤ iν ≤ nν − 1 such that L + ρ < vνiν < R − ρ. The
convexity of f , the definition of rarefying pairs, and (4.12) imply

nν−1∑
j=0

f̄ [vνj , v
ν
j+1] ≤ f̄ [L, vνiν ] + f̄ [vνiν , R]

≤ Hρ
def
= max(f̄ [L,L+ ρ] + f̄ [L+ ρ,R], f̄ [L,R− ρ] + f̄ [R− ρ,R])(4.15)

< f̄ [L,R].

This contradicts (4.13) because Hρ is independent of ν. Hence, the claim is true.
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On the one hand, combining (4.10), (4.11), (4.13) and (4.14), we obtain

f̄ [L,R] = lim
ν→∞

nν−1∑
j=0

Sνj+ 1
2

= lim
ν→∞

jν−1∑
j=0

Sνj+ 1
2

+ Sνjν+ 1
2

+
nν−1∑
j=jν+1

Sνj+ 1
2


≤ lim
ν→∞

(f̄ [L, vνjν ] + Sνjν+ 1
2

+ f̄ [vνjν+1, R]) = lim
ν→∞

Sνjν+ 1
2
≤ f̄ [L,R].(4.16)

This implies

lim
ν→∞

Sνjν+ 1
2

= f̄ [L,R].(4.17)

On the other hand, applying (4.14) and the definition of the rarefying collections
with respect to the rarefying pair {L,R} to (4.6), we get limν→∞ ḡν

jν+ 1
2

= gE(L,R),

and hence limν→∞ S
ν
jν+ 1

2
≤ 0. This contradicts (4.17) since f̄ [L,R] > 0 by the

definition of the rarefying pair {L,R}.

When the building blocks of the high-resolution schemes are such well-known
monotone schemes as the Godunov, the Engquist–Osher or Lax-Friedrichs schemes,
we can do even better. The following give the numerical fluxes of these three
schemes:

(i) The Godunov scheme:

gGod(uj , uj+1) =

{
minuj≤w≤uj+1 f(w) when uj ≤ uj+1,

maxuj≥w≥uj+1 f(w) when uj ≥ uj+1.

(ii) The Engquist–Osher scheme:

gEO(uj, uj+1) =

∫ uj

0

max(f ′(w), 0) dw +

∫ uj+1

0

min(f ′(w), 0) dw + f(0).

(iii) The Lax-Friedrichs scheme:

gLF(uj , uj+1) =
f(uj) + f(uj+1)

2
− a

2
(uj+1 − uj)

where a ≥ max |f ′(w)|.
When we use these three monotone schemes as the building blocks, we have the

following result.

Theorem 4.5. The numerical solutions of the schemes (1.2)-(1.4) converge for the
convex problem (1.1) provided that the numerical flux gj+ 1

2
satisfies:

(i) gj+ 1
2
≥ f(uj) if uj − uj±1 ≥ 0, and gj− 1

2
≥ f(uj) if uj − uj±1 ≤ 0.

(ii) When uj+1 > uj, gj+ 1
2

is defined by (4.6) where ψ(r) = ψc(r) is given by

(4.7) with 1 ≤ c ≤ 2, provided that gE(·, ·) is the numerical flux of one of the
aforementioned monotone schemes.

Proof. Let {L,R} be a rarefying pair. Consider any rarefying collection {vj}n+p
j=−p

with respect to this pair. Following the arguments of the proof of Theorem 4.4, we
only need to show that although (4.11) may now be false, (4.12) is still true. For
convenience, we keep the same notations (∆fj+ 1

2
)±, (Dfj+ 1

2
)± and r±j when u is

replaced by v.
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Using ψc(r
+
0 ) = ψc(r

−
n ) = 0, we have

n−1∑
j=0

(Sj+ 1
2
− f̄ [vj , vj+1])

= −1

2

{
(∆f 1

2
)+ + [1− ψc(r−1 )](∆f 1

2
)−]
}

∆+v0 −

− 1

2

n−2∑
j=1

{[
1− ψc(r+

j )
]

(∆fj+ 1
2
)+ +

[
1− ψc(r−j+1)

]
(∆fj+ 1

2
)−
}

∆+vj

− 1

2

{
[1− ψc(r+

n−1)](∆fn− 1
2
)+ + (∆fn− 1

2
)−
}

∆+vn−1

≤ −1

2
[((Df 1

2
)+ + (Df 1

2
)−)(∆+v0)2 − (Df 3

2
)−(∆+v0)(∆+v1)]

− 1

2

n−2∑
j=1

[(Dfj+ 1
2
)+(∆+vj)

2 − (Dfj− 1
2
)+(∆+vj)(∆+vj−1)

+ (Dfj+ 1
2
)−(∆+vj)

2 − (Dfj+ 3
2
)−(∆+vj)(∆+vj+1)]

− 1

2
[((Dfn− 1

2
)+ + (Dfn− 1

2
)−)(∆+vn−1)2 − (Dfn− 3

2
)+(∆+vn−1)(∆+vn−2)]

≤ −1

2

{
[(Df 1

2
)+ + (Df 1

2
)−](∆+v0)2 − 1

2
(Df 3

2
)−[(∆+v0)2 + (∆+v1)2]

}
− 1

2

n−2∑
j=1

{
(Dfj+ 1

2
)+(∆+vj)

2 − 1

2
(Dfj− 1

2
)+[(∆+vj)

2 + (∆+vj−1)2]

+ (Dfj+ 1
2
)−(∆+vj)

2 − 1

2
(Dfj+ 3

2
)−[(∆+vj)

2 + (∆+vj+1)2]

}
− 1

2

{
[(Dfn− 1

2
)+ + (Dfn− 1

2
)−](∆+vn−1)2

− (Dfn− 3
2
)+ (∆+vn−1)2 + (∆+vn−2)2

2

}
= −1

4
(Df 1

2
)+(∆+v0)2 − 1

4

n−1∑
j=1

[∆+(Dfj− 1
2
)+](∆+vj)

2

− 1

4
(Dfn− 1

2
)+(∆+vn−1)2 − 1

4
(Df 1

2
)−(∆+v0)2

+
1

4

n−2∑
j=0

[∆+(Dfj+ 1
2
)−](∆+vj)

2 − 1

4
(Dfn− 1

2
)−(∆+vn−1)2.

(4.18)

Here we have used the condition fc(r) ≤ r, the fact that (Dfj+ 1
2
)± ≥ 0, and the

elementary inequality ab ≤ (a2 + b2)/2.
First if the building block is the Lax-Friedrichs scheme, we have (Dfj+ 1

2
)± =

(a±D+f(vj))/2. Hence,

∆+(Dfj− 1
2
)+ = ∆−(D+f(vj)) ≥ 0 for 1 ≤ j ≤ n− 1, and

∆+(Dfj+ 1
2
)− = −∆+(D+f(vj)) ≤ 0 for 0 ≤ j ≤ n− 2
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since f is convex. Applying these two inequalities to (4.18) and noticing that
(Dfj+ 1

2
)± ≥ 0 for 0 ≤ j ≤ n− 1, we get the desired inequality (4.12).

Next suppose the building block is the Godunov scheme or the Engquist-Osher
scheme. Then we have

gGod(vj , vj+1) = gEO(vj , vj+1) = min
vj≤w≤vj+1

f(w),(4.19)

when vj+1 ≥ vj , as is the case for 0 ≤ j ≤ n− 1. Hence, for 0 ≤ j ≤ n− 1,

(∆fj+ 1
2
)+ = 0 and (∆fj+ 1

2
)− = −∆+f(vj) when f ′(vj+1) ≤ 0;(4.20)

(∆fj+ 1
2
)− = 0 and (∆fj+ 1

2
)+ = ∆+f(vj) when f ′(vj) ≥ 0;(4.21)

and

(∆fj+ 1
2
)− = f(vj)− f(wmin) and (∆fj+ 1

2
)+ = f(vj+1)− f(wmin)(4.22)

when f ′(vj) ≤ 0 ≥ f ′(vj+1).
There is a slight difference in the arguments according to the different locations

of the sonic point. We just consider the case in which there is an integer p, 1 ≤ p ≤
n − 2, such that f ′(vp) ≤ 0 ≤ f ′(vp+1), for the proof in this case contains all the
essential arguments for other cases. Applying (4.20), (4.21) and (4.22) to (4.18),
we have

n−1∑
j=0

(Sj+ 1
2
− f̄ [vj , vj+1])

= −1

4
(Df 1

2
)−(∆+v0)2 − 1

4

p−1∑
j=0

[(Dfj+ 1
2
)− − (Dfj+ 3

2
)−](∆+vj)

2

− 1

4
[(Dfp+ 1

2
)+ + (Dfp+ 1

2
)−](∆+vp)

2

− 1

4

n−1∑
j=p+1

[(Dfj+ 1
2
)+ − (Dfj− 1

2
)+](∆+vj)

2 − 1

4
(Dfn− 1

2
)+(∆+vn−1)2.(4.23)

To verify (4.12), it suffices to show that every term in (4.23) is less than or equal to
zero. In fact when j ≤ p−1, (Dfj+ 1

2
)− = −D+f(vj); when j ≥ p+ 1, (Dfj+ 1

2
)+ =

D+f(vj). The convexity of f then implies that (Dfj+ 1
2
)− ≥ (Dfj+ 3

2
)− holds when

0 ≤ j ≤ p−2, and (Dfj+ 1
2
)+ ≥ (Dfj− 1

2
)+ holds when p+2 ≤ j ≤ n−1. It remains

to show that

(Dfp− 1
2
)− ≥ (Dfp+ 1

2
)− and (Dfp+ 1

2
)+ ≤ (Dfp+ 3

2
)+.(4.24)

Actually, the convexity of f implies that

(Dfp+ 1
2
)− =

f(vp)− f(vmin)

∆+vp
≤ f(vp)− f(vmin)

vmin − vp
≤ (Dfp− 1

2
)−.(4.25)

This is the first inequality in (4.24). The second can be proved similarly. We have
thus proved the convergence when the building block is either the Godunov scheme
or the Engquist-Osher scheme.
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