
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.7, June 2011

33

On Way to Acquiring Reliability Growth in

Software Systems

Javaid Iqbal
Assistant Professor,

P.G Department of Computer
Science

University of Kashmir- North
Campus, India

Dr. S.M.K.Quadri
Head,

P.G Department of Computer
Science

University of Kashmir-
Hazratbal Campus, India

Tariq Rasool
Lecturer,

P.G Department of Computer
science

Islamic University of Science
and Technology, India

ABSTRACT

Reliability of a software system has been one of the driving

forces for the various software engineering processes and

methodologies that led to their evolution and sophistication. The

concerns for reliability of a software system surface very early

on during the development phases of the software system. When

it comes to acquisition of reliability, we should not immediately

get model-oriented; instead every minutia of software

development life cycle should be given its due.

This paper outlines the areas where reliability needs to pick up.

This paper underlines the fact that it is only through carefully

controlled and carefully applied software engineering process

that software reliability growth can be achieved. It emphasizes

on the acquisition of reliability of software systems as soon as

the conception phase. We trace the reliability concerns from the

early stage to the fully functional stage. The terms “hard

reliability” and “soft reliability” are used.

General Terms

Software Reliability, Reliability Acquisition, Software

Reliability Growth.

Keywords

Reliability, Reliability Acquisition, Software system Reliability

Growth, Hard Reliability, Soft Reliability.

1. INTRODUCTION
Owing to the unexpectedly spiraling increase in the size and

complexity of software systems during the past few decades,

software reliability has become even more increasingly

important for such massive systems [2]. Early on, when there

was not so much of focus and concern for reliability of software

systems, the software were “un-structured” and the so-called

“spaghetti” type. However, as the software systems became

ubiquitous, they grew in size, and complexity and this led to the

development of “structured” and “modular” software systems

where the inherent complexity is better coped with. D.L. Parnas

and et al discuss in detail the modularization of complex systems

in [10]. Moreover, the launch of software systems in highly

time-critical and performance-critical applications got the

reliability considerations into limelight in the domain of

software reliability engineering. The process of acquisition of

the reliability growth in any type of software system starts as

early as the design/ architecture phase of the development of the

software system. During design phase, the designer puts a finger

on the “doing” of the software system and thus designs a holistic

structure of software, for the intended functions to be carried out

as per the blueprint. Starting thinking in terms of the structure of

the software system itself implicitly connotes moving towards

the reliability of the system. It is here that the first treatment to

the inherently existent complexity can be made by an effective

structural design. Every software system has to have some

threshold reliability level in terms of its design and architecture,

and implementation, for it to be called an operational software

system which can be deployed for use. However, depending on

the target functionalities and service specifications of the

software system, the desired levels of reliability may be “hard”

for mission-critical or safety-critical software systems and the

levels of reliability may be “soft” for other types of software

systems where a potential hazard may not be too much

catastrophic. In this direction, much has been done to improve

upon reliability and much more needs to be done.

Off late, the increasing uses of Commercial Off-The-

Shelf Components (COTS), reusable components, and other

types of components have added new dimensions to the domain

of reliability analysis of software systems. Software engineering

started with the traditional function-centered water-fall process

model, went on to more sophisticated data-centered object-

oriented abstractions and one step further to structure-centered

component-based technology which again offers abstractions.

While data collection is very important in the development and

testing of traditional software reliability models. However, in the

case of COTS or Open Source Code, this data may not be

readily available, and the reliability of the software module is

questionable. Thus the domain of Component-Based software

Engineering (CBSE) is an area where reliability analysis has

gained focus. Moreover, Simulation-based approaches to

software reliability analysis have gone down very well with the

software engineering community. Javaid Iqbal and Dr. S.M.K.

Quadri discuss in detail the relevance of Simulation for the

better acquisition of Software Reliability in [2].

2. SOFTWARE RELIABILITY AND THE

NEED FOR ITS ACQUISITION AND

GROWTH
Software Reliability is defined as the probability that software

will provide failure-free operation in a fixed environment for a

fixed interval of time [8]. The failure-free operation in the

context of software is interpreted as adherence to its

requirements [12]. It is a function of the software faults and its

operational profile [9], i.e., the inputs to and the use of the

software. Software does not have moving parts and does not

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.7, June 2011

34

physically wear out as hardware, but is does outlive its

usefulness and becomes obsolete [6]. Software reliability marks

the hard-sought performance criterion in an evolving software

process. Software reliability has been shaping the thought-

process in the face of massively-complex software systems

engineering. In such software systems, reliability becomes more

and more volatile. Different factors contribute to the growth in

unreliability of the system. In general, the more the complexity

of a software system, the more is the level of unreliability. Thus,

highly-complex/least-simple software systems are most

unreliable whereas the least-complex/ most-simple software

systems are the most reliable. Thus, an exigent need for the

timely management of the software system arises in terms of the

management of the size, and complexity. With spiraling increase

in the complexity of software systems, performance

considerations became more significant. Structural

specifications need to be very clear. However, even though

some level of unreliability does exist for a software system, the

dynamic aspect of software quality needs to grow even as the

unreliability turns its head on in massively complex systems.

This necessitates a growth in reliability of software system as its

size and complexity accumulate. Reliability Growth helps

measure and predict the improvement of reliability through the

testing process. Reliability growth also represents the reliability

or failure rate of a system as a function of time or the number of

test cases. The practice of building massively-complex software

structures would be undoing the “build process”, if there is no

corresponding growth in reliability of the software system built.

3. MEASURING RELIABILITY
Reliability measures only the probability of failure.

There are different metrics which facilitate the measurement of

the quality characteristic reliability.Reliability can be measured

in terms of fault rates either in the form of the frequency of

faults, or in the form of a time-distribution of faults. Another

way is to measure the Mean Time between Failures (MTBF),

where the average time between software system faults is

calculated. Mean Time to Repair (MTTR) measures the average

time between a fault occurrence, and the restoration of the

system to normal operation and thus measures the

maintainability of the system [12].

MTBF = MTTF + MTTR

Where MTTF is the mean time to failure and is a measure of

how long software is expected to operate properly before a

failure occurs.

4. THE ROAD TO RELIABILITY
When it comes to acquisition of reliability, we should not

immediately get model-oriented; instead every minutia of

software development life cycle should be given its due.

Though, it may appear that reliability considerations are born

only after the birth of software system. In fact, the road to

reliability starts as soon as the development of the software

system starts. It may be noted that the software that is properly

engineered takes the road through a well-structured process from

requirements specification and design, via detailed

specifications, to actual implementation.Thus, reliability is an

“inclusive” attribute throughout the lifecycle of the software

system. Against the backdrop of the introductory section of this

paper, it is obvious that the reliability of a software system

depends on the design methodology adopted, the nature of the

software system vis-à-vis the hardness/softness of operation and

the individual reliability of components and their cumulative

reliability result as well. The design considerations may include

topology, dependency degrees etc. Unlike hardware, software

takes a different fault identification rate with the rate peaking at

integration and testing. Rigorous removal of faults takes place

during testing and continues on a sluggish side during the

operational settings of the software, as the software heads

towards a better reliability level. Operational characteristics may

indicate the levels of reliability achieved. Moreover, the

environmental settings also govern the reliability of the software

system in or other way. To acquire a certain level of reliability,

an accurate software system design needs to be in place and the

behavioral specifications need to be understood.

 A modular design helps contain the complexity of the

software by way of increasing the “cohesion” of the modules

while reducing the “coupling” between the modules. Today’s

software engineering standards call for software to be organized

in accordance with a principle known variously as “Information

Hiding,” “Object-Oriented Programming”, “Separation of

Concerns,” “Encapsulation,” “ Data Abstraction,” etc. This

principle is designed to increase the “cohesion” of the modules

while reducing the “coupling” between modules [11].

Figure 1: V-model of Software engineering

Detailed
Design

Architectural
Design

Requirements

Analysis

Coding

Unit Testing

Integration

testing

System
testing

Quality

Review
Quality

Review

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.7, June 2011

35

Figure 2: Quality Factors Impacting Reliability [4], [7]

5. WHAT HELPS ACQUISITION OF

RELIABILITY
As per IEEE[3], [5]: “Software engineering(SE) is the

application of a systematic, disciplined, quantifiable approach to

the development, operation, and maintenance of software, and

the study of these approaches; that is, the application of

engineering to software.” Another definition is the establishment

and use of sound engineering principles in order to obtain

economically software that is reliable and works efficiently on

real machines [1]. The goal of SE is to produce quality software

in a timely, cost effective manner. Against the backdrop of these

definitions, we make the following statement for successful

acquisition of reliability. The successful acquisition of reliability

is assessed in terms of the objective of the system to be

designed, the underlying assumptions made, the requirements

design, the requirements specifications, the architectural design

specification, the specification of the design methodology

adopted, and the use of other benchmark and fitting software

engineering methodologies. It should be clear that the road to

the acquisition of reliability starts with the process of software

product development. Though reliability measures are typically

obtained from testing data, in case of COTS, the better way of

obtaining reliability measures could be from the information

supplied by its supplier. The increased modularization along

with component engineering (development and testing) and then

the integration testing help development and maintenance of

highly reliable software economically, within stipulated time-

schedule. IEEE Std 982.2-1988 includes the diagram in Figure

2, which indicates the relationship of reliability to the different

life cycle phases [4], [7]. Figure 1 shows the V-model of

software engineering.

As is evident from the diagrams in Figure 1and Figure 2, the

quality attributes permeate the software life cycle from its

conception, via various stages of gestation period, till its

retirement. This also signifies the relevance of reliability

considerations during the early phases of the software

 RETIREMENT Concept

 •Transferability, •user needs/objectives

 conversion, migration --functionality

 •Parallel checkout --performance

–completeness

–consistency

•Documentation

Standards

OPERATION & REQUIREMENTS

MAINTENANCE •Adherence to Needs
•Integrity of changes • Architecture
•Regression testing coverage •operational environment
•Ease-of-learning, Ease-of-use •Completeness

 •Ease of use

INSTALLATION &CHECKOUT DESIGN

•Operational realism •Complexity

•Configuration coverage •Modularity

•Interfaces •Interfaces

–SW to SW Test •Expandability

–SW to HW •Functional coverage •Timing, Sizing

 •Topical Coverage Implementation •Completeness

 •Component Interface •Complexity

 •Performance measure •Interfaces
•Development stds
•Completeness
•Maintainability

Software
reliability

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.7, June 2011

36

development life cycle (SDLC). However, the pertinent

attributes to a particular phase must be properly identified and

assessed as per the time-line of the development process. It may

be noted that many errors introduced/un-prevented at the

requirement specification level may not show up until the final

software product is ready and hence faulty. The role of these

quality attributes becomes more pronounced in case of “hard

reliability software systems”. A coherent focus for acquisition of

hard reliability must especially go to requirements, design,

implementation and test phases of the SDLC. However, the key

to success would be how comprehensively requirements are

analyzed and, of course, tested. The quality assurance activities

ensure that during SDLC, the statement “the right thing at the

right time in the right way” [12] is observed strictly, with the

fundamental focus on the planning activity and the compliance

to them.

6. CONCLUSION
Acquisition of reliability and its growth in a software system

must not be thought of a process attached exclusively to the

debugging phase. In fact, the reliability considerations permeate

the entire software development process. Any decision in any

phase of the life cycle may have a bearing on the reliability of

the software. In fact, the broader domain of quality aspect which

includes the reliability element also, is a companion to all the

phases of software life cycle. They have to go hand-in-hand for

the assurance of quality. As a cautionary note, it would be a

naivety to incorporate reliability consideration after the birth of

software system or after some particular stage of its gestation

period.

7. REFERENCES
[1] Bauer, F.L., Software Engineering, Information Processing,

71, 1972.

[2] Iqbal, J., and Quadri, S.M.K.,”Software Reliability

Simulation: Process, Approaches and Methodology”.

Global Journal of Computer Science and Technology,

volume 11, issue 8, May 2011.

[3] IEEE Standards Collection: Software Engineering, IEEE

Standard 610.12-1990,IEEE, 1993.

[4] IEEE Standard 982.2-1987 Guide for the Use of Standard

Dictionary of Measures to Produce Reliable Software.

[5] IEEE STD 610.12-1990, IEEE Standard Glossary of

Software Engineering Terminology, IEEE Computer

Society, 1990.

[6] Kitchenham, Barbara, Pfleeger, Shari Lawrence, “Software

Quality: The Elusive Target”. IEEE Software 13, 1

(January 1996) 12-21.

[7] Rosenberg, L., Hammer, T., and Shaw, J. “Software Metrics

and Reliability”. 9th International Symposium on Software

Reliability Engineering, Germany. November 1998.

[8] Musa, J.D., Iannino, A., and Okumoto, K., Software

Reliability—Measurement, Prediction, Application. New

York: McGraw Hill, 1987.

[9] Musa, J.D. “Operational Profiles in Software-Reliability

Engineering,” IEEE Software, vol. 10, no. 2, pp. 14-32,

Mar. 1993.

[10] Parnas, D. L., Clements, P.C and Weiss, D.M.(1985)

“Modular Structure of complex Systems”. IEEE

Transactions on Software Engineering, 11, pp 259-266.

[11] Parnas, D. L., Schouwen, J., and Kwan, S., “Evaluation of

Safety-Critical software”. Communications of ACM, June

1990.

[12] Pressman, Roger S., “Software Engineering: A

Practitioner’s Approach”. The McGraw-Hill Companies,

Inc., 1997.

