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1. Introduction

Let X and Y be normed spaces and let K ⊂ Y be a closed convex pointed cone
in Y . We consider vector optimization problems of the form

(V OP )
K − min f(x)

subject to x ∈ A,

where f : X → Y and A ⊂ X is a feasible set. By E ⊂ Y we denote the set of
all global efficient points to (V OP ), i.e., α ∈ E iff (f(A)−α)∩ (−K) = {0} and
by S ⊂ X we denote the set of all its global solutions, S = A ∩ f−1(E).

The role of weak sharp minima in scalar optimization in relation to stability
of parametric problems and error bounds is widely recognized, see, e.g., Attouch
and Wets (1993); Auslander and Crouzeix (1988); Azé and Corvellec (2002);
Bonnans and Shapiro (2000); Burke and Deng (2002).

In vector optimization several definitions of global weak sharp solutions has
been proposed, see, e.g., Bednarczuk (2004, 2007); Deng and Yang (2004), for
the linear case.

The aim of this paper is to discuss several concepts of (global) weak sharp
solutions to problem (V OP ) and their applications to stability of parametric
problems. In Section 2 weak sharp solutions to (V OP ) are presented and their
basic properties are elucidated. In Section 3 weak sharp solutions are exploited
to formulate sufficient conditions for stability of parametric problems.
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2. Global weak sharp solutions

By BX and B̄X we denote open and closed unit balls in X , respectively. For
any set C ⊂ X , d(x, C) = inf{‖x − c‖ : c ∈ C}. For any α ∈ Y put
Sα := {x ∈ A : f(x) = α}.

Definition 1 (see Bednarczuk, 2007) Let α∈E. We say that the solution set S
to (V OP ) is (globally) Sα-weak sharp if there exists a constant τ >0 such that

f(x) − α 6∈ τd(x, Sα)BY − K for all x ∈ A \ Sα. (1)

Optimality conditions for Sα weak sharpness in the local setting have been
recently investigated by Studniarski (2007). If intK 6= ∅, a point x0 ∈ A is a
weak solution to (V OP ), x0 ∈ WS, if (f(A) − f(x0)) ∩ (− intK) = ∅. If there
exists α ∈ E such that S is Sα-weak sharp, then S = WS.

Let α ∈ E. We define a set-valued mapping Eα : R+
→→ X as

Eα(ε) := A ∩ f−1(α + εBY −K). (2)

Clearly, Eα(0) = Sα and graphEα = {(ε, x) ∈ R+×A : f(x) ∈ α+εBY −K}.
There exist approaches to well-posedness of (V OP ) via continuity properties of
set-valued mappings similar to Eα (see e.g. Bednarczuk, 2004, 2007; Miglierina
and Molho, 2003, 2007; Zaffaroni, 2003).

Proposition 1 Let α ∈ E and let S be Sα-weak sharp with constant τ > 0.
(i) If f is Lipschitz on A with constant L, then τ<L.
(ii) The following condition holds:

(C1) there exists ε0 > 0 such that for each 0 ≤ ε ≤ ε0

A ∩ f−1(α + εBY −K) ⊂ Sα + ε
1

τ
BY .

Proof. (i) If f : X → Y is Lipschitz on A with constant L > 0, i.e.

‖f(x) − f(x′)‖ ≤ L‖x − x′‖ for all x, x′ ∈ A,

then ‖f(x) − α‖ ≤ L‖x − x′‖ for any x, x′ ∈ A, f(x′) = α, and, consequently,
‖f(x) − α‖ ≤ Ld(x, Sα) for all x ∈ A. On the other hand, f(x) − α 6∈
τd(x, Sα)BY − K for x ∈ A \ Sα. In particular, ‖f(x) − α‖ ≥ τd(x, Sα)
for x ∈ A \ Sα, which gives the required inequality.

(ii) Suppose, on the contrary, that (C1) does not hold, i.e., there exist
sequences εn → 0+ and (xn) ⊂ A such that

f(xn) ∈ α + εnBY −K for n ≥ 1,

and d(xn, Sα) > εn
1
τ
. Hence, for n ≥ 1, xn 6∈ Sα, τd(xn, Sα) > εn and

f(xn) ∈ α + τd(xn, Sα)BY −K,

which contradicts Sα-weak sharpness of S.
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Condition (C1) of Proposition 1 (ii) can be rephrased by saying that the set-
valued mapping Eα defined by (2), is upper Lipschitz at 0 ∈ dom E with constant
1
τ

> 0, where a set-valued mapping Γ : X→→ Y is upper Lipschitz at x0 ∈ domΓ
with constant L > 0 if there exists t > 0 such that Γ(x) ⊂ Γ(x0)+L‖x−x0‖BY

for x ∈ B(x0, t).
Recall that α ∈ E is a (global) strict efficient point to (V OP ) (Bednarczuk,

2004) if there exists a constant γ > 0 such that

f(x) − α 6∈ γ‖f(x) − α‖BY −K for x ∈ A f(x) 6= α. (3)

As before, if f is Lipschitz on A with constant L we have ‖f(x)−α‖ ≤ L‖x−x′‖
for all x ∈ A and x′ ∈ Sα and consequently ‖f(x)−α‖ ≤ Ld(x, Sα) for all x ∈ A.

If moreover, S is Sα-weak sharp with constant τ > 0 we get

f(x) − α 6∈
τ

L
‖f(x) − α‖BY −K for x ∈ A \ Sα, (4)

which means that α ∈ E is strict efficient with constant τ
L
.

In this way we proved the following proposition.

Proposition 2 Let f be Lipschitz on A with constant L > 0. If S is Sα-weak
sharp with constant τ > 0, then α ∈ E is strict efficient with constant τ

L
.

Definition 2 (see Bednarczuk, 2007) Let α ∈ E. We say that the solution set
S to (V OP ) is α-weak sharp if there exists a constant τ > 0 such that

f(x) − α 6∈ τd(x, S)BY −K for all x ∈ A \ S. (5)

If, for some α ∈ E, the solution set S is Sα-weak sharp, then S is α-weak
sharp.

Proposition 3 Let α ∈ E. If S is α-weak sharp with constant τ > 0, the
following condition holds:
(C2) there exists ε0 > 0 such that for each 0 ≤ ε ≤ ε0

A ∩ f−1(α + εBY −K) ⊂ S + ε
1

τ
BY .

Proof. Suppose, on the contrary, that (C2) does not hold, i.e., there exist se-
quences εn → 0+ and (xn) ⊂ A such that f(xn) ∈ α+εnBY −K and d(xn, S) >
εn

1
τ

for n ≥ 1. Hence, xn 6∈ S, τd(xn, S) > εn and f(xn) ∈ α+τd(xn, S)BY −K,
which contradicts α-weak sharpness of S.

Consider now linear multicriteria problems of the form

(LMP )
Rm

+ − min Cx
subject to x ∈ A,
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where Rm
+ is a nonnegative orthant, C : Rn → Rm is a linear mapping and

A ⊂ Rn is polyhedral set. According to Deng and Yang (2004), WS is a set of
weak sharp solutions to (LMP ) if there exists a constant τ > 0 such that

d(Cx, WE) ≥ τd(x, WS) for x ∈ A, (6)

where WE = f(WS). Basing ourselves on this idea we define weak sharp solu-
tions to (V OP ).

Definition 3 We say that the solution set S to (V OP ) is (globally) weak sharp
if there exists a constant τ > 0 such that

d(f(x), E) ≥ τd(x, S) for all x ∈ A. (7)

Proposition 4 Let τ > 0 be given. If for any α ∈ E the set S is α-weak sharp
with constant τ , then the solution set S is weak sharp with constant τ .

Proof. By assumption, for any α ∈ E,

f(x) − α 6∈ τd(x, S)BY −K for x ∈ A \ S.

In particular, f(x) − α 6∈ τd(x, S)BY for x ∈ A \ S and any α ∈ E, which gives
the assertion.

3. Lipschitz continuities of efficient points

Consider now parametric vector optimization problems of the form

(V OP )u
K − min f(x)

subject to x ∈ A(u),

where the parameter u belongs to a normed space U . By E(u) and S(u) we
denote the set of efficient points and the solution set to (V OP )u, respectively.

In this section we exploit weak sharpness and Sα-weak sharpness to provide
sufficient conditions for Lipschitzness of E(u) and S(u) near a given u0 ∈ U .
For other types of convergence of efficient points see e.g. Miglierina and Molho
(2007).

In what follows the restrictions on behaviour of sets A(u) around a given
u0 are expressed through continuity properites of the mapping F : U→→ X ,
F (u) = A(u), F (u0) = A. Recall that a set-valued mapping Γ : U→→ X is lower
Lipschitz at u0 ∈ domΓ if there exist constants L > 0 and t > 0 such that
Γ(u0) ⊂ Γ(u)+L‖u−u0‖BY for u ∈ B(u0, t). Γ is Lipschitz at u0 ∈ domΓ if Γ
is upper and lower Lipschitz at u0. Moreover, Γ is Lipschitz around u0 ∈ domΓ
if there exist constants L > 0 and t > 0 such that Γ(u) ⊂ Γ(u′) + L‖u− u′‖BY

for u, u′ ∈ B(u0, t). The domination property (DP ) holds for (V OP ) if for any
x ∈ A there exists x̄ ∈ S such that f(x̄) ∈ f(x) − K. Let us note that if
f : X → R, (DP ) is satisfied provided S 6= ∅.
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Theorem 1 Let f : X → Y be Lipschitz on X with constant Lf > 0. If

(i) F : U→→ X is Lipschitz at u0 ∈ domF with constants Lc > 0, t > 0,
(ii) (DP ) holds for all (V OP )u with u ∈ B(u0, t),
(iii) there exists τ > 0 such that for each α ∈ E the solution set S is Sα-weak

sharp with constant τ , i.e. for each α ∈ E,

f(x) − α 6∈ τd(x, Sα)BY −K for x ∈ A \ Sα,

then

E ⊂ E(u) + (LcLf +
2LcL

2
f

τ
)‖u − u0‖BY for u ∈ B(u0, t).

If moreover, for u ∈ B(u0, t)\{u0} the sets S(u) are weak sharp with constant τ,
then

S ⊂ S(u) + (Lc +
2LcLf

τ
+

2LcL
2
f

τ2
)‖u − u0‖BX for u ∈ B(u0, t).

Proof. By (i), (ii), u0 ∈ int domE. Take any α ∈ E and u ∈ B(u0, t). There
exists x̄ ∈ S such that f(x̄) = α. By (i), there exists z ∈ A(u) such that
‖x̄ − z‖ ≤ Lc‖u − u0‖. If d(f(z), E(u)) ≤ 2LcLf‖u − u0‖, the conclusion
follows. Otherwise, by (i), there exists z̄ ∈ S(u) such that f(z̄) ∈ f(z) − K
and ‖f(z) − f(z̄)‖ > 2LcLf‖u − u0‖. By (i), there exists x ∈ A such that
‖x − z̄‖ ≤ Lc‖u − u0‖ and by the Lipschitzness of f

‖f(x) − f(x̄)‖ ≥ ‖f(z)− f(z̄)‖ − ‖f(z)− f(x̄)‖ − ‖f(z̄) − f(x)‖ > 0,

and

f(x) − f(x̄) = (f(x) − f(z̄)) + (f(z̄) − f(z)) + (f(z) − f(x̄))
∈ 2LfLc‖u − u0‖BY −K.

By (iii) and by Proposition 2, f(x) − f(x̄) 6∈ τ
Lf

‖f(x) − f(x̄)‖BY − K. This

proves that τ‖f(x) − f(x̄)‖ ≤ 2LcL
2
f‖u − u0‖ and consequently

‖f(x̄) − f(z̄)‖ ≤ ‖f(x̄) − f(x)‖ + ‖f(x) − f(z̄)‖

≤ (LfLc +
2L2

f Lc

τ
)‖u − u0‖

which proves the first assertion.

To prove the second assertion take any x0 ∈ S and u ∈ B(u0, t) \ {u0}. By
the first assertion, there exists z0 ∈ S(u), f(z0) = η, such that

f(x0) − η ∈ (LcLf +
2LcL

2
f

τ
)‖u − u0‖BY .
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By (i), there exists z ∈ A(u) such that ‖x0 − z‖ ≤ Lc‖u − u0‖. If d(z, S(u)) ≤
Lc‖u − u0‖, the conclusion follows. Otherwise, since S(u), u 6= u0, is weak
sharp, f(z) − η 6∈ τd(z, S(u))BY . Moreover,

f(z)− η = (f(z) − f(x0)) + (f(x0) − η) ∈ (2LcLf +
2LcL

2
f

τ
)‖u − u0‖BY .

Hence, τd(z, S(u)) ≤ (2LcLf +
2LcL2

f

τ
)‖u − u0‖ and

d(x0, S(u)) ≤ ‖x0 − z‖ + d(z, S(u)) ≤ (Lc +
2LcLf

τ
+

2LcL
2
f

τ2
)‖u − u0‖.

Let u ∈ U and η ∈ Y. Put Sη(u) = {x ∈ A(u) : f(x) = η}.

Theorem 2 Let f : X → Y be Lipschitz on X with constant Lf > 0. If
(i) F : U→→ X is Lipschitz at u0 ∈ domF with constants Lc > 0 and t > 0,
(ii) (DP ) holds for (V OP ),
(iii) there exists τ > 0 such that for u ∈ B(u0, t), u 6= u0, and η ∈ E(u) the

sets S(u) are Sη(u)-weak sharp with constant τ , i.e.

f(x) − η 6∈ τd(x, Sη(u))BY −K for x ∈ A(u) \ Sη(u),

then E(u) ⊂ E + (LfLc +
2LcL2

f

τ
)‖u − u0‖BY for u ∈ B(u0, t).

If, moreover, S is weak sharp, then

S(u) ⊂ S + (Lc +
2LcLf

τ
+

2LcL
2
f

τ
)‖u − u0‖BX for u ∈ B(u0, t).

Proof. Note that by (ii), E 6= ∅. Take any u ∈ B(u0, t). If E(u) = ∅, the
conclusion follows. Otherwise, take any η ∈ E(u). There exists z0 ∈ S(u),
f(z0) = η. By (i), there exists x ∈ A such that ‖z0 − x‖ ≤ Lc‖u − u0‖. If
d(f(x), E) ≤ 2LcLf‖u − u0‖, the conclusion follows.

Otherwise, by (ii), there is x0 ∈ S, f(x0) = α, such that f(x0) ∈ f(x) − K
and ‖f(x) − α‖ > 2LcLf‖u − u0‖. By (i), there exists z ∈ A(u) such that
‖z − x0‖ ≤ Lc‖u − u0‖. By the Lipschitzness of f , f(z) − η = f(z) − f(x0) +
f(x0) − f(x) + f(x) − η ∈ 2LcLf‖u − u0‖BY −K. Since

‖f(z)− η‖ ≥ ‖f(x) − α‖ − ‖f(x) − η‖ − ‖f(z) − α‖ > 0,

by (iii) and by Proposition 2, f(z) − η 6∈ τ
Lf

‖f(z) − η‖BY − K. Consequently,

‖f(z)− η‖ ≤
2LcL2

f

τ
‖u − u0‖ and

‖η − α‖ ≤ ‖f(z) − η‖ + ‖f(z)− α‖ ≤ (LcLf +
2LcLf

τ
)‖u − u0‖.
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To prove the second assertion, take any z0 ∈ S(u), u ∈ B(u0, t). By the first
assertion of the theorem, there exists x0 ∈ S, f(x0) = α, such that f(z0) −

f(x0) ∈ (LcLf +
2LcLf

τ
)‖u − u0‖. By (i), there exists x ∈ A such that ‖x −

z0‖<Lc‖u − u0‖. If d(x, S) ≤ 2Lc‖u − u0‖, the conclusion follows. Otherwise,
by (ii), there exists x0 ∈ S, f(x0) = α, such that f(x0) ∈ f(x) − K and
‖x − x0‖ > 2Lc‖u − u0‖. Hence,

f(x)− f(x0) = f(x)− f(z0) + f(z0)− f(x0) ∈ (2LcLf +
2LcL

2
f

τ
)‖u− u0‖.

Since S is weak sharp, f(x)− f(x0) 6∈ τd(x, S)BY , which proves that d(z0, S) ≤

(Lc +
2LcLf

τ
+

2LcL2

f

τ2 )‖u − u0‖.

The above theorems immediately lead to the following result.

Theorem 3 Let f : X → Y be Lipschitz on X with constant Lf > 0. Assume
that
(i) the set valued mapping F : U→→ X is Lipschitz around u0 ∈ domF with

constants Lc > 0 and t > 0,
(ii) (DP ) holds for (V OP )u, u ∈ B(u0, t),
(iii) there exists τ > 0 such that for u ∈ B(u0, t) and η ∈ E(u) the solution

sets S(u) to (V OP )u are Sη(u)-weak sharp with constant τ .
Then

S(u) ⊂ S(u′) + (Lc +
2LcLf

τ
+

2LcL
2
f

τ2
)‖u′ − u‖BX for u, u′ ∈ B(u0, t/2).
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