
This article was downloaded by: [Matematicky Ustav Av Cr]
On: 19 December 2011, At: 11:44
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Stochastic Analysis and Applications
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lsaa20

On Weak Solutions of Stochastic Differential Equations
Martina Hofmanová a b & Jan Seidler b
a Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles
University, Praha, Czech Republic
b Institute of Information Theory and Automation of the ASCR, Praha, Czech Republic

Available online: 19 Dec 2011

To cite this article: Martina Hofmanová & Jan Seidler (2012): On Weak Solutions of Stochastic Differential Equations,
Stochastic Analysis and Applications, 30:1, 100-121

To link to this article:  http://dx.doi.org/10.1080/07362994.2012.628916

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/lsaa20
http://dx.doi.org/10.1080/07362994.2012.628916
http://www.tandfonline.com/page/terms-and-conditions


Stochastic Analysis and Applications, 30: 100–121, 2012
Copyright © Taylor & Francis Group, LLC
ISSN 0736-2994 print/1532-9356 online
DOI: 10.1080/07362994.2012.628916

OnWeak Solutions of Stochastic
Differential Equations

MARTINA HOFMANOVÁ1�2 AND JAN SEIDLER2

1Department of Mathematical Analysis, Faculty of Mathematics
and Physics, Charles University, Praha, Czech Republic
2Institute of Information Theory and Automation of the ASCR,
Praha, Czech Republic

A new proof of existence of weak solutions to stochastic differential equations with
continuous coefficients based on ideas from infinite-dimensional stochastic analysis
is presented. The proof is fairly elementary, in particular, neither theorems on
representation of martingales by stochastic integrals nor results on almost sure
representation for tight sequences of random variables are needed.
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0. Introduction

In this article, we provide a modified proof of Skorokhod’s classical theorem on
existence of (weak) solutions to a stochastic differential equation

dX = b�t� X�dt + ��t� X�dW� X�0� = ��

where b � �0� T�×�m −→ �m and � � �0� T�×�m −→ �m×n are Borel functions of
at most linear growth continuous in the second variable. (Henceforth, by �m×n we
shall denote the space of all m-by-n matrices over � endowed with the Hilbert–
Schmidt norm �A� = �TrAA∗�1/2.) Our proof combines tools that were proposed
for handling weak solutions of stochastic evolution equations in infinite-dimensional
spaces, where traditional methods cease to work, with results on preservation of
the local martingale property under convergence in law. In an finite-dimensional
situation, the “infinite-dimensional” methods simplify considerably and, in our
opinion, the alternative proof based on them is more lucid and elementary than the
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Weak Solutions of SDEs 101

standard one. A positive teaching experience of the second author was, in fact, the
main motivation for writing this article. Moreover, we believe that the reader may
find the comparison with other available approaches illuminating.

To explain our argument more precisely, let us recall the structure of the usual
proof; for notational simplicity, we shall consider (in the informal introduction only)
autonomous equations. Kiyosi Itô showed in his seminal articles (see, e.g., [9, 10])
that a stochastic differential equation

dX = b�X�dt + ��X�dW (0.1)

X�0� = � (0.2)

driven by an n-dimensional Wiener process W has a unique solution provided
that b � �m −→ �m, � � �m −→ �m×n are Lipschitz continuous functions. A next
important step was taken by Skorokhod [16, 17] in 1961, who proved that there
exists a solution to (0.1), (0.2) if b and � are continuous functions of at most linear
growth, that is,

sup
x∈�m

�b�x�� + ���x��
1+ �x� < �	

It was realized only later that two different concepts of a solution are involved:
For Lipschitzian coefficients, there exists an ��t�-progressively measurable process
in �m solving (0.1) and such that X�0� = �, whenever �
�� � ��t��P� is a stochastic
basis carrying an n-dimensional ��t�-Wiener process and � is an �0-measurable
function. (We say that (0.1), (0.2) has a strong solution.) On the other hand, for
continuous coefficients, a stochastic basis �
�� � ��t��P�, an n-dimensional ��t�-
Wiener process W and an ��t�-progressively measurable process X may be found
such that X solves (0.1) and X�0� and � have the same law. (We speak about
existence of a weak solution to (0.1), (0.2) in such a case.) It is well known that this
difference is substantial in general: under assumptions of the Skorokhod theorem
strong solutions need not exist (see [1]).

Skorokhod’s existence theorem is remarkable not only by itself, but also
because of the method of its proof. To present it, we need some notation: If M
and N are continuous real local martingales, then by �M� we denote the quadratic
variation of M and by �M�N� the cross-variation of M and N . Let M = �Mi�mi=1 and
N = �N j�nj=1 be continuous local martingales with values in �m and �n, respectively.
By ��M�� we denote the tensor quadratic variation of M , ��M�� = ��Mi�Mk��mi�k=1,
and we set �M� = Tr��M��. Analogously, we define

M ⊗ N = �MiN j�mi=1
n
j=1� ��M�N�� = ��Mi�N j��mi=1

n
j=1	

Let X and Y be random variables with values in the same measurable space �E���,
we write X

�∼ Y if X and Y have the same law on �. Similarly, X
�∼ � means that the

law of X is a probability measure � on �.
Let

dXr = br�Xr�dt + �r�Xr�dW� Xr�0� = �
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102 Hofmanová and Seidler

be a sequence of equations that have strong solutions and approximate (0.1) in a
suitable sense. (We shall approximate b and � by Lipschitz continuous functions
having the same growth as b and �, but likewise it is possible to use, for example,
finite difference approximations.) The linear growth hypothesis makes it possible to
prove that

the laws of �Xr r ≥ 1� are tight� (0.3)

that is, form a relatively weakly compact set of measures on the space of continuous
trajectories. Then Skorokhod’s theorem on almost surely converging realizations
of converging laws (see, e.g., [5, Theorem 11.7.2]) may be invoked, which yields a
subsequence �Xrk

� of �Xr�, a probability space �
̃� �̃ � P̃� and sequences �X̃k k ≥ 0�,
�W̃k k ≥ 0� such that

�Xrk
�W�

�∼ �X̃k� W̃k�� k ≥ 1 �X̃k� W̃k�
P̃-a.s.−→
k→�

�X̃0� W̃0�	 (0.4)

It is claimed that X̃0 is the (weak) solution looked for. Skorokhod’s articles [16, 17]
are written in a very concise way and details of proofs are not offered; nowadays
a standard version of Skorokhod’s proof is as follows (see [18, Theorem 6.1.6], [8,
Theorem IV.2.2], [12, Theorem 5.4.22]): under a suitable integrability assumption
upon the initial condition,

Mk = Xrk
− Xrk

�0�−
∫ ·

0
brk�Xrk

�s��ds

is a martingale with a (tensor) quadratic variation

��Mk�� =
∫ ·

0
�rk

�Xrk
�s���∗

rk
�Xrk

�s��ds�

for all k ≥ 1. Equality in law (0.4) implies that also

M̃k = X̃k − X̃k�0�−
∫ ·

0
brk�X̃k�s��ds

are martingales for k ≥ 1, with quadratic variations

��M̃k�� =
∫ ·

0
�rk

�X̃k�s���
∗
rk
�X̃k�s��ds	

Using convergence P̃-almost everywhere, it is possible to show that

M̃0 = X̃0 − X̃0�0�−
∫ ·

0
b�X̃0�s��ds

is a martingale with a quadratic variation

��M̃0�� =
∫ ·

0
��X̃0�s���

∗�X̃0�s��ds	
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Weak Solutions of SDEs 103

By the integral representation theorem for martingales with an absolutely continuous
quadratic variation (see, e.g., [12, Theorem 3.4.2] or [8, Theorem II.7.1′]), there exists
a Wiener process Ŵ (on an extended probability space) satisfying

M̃0 =
∫ ·

0
��X̃0�s��dŴ �s�	

Therefore, �Ŵ � X̃0� is a weak solution to (0.1), (0.2). (In the cited books, martingale
problems are used instead of weak solutions. Then the integral representation
theorem is hidden in the construction of a weak solution from a solution to the
martingale problem, so a complete proof is essentially the one sketched above.)

This procedure has two rather nontrivial inputs: the Skorokhod representation
theorem, and the integral representation theorem whose proof, albeit based on a
simple and beautiful idea, becomes quite technical if the space dimension is greater
than one. An alternative approach to identification of the limit was discovered
recently (see [3, 14]) in the course of study of stochastic wave maps between
manifolds, where integral representation theorems for martingales are no longer
available. The new method, which refers only to basic properties of martingales and
stochastic integrals, may be described in the case of the problem (0.1), (0.2) in the
following way: One starts again with a sequence ��X̃k� W̃k�� such that (0.4) holds
true. If the initial condition is p-integrable for some p > 2, it can be shown in a
straightforward manner, using the almost sure convergence, that

M̃0� �M̃0�2 −
∫ ·

0
���X̃0�s���2ds� M̃0 ⊗ W̃0 −

∫ ·

0
��X̃0�s��ds

are martingales, in other words,〈
M̃0 −

∫ ·

0
��X̃0�s��dW̃0�s�

〉
= 0�

whence one concludes that �W̃0� X̃0� is a weak solution. If the additional integrability
hypothesis on � is not satisfied, the proof remains almost the same, only a suitable
cut-off procedure must be amended.

We take a step further and eliminate also the Skorokhod representation
theorem. Let P̃k be the laws of �Xrk

�W� on the space U = ���0� T��m�×
���0� T��n�; we know that the sequence �P̃k� converges weakly to some measure
P̃0. Denote by �Y� B� the canonical process on U and set

�Mk = Y − Y�0�−
∫ ·

0
brk�Y�s��ds� k ≥ 0

(with br0 = b, �r0
= �). Then

�Mk� ��Mk�2 −
∫ ·

0
��rk

�Y�s���2ds� �Mk ⊗ B −
∫ ·

0
�rk

�Y�s��ds� (0.5)

are local martingales under the measure P̃k for every k ≥ 1, as can be inferred quite
easily from the definition of the measure P̃k. Now one may try to use Theorem
IX.1.17 from Jacod and Shiryaev [11] stating, roughly speaking, that a limit in law
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104 Hofmanová and Seidler

of a sequence of continuous local martingales is a local martingale. We do not
use this theorem explicitly, since to establish convergence in law of the processes
(0.5) as k → � is not simpler than to check the local martingale property for k = 0
directly, but our argument is inspired by the proofs in the book [11]. The proof we
propose is not difficult and it is almost self-contained, it requires only two auxiliary
lemmas (with simple proofs) from Jacod and Shiryaev [11] on continuity properties
of certain first entrance times, which we recall in the Appendix. Once we know that
the processes (0.5) are local martingales for k = 0 as well, the trick from Brzeźniak
and Ondreját [3] and Ondreját [14] may be used yielding that �B� Y� is a weak
solution to (0.1), (0.2). It is worth mentioning that this procedure is independent of
any integrability hypothesis on �.

The proof of (0.3) not being our main concern notwithstanding, we decided to
include a less standard proof of tightness inspired also by the theory of stochastic
partial differential equations. We adopt an argument proposed by Ga̧tarek and
Gołdys [6] (cf. also [4, chapter 8]), who introduced it when studying weak solutions
to stochastic evolution equations in Hilbert spaces, and which relies on the
factorization method of Da Prato et al. (see [4, chapters 5 and 7] for a thorough
exposition) and on compactness properties of fractional integral operators. The
fractional calculus has become popular amongst probabilists recently because of its
applications to fractional Brownian motion driven stochastic integrals and a proof
of tightness using it may suit some readers more than the traditional one based on
estimates of moduli of continuity.

Let us close this Introduction by stating the result to be proved precisely.

Theorem 0.1. Let b � �0� T�×�m −→ �m and � � �0� T�×�m −→ �m×n be Borel
functions such that b�t� ·� and ��t� ·� are continuous on �m for any t ∈ �0� T� and the
linear growth hypothesis is satisfied, that is

∃K∗ < �∀t ∈ �0� T�∀x ∈ �m �b�t� x�� ∨ ���t� x�� ≤ K∗ �1+ �x�� 	 (0.6)

Let � be a Borel probability measure on �m. Then there exists a weak solution to the
problem

dX = b�t� X�dt + ��t� X�dW� X�0�
�∼ �	 (0.7)

We recall that a weak solution to (0.7) is a triple ��G��� ��t��Q��W�X�, where
�G��� ��t��Q� is a stochastic basis with a filtration ��t� that satisfies the usual
conditions, W is an n-dimensional ��t�-Wiener process and X is an �m-valued ��t�-
progressively measurable process such that Q � X�0�−1 = � and

X�t� = X�0�+
∫ t

0
b�r� X�r��dr +

∫ t

0
��r� X�r��dW�r�

for all t ∈ �0� T� Q-almost surely.
The rest of this article is devoted to the proof of Theorem 0.1. In Section 1,

a sequence of equations with Lipschitzian coefficients approximation (0.7) is
constructed, tightness of the set of their solutions being shown in Section 2. In
Section 3, cluster points of the set of approximating solutions are identified as weak
solutions to (0.7).
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Weak Solutions of SDEs 105

1. Approximations

In this section, we introduce a sequence of equations that have strong solutions and
approximate the problem (0.7). If E and F are metric spaces, we denote by ��E F�
the space of all continuous mappings from E to F . For brevity, we shall sometimes
write �V instead of ���0� T��V � if V ∈ �. If f ∈ ���0� T� F� and s ∈ �0� T� then
the restriction of f to the interval �0� s� will be denoted by �sf . Plainly, �s �
���0� T� F� −→ ���0� s� F� is a continuous mapping. Finally, Lq�G�V � stands for
the space of q-integrable functions on G with values in �V .

Our construction is based on the following proposition.

Proposition 1.1. Suppose that F � �+ ×�N −→ �V is a Borel function of at most
linear growth, that is,

∃L < �∀t ≥ 0∀x ∈ �N �F�t� x�� ≤ L �1+ �x�� �

such that F�t� ·� ∈ ���N �V � for any t ∈ �+. Then there exists a sequence of Borel
functions Fk � �+ ×�N −→ �V , k ≥ 1, which have at most linear growth uniformly in
k, namely

∀k ≥ 1∀t ≥ 0∀x ∈ �N �Fk�t� x�� ≤ L �2+ �x�� �

which are Lipschitz continuous in the second variable uniformly in the first one,

∀k ≥ 1∃Lk < �∀t ≥ 0∀x� y ∈ �N �Fk�t� x�− Fk�t� y�� ≤ Lk�x − y��

and that satisfy

lim
k→�

Fk�t� ·� = F�t� ·� locally uniformly on �N

for all t ≥ 0.

The proof is rather standard so it is not necessary to dwell on its details: one
takes a smooth function � ∈ ����N � such that � ≥ 0, supp� ⊆ �x ∈ �N  �x� ≤ 1�
and
∫
�N �dx = 1 and sets

Gk�t� x� = kN
∫
�N

F�t� y�� �k�x − y�� dy

for k ≥ 1, t ≥ 0 and x ∈ �N . The functions Gk have all desired properties except for
being only locally Lipschitz, but it is possible to modify them outside a sufficiently
large ball in an obvious manner.

Let the coefficients b and � satisfy the assumptions of Theorem 0.1. Using
Proposition 1.1, we find Borel functions bk � �0� T�×�m −→ �m and �k � �0� T�×
�m −→ �m×n, k ≥ 1, such that

sup
k≥1

sup
t∈�0�T�

{�bk�t� x�� ∨ ��k�t� x��
} ≤ K∗ �2+ �x�� � x ∈ �m� (1.1)

bk�t� ·� and �k�t� ·� are Lipschitz continuous uniformly in t ∈ �0� T� and converge
locally uniformly on �m as k → � to b�t� ·� and ��t� ·�, respectively, for all t ∈ �0� T�.
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106 Hofmanová and Seidler

Fix an arbitrary stochastic basis �
�� � ��t��P�, on which an n-dimensional ��t�-

Wiener process W and an �0-measurable random variable � � 
 −→ �m with �
�∼

� are defined. It is well known that for any k ≥ 1 there exists a unique ��t�-
progressively measurable �m-valued stochastic process Xk solving the equation

dXk = bk�t� Xk�dt + �k�t� Xk�dW� Xk�0� = �	 (1.2)

Moreover, for any p ∈ �2��� there exists a constant C∗ < �, depending only on p,
T and K∗, such that

sup
k≥1

E sup
0≤t≤T

�Xk�t��p ≤ C∗ �1+ E���p� � (1.3)

provided that ∫
�m

�x�pd��x� = E���p < �	

2. Tightness

Let �Xk k ≥ 1� be the sequence of solutions to (1.2). Plainly, the processes Xk may
be viewed as random variables Xk � 
 −→ �m (where the Polish metric space �m

is endowed with its Borel �-algebra). In this section, we aim at establishing the
following proposition.

Proposition 2.1. The set �P � X−1
k  k ≥ 1� of Borel probability measures on

���0� T��m� is tight.

To this end, let us recall the definition of the Riemann–Liouville (or fractional
integral) operator: if q ∈�1���, � ∈� 1

q
� 1� and f ∈ Lq��0� T��m�, we define a

function R�f � �0� T� −→ �m by

�R�f� �t� =
∫ t

0
�t − s��−1f�s�ds� 0 ≤ t ≤ T	

The definition is correct, as an easy application of the Hölder inequality shows.
Note that, in particular, R1f = ∫ ·

0 f�t�dt. It is well known (and may be checked
by very straightforward calculations) that R� is a bounded linear operator
from Lq��0� T��m� to the space �0��−1/q��0� T��m� of ��− 1

q
�-Hölder continuous

functions (see, e.g., [15, Theorem 3.6]). Balls in �0��−1/q��0� T��m� are relatively
compact in ���0� T��m� by the Arzelà-Ascoli theorem, hence, we arrive at

Lemma 2.2. If q ∈�1��� and � ∈� 1
q
� 1�, then R� is a compact linear operator from

Lq��0� T��m� to ���0� T��m�.

We shall need also a Fubini-type theorem for stochastic integrals in the
following form (see [4, Theorem 4.18] for a more general result):

Lemma 2.3. Let �X��� �� be a finite measure space, �G��� ��t��Q� a stochastic
basis, and B an n-dimensional ��t�-Wiener process. Denote by 	 the �-algebra of
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Weak Solutions of SDEs 107

��t�-progressively measurable sets and assume that � � �0� T�×G× X −→ �m×n is an
	⊗ �-measurable mapping such that

∫
X

( ∫ T

0

∫
G
���s� x��2dQ ds

)1/2

d��x� < �	 (2.1)

Then ∫
X

[ ∫ T

0
��s� x�dB�s�

]
d��x� =

∫ T

0

[ ∫
X
��s� x�d��x�

]
dB�s�

Q-almost surely.

The last auxiliary result to be recalled is the Young inequality for convolutions
(see, e.g., [13, Theorem 4.2]).

Lemma 2.4. Let p� r� s ∈ �1��� satisfy

1
p
+ 1

q
= 1+ 1

s
	

If f ∈ Lp��d� and g ∈ Lq��d�, then the integral

�f ∗ g��x� ≡
∫
�d

f�x − y�g�y�dy

converges for almost all x ∈ �d, f ∗ g ∈ Ls��d� and∥∥f ∗ g∥∥
Ls ≤ �f�Lp�g�Lq 	

In fact, we shall need only a particular one-dimensional case of Lemma 2.4: if
f ∈ Lp�0� T�, g ∈ Lq�0� T�, 1

p
+ 1

q
= 1+ 1

s
, then

∫ T

0

∣∣∣∣ ∫ t

0
f�t − r�g�r�dr

∣∣∣∣
s

dt ≤ �f�sLp�0�T��g�sLq�0�T�	 (2.2)

Now we derive a representation formula that plays a key role in our proof of
Proposition 2.1.

Lemma 2.5. Let � be an �m×n-valued progressively measurable process such that

E
∫ T

0
���s��qds < �

for some q > 2. Choose � ∈� 1
q
� 1
2 � and set

Z�t� =
∫ t

0
�t − u�−���u�dW�u�� 0 ≤ t ≤ T	

Then ∫ t

0
��s�dW�s� = sin ��

�
�R�Z� �t�

for all t ∈ �0� T� P-almost surely.
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108 Hofmanová and Seidler

Proof. The result is well known and widely used for infinite-dimensional systems
(see, e.g., [4, §5.3]). For finite-dimensional equations, the proof is slightly simpler
and, thus, it is repeated here for the reader’s convenience.

Since s−2� ∈ L1�0� T�, E���·��2 ∈ L1�0� T�, their convolution

t �−→
∫ t

0
�t − s�−2�E���s��2ds = E

∫ t

0

∣∣�t − s�−����s��∣∣2ds
belongs to L1�0� T� as well and so is finite almost everywhere in �0� T�, which implies
that Z�t� is well defined for almost all t ∈ �0� T�. By the Burkholder-Davis-Gundy
inequality,

E
∫ T

0
�Z�t��qdt =

∫ T

0
E

∥∥∥∥ ∫ s

0
�s − u�−���u�dW�u�

∥∥∥∥
q

ds

≤ CqE
∫ T

0

( ∫ s

0
�s − u�−2����u��2du

)q/2

ds

≤ Cq

( ∫ T

0
s−2�ds

)q/2( ∫ T

0
E���u��qdu

)


the last estimate being a consequence of (2.2) and the fact that E���·��2 ∈ Lq/2�0� T�.
Hence Z�·� �� ∈ Lq�0� T�m� for P-almost all � ∈ 
 and R�Z is well defined
P-almost surely.

Further,

∫ t

0

(
E
∫ t

0

∥∥�t − s��−11�0�s��u��s − u�−���u�
∥∥2du)1/2

ds

=
∫ t

0
�t − s��−1

( ∫ s

0
�s − u�−2�E���u��2du

)1/2

ds

≤
( ∫ t

0
s��−1�q∗ds

)1/q∗( ∫ t

0

( ∫ s

0
�s − u�−2�E���u��2du

)q/2

ds
)1/q

≤
( ∫ t

0
s��−1�q∗ds

)1/q∗( ∫ t

0
s−2�ds

)1/2( ∫ t

0
E���u��qdu

)1/q

< ��

where 1
q∗ + 1

q
= 1 and the Hölder and Young inequalities were used consecutively.

This means that the hypothesis (2.1) of Lemma 2.3 is satisfied and this lemma may
be used to obtain

�R�Z� �t� =
∫ t

0
�t − s��−1

( ∫ s

0
�s − u�−���u�dW�u�

)
ds

=
∫ t

0

∫ t

0
�t − s��−11�0�s��u��s − u�−���u�dW�u�ds

=
∫ t

0

[ ∫ t

0
�t − s��−11�0�s��u��s − u�−�ds

]
��u�dW�u�
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Weak Solutions of SDEs 109

=
∫ t

0

[ ∫ t

u
�t − s��−1�s − u�−�ds

]
��u�dW�u�

=
∫ t

0

[ ∫ 1

0
�1− v��−1v−�dv

]
︸ ︷︷ ︸

=
�

sin ��

��u�dW�u�	

�

Proof of Proposition 2.1. Let an arbitrary � > 0 be given, we have to find a
relatively compact set K ⊆ �m such that

inf
k≥1

P
{
Xk ∈ K

} ≥ 1− �	

In what follows, we shall denote by Di constants independent of k and by � · �q the
norm of Lq�0� T�m�.

First, we prove our claim under an additional assumption that there exists p > 2
such that

E���p < �	 (2.3)

Plainly, a compact set � ⊆ �m may be found satisfying

���� = P
{
� ∈ �

} ≥ 1− �

3
	

Take an � ∈� 1
p
� 1
2 �. By Lemma 2.5,

Xk�t� = �+
∫ t

0
bk�s� Xk�s��ds +

∫ t

0
�k�s� Xk�s��dW�s�

= �+ [R1b�·� Xk�·��
]
�t�+ sin ��

�
�R�Zk� �t�� 0 ≤ t ≤ T�

P-almost surely, where

Zk�s� =
∫ s

0
�s − u�−��k�u� Xk�u��dW�u�� 0 ≤ s ≤ T	

Applying the Chebyshev inequality, (1.1) and (1.3) we get

P
{�bk�·� Xk�·���p ≥ �

} ≤ 1
�p

E
∫ T

0

∥∥bk�t� Xk�t��
∥∥pdt

≤ 1
�p

Kp
∗E
∫ T

0
�2+ �Xk�t���p dt

≤ D1

�p
�1+ E���p� 	

Similarly, invoking in addition the Burkholder–Davis–Gundy andYoung inequalities,

P
{�Zk�p ≥ �

} ≤ 1
�p

E
∫ T

0
�Zk�t��pdt
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110 Hofmanová and Seidler

≤ D2

�p
E
∫ T

0

( ∫ t

0
�t − s�−2�

∥∥�k�s� Xk�s��
∥∥2ds)p/2

dt

≤ D2

�p

( ∫ T

0
s−2�ds

)p/2( ∫ T

0
E
∥∥�k�s� Xk�s��

∥∥pds)

≤ D3

�p
�1+ E���p� 	

Let us choose �0 < � so that

D1 +D3

�
p
0

�1+ E���p� < �

3

and set

K =
{
f ∈ ���0� T��m� f = x + R1r +

sin ��
�

R�v� x ∈ ��

r� v ∈ Lp�0� T�m�� �r�p ∨ �v�p ≤ �0

}
	

Since the operators R1 and R� are compact, the set K is relatively compact and

P
{
Xk � K

} ≤ P
{
� � �

}+ P
{�bk�·� Xk�·���p > �0

}+ P
{�Zk�p > �0

}
≤ 2

3
� < �

for any k ≥ 1, which completes the proof of tightness under the additional
assumption (2.3).

Finally, let � be arbitrary. Let � > 0 be fixed, we may find � ≥ 0 such that
P���� > �� < �

2 . Let X̂k, k ≥ 1, be the solutions to

dX̂k = bk�t� X̂k�dt + �k�t� X̂k�dW� X̂k�0� = 1����≤���	 (2.4)

The initial condition in (2.4) satisfies (2.3), so by the first part of the proof we know
that the set �P � X̂−1

k  k ≥ 1� is tight and there exists a compact set K ⊆ �m such that

inf
k≥1

P
{
X̂k � K

} ≤ �

2
	

Since the coefficients bk, �k are Lipschitz continuous in space variables,

1����≤��X̂k = 1����≤��Xk P-almost surely

for all k ≥ 1, this implies

P
{
Xk � K

} ≤ P
{
X̂k � K

}+ P
{��� > �

}
< �

for any k ≥ 1 and tightness of the set �P � X−1
k  k ≥ 1� follows. �
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Weak Solutions of SDEs 111

Corollary 2.6. The set �P � �Xk�W�−1 k ≥ 1� is a tight set of probability measures on
���0� T��m�×���0� T��n�.

By the Prokhorov theorem, the set �P � �Xk�W�−1 k ≥ 1� is relatively
(sequentially) compact in the weak topology of probability measures, so it contains a
weakly convergent subsequence. Without loss of generality we may (and shall) assume
that the sequence �P � �Xk�W�−1��k=1 itself is weakly convergent. Let us set for brevity
P̃k = P � �Xk�W�−1, k ≥ 1, and denote the weak limit of �P̃k�

�
k=1 by P̃0. Set further

U = �m ×�n� 
 = Borel��m�⊗ Borel��n��

and let �Y� B� be the process of projections on U , that is

�Yt� Bt� � �m ×�n −→ �m ×�n� �h� g� �−→ �h�t�� g�t��� 0 ≤ t ≤ T	

Finally, let �
t� be the P̃0-augmented canonical filtration of the process �Y� B�,
that is,


t = �
(
���tY� �tB� ∪ �N ∈ 
 P̃0�N� = 0�

)
� 0 ≤ t ≤ T	

3. Identification of the Limit

In this section, we shall show that ��U�
� �
t�� P̃0�� B� Y� is a weak solution to the
problem (0.7). Toward this end, define

Mk = Y − Y�0�−
∫ ·

0
bk�r� Y�r��dr� k ≥ 0�

where we set b0 = b, �0 = �. The proof is an immediate consequence of the following
four lemmas.

Lemma 3.1. The process M0 is an m-dimensional local (
t�-martingale on �U�
� P̃0�.

Lemma 3.2. The process B is an n-dimensional �
t�-Wiener process on �U�
� P̃0�.

Lemma 3.3. The process

�M0�2 −
∫ ·

0

∥∥��r� Y�r��∥∥2dr
is a local �
t�-martingale on �U�
� P̃0�.

Lemma 3.4. The process

M0 ⊗ B −
∫ ·

0
��r� Y�r��dr

is an �m×n-valued local �
t�-martingale on �U�
� P̃0�.

Proofs of these lemmas have an identical structure, so we prove only the first of
them in detail, the other ones being treated only in a concise manner. In the course
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112 Hofmanová and Seidler

of the proof, we shall need two easy results on continuity properties of the first
entrance times as functionals of paths. Let V ≥ 1, for any L ∈ �+ define

�L � �V −→ �0� T�� f �−→ inf
{
t ≥ 0 �f�t�� ≥ L

}
(with a convention inf ∅ = T ).

Lemma 3.5.

(a) For any f ∈ �V , the function L �−→ �L�f� is nondecreasing and left-continuous on
�+.

(b) For each L ∈ �+, the mapping �L is lower semicontinuous. Moreover, �L is
continuous at every point f ∈ �V for which �•�f� is continuous at L.

If �Zt�t∈�0�T� is a continuous �V -valued stochastic process defined on
a probability space �G��� q�, then ��L�Z��L≥0 is a stochastic process with
nondecreasing left-continuous trajectories, whence we get

Lemma 3.6. The set

{
L ∈ �+ q��•�Z� is not continuous at L� > 0

}
is at most countable.

Lemma 3.5 is proved (but not stated exactly in this form) in Jacod and
Shiryaev [11], see Lemma VI.2.10 and Proposition VI.2.11 there. For Lemma 3.6,
see [11, Lemma VI.3.12]. In Jacod and Shiryaev [11], �L is considered as a function
on the Skorokhod space �, in our case the proofs simplify further; they are recalled
in the Appendix to keep the article self-contained.

Further, let us quote an useful result on weak convergence of measures (cf.,
e.g., [2, Proposition IX.5.7]).

Lemma 3.7. Let ��r�r≥1 be a sequence of Borel probability measures on a metric space
� converging weakly to a Borel probability measure �0. Let f � � −→ � be a bounded
real function continuous at �0-almost all points of �. Then

lim
r→�

∫
�
f d�r =

∫
�
f d�0	

Proof of Lemma 3.1. The idea of the proof is simple: define processes

�k = Xk − Xk�0�−
∫ ·

0
bk�r� Xk�r��dr� k ≥ 1�

in analogy with the definition of Mk but using the solutions Xk to the problem (1.2)
instead of the process Y . We shall prove: i) �k, k ≥ 1, are local martingales, ii) Mk,
k ≥ 1, are local martingales with respect to the measure P̃k due to the equality of
laws P̃k � �Y� B�−1 = P � �Xk�W�−1, iii) M0 is a local martingale as a limit of local
martingales Mk.
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Weak Solutions of SDEs 113

First, as Xk solves (1.2),

�k�t� =
∫ t

0
�k�r� Xk�r�� dWr� 0 ≤ t ≤ T�

and so �k is a local ��t�-martingale. Take an L ∈ �+, for the time being arbitrary.
Obviously, �L�Xk� is a stopping time and �k�· ∧ �L�Xk�� is a bounded process by (1.1)
and the definition of �L, hence, �k�· ∧ �L�Xk�� is a martingale.

Hereafter, times s� t ∈ �0� T�, s ≤ t, and a continuous function

� � ���0� s��m�×���0� s��n� −→ �0� 1�

will be fixed but otherwise arbitrary. Obviously, ���sXk� �sW� is a bounded �s-
measurable function, hence,

E���sXk� �sW��k�t ∧ �L�Xk�� = E���sXk� �sW��k�s ∧ �L�Xk�� (3.1)

by the martingale property of �k�· ∧ �L�Xk��.
Note that the mapping

�0� T�×�m −→ �m� �u� h� �−→ h�u�− h�0�−
∫ u

0
bk�r� h�r��dr

is continuous for any k ≥ 0 due to the continuity of bk�r� ·�, and the mapping

�m −→ �0� T�×�m� h �−→ �� ∧ �L�h�� h�

is Borel for any � ∈ �0� T� fixed by Lemma 3.5(b), thus, also their superposition

Hk��� ·� � �m −→ �m� h �−→ h�� ∧ �L�h��− h�0�−
∫ �∧�L�h�

0
bk�r� h�r��dr

is Borel. Consequently, the mapping

�m ×�n −→ �m� �h� g� �−→ ���sh� �sg�Hk��� h�

is Borel. Since �k�� ∧ �L�Xk�� = Hk���Xk�, k ≥ 1, and Mk�� ∧ �L�Y�� = Hk��� Y�,
k ≥ 0, we get

P � [���sXk� �sW��k�� ∧ �L�Xk��
]−1 = P̃k �

[
���sY� �sB�Mk�� ∧ �L�Y��

]−1

for all k ≥ 1 by the definition of P̃k, which together with (3.1) implies

Ẽk���sY� �sB�Mk�t ∧ �L�Y�� = Ẽk���sY� �sB�Mk�s ∧ �L�Y��� k ≥ 1	 (3.2)

Now, suppose in addition that L is chosen so that

P̃0

{
�•�Y� is continuous at L

} = 1	 (3.3)

(Lemma 3.6 shows that such a choice is possible.) Then

P̃0

{
�f� g� ∈ U �L�·� is continuous at f

} = 1
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114 Hofmanová and Seidler

by Lemma 3.5(b) and the fact that Y is a canonical projection from U onto �m,
so also

P̃0

{
�f� g� ∈ UH0��� ·� is continuous at f

} = 1	

This implies that ���sY� �sB�H0��� Y� is a bounded function continuous P̃0-almost
everywhere on U for any � fixed. We may estimate

∥∥Ẽk���sY� �sB�Hk��� Y�− Ẽ0���sY� �sB�H0��� Y�
∥∥

≤ ∥∥Ẽk���sY� �sB�
[
Hk��� Y�−H0��� Y�

]∥∥
+ ∥∥Ẽk���sY� �sB�H0��� Y�− Ẽ0���sY� �sB�H0��� Y�

∥∥	
From Lemma 3.7 we obtain that

lim
k→�

Ẽk���sY� �sB�H0��� Y� = Ẽ0���sY� �sB�H0��� Y�	

Further, ∥∥Ẽk���sY� �sB�
[
Hk��� Y�−H0��� Y�

]∥∥
≤ Ẽk

∥∥Hk��� Y�−H0��� Y�
∥∥

= Ẽk

∥∥∥∥ ∫ �∧�L�Y�

0

[
bk�r� Y�r��− b0�r� Y�r��

]
dr

∥∥∥∥
= Ẽk1��L�Y�>0�

∥∥∥∥ ∫ �∧�L�Y�

0

[
bk�r� Y�r��− b0�r� Y�r��

]
dr

∥∥∥∥
≤ Ẽk1��L�Y�>0�

∫ �∧�L�Y�

0

∥∥bk�r� Y�r��− b0�r� Y�r��
∥∥ dr

≤ Ẽk1��L�Y�>0�

∫ T

0

∥∥bk�r� Y�r ∧ �L�Y���− b0�r� Y�r ∧ �L�Y���
∥∥ dr

≤ Ẽk1��L�Y�>0�

∫ T

0
sup
�z�≤L

∥∥bk�r� z�− b0�r� z�
∥∥dr

≤
∫ T

0
sup
�z�≤L

∥∥bk�r� z�− b0�r� z�
∥∥ dr�

as �Y�r ∧ �L�Y��� ≤ L on the set ��L�Y� > 0�. Since bk�r� ·� → b0�r� ·� locally
uniformly on �m for every r ∈ �0� T� and

sup
�z�≤L

∥∥bk�r� z�− b0�r� z�
∥∥ ≤ 2K∗�2+ L�

by (0.6) and (1.1), we have

lim
k→�

∫ T

0
sup
�z�≤L

∥∥bk�r� z�− b0�r� z�
∥∥dr = 0
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Weak Solutions of SDEs 115

by the dominated convergence theorem, hence,

lim
k→�

Ẽk���sY� �sB�Hk��� Y� = Ẽ0���sY� �sB�H0��� Y�

for any � ∈ �0� T�. Therefore,

Ẽ0���sY� �sB�M0�t ∧ �L�Y�� = Ẽ0���sY� �sB�M0�s ∧ �L�Y�� (3.4)

follows from (3.2). If G ⊆ ���0� s��m ×�n� is an arbitrary open set, then there
exist continuous functions gl � ���0� s��m ×�n� −→ �0� 1� such that gl ↗ 1G on
���0� s��m ×�n� as l → �. Therefore, using the Levi monotone convergence
theorem we derive from (3.4) that

Ẽ01G��sY� �sB�M0�t ∧ �L�Y�� = Ẽ01G��sY� �sB�M0�s ∧ �L�Y��	 (3.5)

Further,

{
G ⊆ ���0� s��m ×�n�G Borel and (3.5) holds for 1G

}
is a �-system containing, as we have just shown, the system of all open sets in
���0� s��m ×�n� closed under finite intersections. Consequently, (3.5) holds for
all Borel sets G ⊆ ���0� s��m ×�n�, that is,

Ẽ01AM0�t ∧ �L�Y�� = Ẽ01AM0�s ∧ �L�Y��

holds for all A ∈ ���sY� �sB�, thus, for all A ∈ 
s. We see that M0�· ∧ �L�Y�� is
a �
t�-martingale, whenever L ∈ �+ satisfies (3.3). It remains to note that by
Lemma 3.6 there exists a sequence Lr ↗ � such that

P̃0

{
�•�Y� is continuous at Lr for every r ≥ 1

} = 1	

As ��Lr
�Y�� is plainly a localizing sequence of stopping times, we conclude that M0

is a local �
t�-martingale on �U�
� P̃0�, as claimed. �

Proof of Lemma 3.2. By our construction, P �W−1 = P̃k � B−1 for each k ≥ 1, so
also P �W−1 = P̃0 � B−1 and B is an n-dimensional Wiener process (with respect to
its canonical filtration) on �U�
� P̃0�. In particular, its tensor quadratic variation
satisfies ��B��t = tI . Mimicking the procedure from the previous proof we may check
easily that B is a local �
t�-martingale, hence an �
t�-Wiener process by the Lévy
theorem. �

Proof of Lemma 3.3. We know that �k, k ≥ 1, are local martingales and

��k� =
〈 ∫ ·

0
�k�r� Xk�r��dWr

〉
=
∫ ·

0

∥∥�k�r� Xk�r��
∥∥2dr�

thus,

��k�2 −
∫ ·

0

∥∥�k�r� Xk�r��
∥∥2dr� k ≥ 1�
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116 Hofmanová and Seidler

are continuous local martingales. For times s ≤ t and a function � introduced in the
proof of Lemma 3.1 we get

E���sXk� �sW�

[∥∥�k�t ∧ �L�Xk��
∥∥2 − ∫ t∧�L�Xk�

0

∥∥�k�r� Xk�r��
∥∥2dr]

= E���sXk� �sW�

[∥∥�k�s ∧ �L�Xk��
∥∥2 − ∫ s∧�L�Xk�

0

∥∥�k�r� Xk�r��
∥∥2 dr]	 (3.6)

Note that

�m −→ �� h �−→ ∥∥Hk��� h�
∥∥2 − ∫ �∧�L�h�

0

∥∥�k�r� h�r��
∥∥2dr

is a Borel mapping for all k ≥ 0 and � ∈ �0� T�. It can be seen easily that it suffices
to check that

�m −→ �� h �−→
∫ u

0

∥∥�k�r� h�r��
∥∥2dr

is a continuous mapping for any u ∈ �0� T�; this follows from the estimate∣∣∣∣ ∫ u

0

∥∥�k�r� h1�r��
∥∥2dr − ∫ u

0

∥∥�k�r� h2�r��
∥∥2dr∣∣∣∣

≤
∫ u

0

{∥∥�k�r� h1�r��
∥∥+ ∥∥�k�r� h2�r��

∥∥}∣∣∣∥∥�k�r� h1�r��
∥∥− ∥∥�k�r� h2�r��

∥∥∣∣∣dr
≤ K∗

(
4+ �h1��m

+ �h2��m

) ∫ u

0

∥∥�k�r� h1�r��− �k�r� h2�r��
∥∥dr

for h1� h2 ∈ �m, continuity of functions �k�r� ·� and the dominated convergence
theorem.

Hence, (3.6) yields

Ẽk���sY� �sB�

[∥∥Mk�t ∧ �L�Y��
∥∥2 − ∫ t∧�L�Y�

0

∥∥�k�r� Y�r��
∥∥2dr]

= Ẽk���sY� �sB�

[∥∥Mk�s ∧ �L�Y��
∥∥2 − ∫ s∧�L�Y�

0

∥∥�k�r� Y�r��
∥∥2dr]	

Passing to the limit exactly in the same way as in the proof of Lemma 3.1 we obtain

Ẽ0���sY� �sB�

[∥∥M0�t ∧ �L�Y��
∥∥2 − ∫ t∧�L�Y�

0

∥∥�0�r� Y�r��
∥∥2dr]

= Ẽ0���sY� �sB�

[∥∥M0�s ∧ �L�Y��
∥∥2 − ∫ s∧�L�Y�

0

∥∥�0�r� Y�r��
∥∥2dr]

provided that L ∈ �+ satisfies (3.3), and the proof may be completed easily. �

Proof of Lemma 3.4. Since �k and W are continuous local martingales, the process
�k ⊗W − ���k�W�� is an �m×n-valued local martingale. Let us denote �k = ��i

k�
m
i=1,
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Weak Solutions of SDEs 117

W = �Wj�nj=1 and �k = ��
ij
k �

m
i=1

n
j=1. Then

〈
�i
k�W

j
〉 = 〈 n∑

l=1

∫ ·

0
�il
k �r� Xk�r��dW

l�r��Wj

〉

=
n∑

l=1

∫ ·

0
�il
k �r� Xk�r��d�Wl�Wj�r

=
∫ ·

0
�
ij
k �r� Xk�r��dr�

therefore,

�k ⊗W −
∫ ·

0
�k�r� Xk�r��dr (3.7)

is an �m×n-valued local martingale. The process (3.7) stopped at �L�Xk�W� is
bounded, hence it is a martingale and so

E���sXk� �sW�

[
��k ⊗W� �t ∧ �L�Xk�W��−

∫ t∧�L�Xk�W�

0
�k�r� Xk�r�� dr

]

= E���sXk� �sW�

[
��k ⊗W� �s ∧ �L�Xk�W��−

∫ s∧�L�Xk�W�

0
�k�r� Xk�r�� dr

]
�

whenever 0 ≤ s ≤ t ≤ T and � is a continuous function as above. (Since �m ×�n �
�m+n, it is clear how �L�f� g� is defined for �f� g� ∈ �m ×�n.) Now we may proceed
as in the proof of Lemma 3.1. �

Proof of Theorem 0.1. Lemmas 3.1–3.4 having been established, it is
straightforward to prove that ��U�
� �
t�� P̃0�� B� Y� is a weak solution of (0.7).
Since P̃0 � Y�0�−1 = P̃k � Y�0�−1 = P � �−1 = � by our construction, it remains only
to show that

Y�t� = Y�0�+
∫ t

0
b�r� Y�r��dr +

∫ t

0
��r� Y�r��dB�r�

for any t ∈ �0� T� P̃0-almost surely, that is

M0�t� =
∫ t

0
��r� Y�r��dB�r� for all t ∈ �0� T� P̃0-almost surely. (3.8)

Obviously, (3.8) is equivalent to〈
M0 −

∫ ·

0
��r� Y�r��dB�r�

〉
T

= 0 P̃0-almost surely. (3.9)

We have〈
M0 −

∫ ·

0
��r� Y�r��dB�r�

〉
T

= �M0�T +
〈 ∫ ·

0
��r� Y�r��dB�r�

〉
T

− 2
m∑
i=1

〈
Mi

0�
n∑

j=1

∫ ·

0
�ij�r� Y�r�� dBj�r�

〉
T
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118 Hofmanová and Seidler

= �M0�T +
∫ T

0

∥∥��r� Y�r��∥∥2 dr
− 2

m∑
i=1

〈
Mi

0�
n∑

j=1

∫ ·

0
�ij�r� Y�r��dBj�r�

〉
T

	

By Lemma 3.3,

〈
M0

〉
T
=
∫ T

0

∥∥��r� X�r��∥∥2dr�
and by Lemma 3.4 we obtain

m∑
i=1

n∑
j=1

〈
Mi

0�
∫ ·

0
�ij�r� Y�r��dBj�r�

〉
T

=
m∑
i=1

n∑
j=1

∫ T

0
�ij�r� Y�r��d�Mi

0� B
j�r

=
m∑
i=1

n∑
j=1

∫ T

0

(
�ij�r� Y�r��

)2
dr

=
∫ T

0

∥∥��r� Y�r��∥∥2dr�
hence (3.9) holds true. �

Remark 3.1. If the coefficients b and � of the Equation (0.7) are defined on
�+ ×�m and satisfy the assumptions of Theorem 0.1 there, then there exists a weak
solution to (0.7) defined for all times t ≥ 0. The proof remains almost the same,
only its part concerning tightness requires small modifications. However, it suffices
to realize that the space ���+�V � equipped with the topology of locally uniform
convergence is a Polish space whose Borel �-algebra is generated by the projections
f �→ f�t�, t ≥ 0 and whose closed subset K is compact if and only if ��Tf f ∈ K� is
a compact subset of ���0� T��V � for all T ≥ 0.

Remark 3.2. Tracing the proofs in Section 3, we can check easily that, unlike the
proof of tightness in Section 2, they depend only on the following properties of the
coefficients b = b0, � = �0 and their approximations bk, �k:

1. the functions bk�r� ·�, �k�r� ·� are continuous on �m for any r ∈ �0� T� and k ≥ 0,
2. bk�r� ·� → b�r� ·�, �k�r� ·� → ��r� ·� locally uniformly on �m as k → � for any

r ∈ �0� T�,
3. the functions bk, �k are locally bounded uniformly in k ≥ 0, i.e.

sup
k≥0

sup
r∈�0�T�

sup
�z�≤L

{�bk�r� z�� ∨ ��k�r� z��
}
< �

for each L ≥ 0.

As a consequence, Theorem 0.1 remains valid if existence of a suitable Lyapunov
function is supposed instead of the linear growth hypothesis. One proceeds as in
the proof of Theorem 0.1, approximating the coefficients b and � by bounded
continuous functions that satisfy the same Lyapunov estimate as b and �. However,
the proof of tightness is more technical, although no fundamentally new ideas are
needed; details may be found in a companion article [7].
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3. Brzeźniak, Z., and Ondreját, M. 2007. Strong solutions to stochastic wave equations

with values in Riemannian manifolds. Journal of Functional Analysis 253(2):449–481.
4. Da Prato, G., and Zabczyk, J. 1992. Stochastic Equations in Infinite Dimensions.

Cambridge University Press, Cambridge, UK.
5. Dudley, R.M. 2002. Real Analysis and Probability. Cambridge University Press,

Cambridge, UK.
6. Ga̧tarek, D., and Gołdys, B. 1994. On weak solutions of stochastic equations in Hilbert

spaces. Stochastics and Stochastics Reports 46(1):41–51.
7. Hofmanová, M., and Seidler, J. to appear. On weak solutions of stochastic differential

equations II. Dissipative drifts.
8. Ikeda, N., and Watanabe, S. 1989. Stochastic Differential Equations and Diffusion

Processes, 2nd ed. North-Holland, Amsterdam.
9. Itô, K. 1946. On a stochastic integral equation. Proceedings of the Japan Academy

22(1–4):32–35.
10. Ito, K. 1951. On stochastic differential equations. Memoirs of the American Mathematical

Society 4:1–51.
11. Jacod, J., and Shiryaev, A.N. 2003. Limit Theorems for Stochastic Processes, 2nd ed.

Springer, Berlin.
12. Karatzas, I., and Shreve, S. 1988. Brownian Motion and Stochastic Calculus. Springer,

New York.
13. Lieb, E.H., and Loss, M. 2001. Analysis, 2nd ed. American Mathematical Society,

Providence, RI.
14. Ondreját, M. 2010. Stochastic nonlinear wave equations in local Sobolev spaces.

Electronic Journal of Probability 15(33):1041–1091.
15. Samko, S.S., Kilbas, A.A., and Marichev, A.A. 1993. Fractional Integrals and

Derivatives, Gordon and Breach, Yverdon.
16. Skorokhod, A.V. 1961. On existence and uniqueness of solutions to stochastic diffusion
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Appendix

To keep this article self-contained as much as possible, we provide here proofs of
Lemmas 3.5 and 3.6.

Proof of Lemma 3.5. Choose f ∈ �V and L > 0 arbitrarily. The function K �→
�K�f� is obviously nondecreasing, hence it has a left-hand limit at the point L and

lim
K→L−

�K�f� ≤ �L�f�	 (A.1)

If �f��V
< L then �f��V

< L−  for some  > 0 and, thus, �L�f� = T = �K�f� for
all K ∈ �L−  � L�, so we may assume that �f��V

≥ L. Then �f��K�f��� ≥ K for all
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120 Hofmanová and Seidler

K ∈ �0� L� and continuity of f yields

∥∥f ( lim
K→L−

�K�f�
)∥∥ = lim

K→L−
∥∥f��K�f��∥∥ ≥ lim

K→L−
K = L�

whence

�L�f� ≤ lim
K→L−

�K�f��

which together with (A.1) proves the statement (a).
To prove (b), take an arbitrary sequence �fr� in �V such that fr → f uniformly

on �0� T� as r → �. Let � > 0, then

max
�0��L�f�−��

�f� < L�

so there exists r0 ∈ � such that

max
�0��L�f�−��

�fr� < L

for all r ≥ r0, thus, �L�fr� ≥ �L�f�− � for all r ≥ r0. Since � was arbitrary,

lim inf
r→� �L�fr� ≥ �L�f��

that is, �L is lower semicontinuous at the point f .
Finally, assume in addition that �•�f� is continuous at the point L. If �L�f� = T

then

T = �L�f� ≤ lim inf
r→� �L�fr� ≤ lim sup

r→�
�L�fr� ≤ T

(note that �L is �0� T�-valued) and we are done. So assume that �L�f� < T and take
an arbitrary � > 0 satisfying �L�f�+ � < T . By continuity, a K > L may be found
such that �K�f� < �L�f�+ �. Consequently,

max
�0��L�f�+��

�f� ≥ K > L�

thus,

max
�0��L�f�+��

�fr� ≥ L

for all r sufficiently large, that is, �L�fr� ≤ �L�f�+ � for all r sufficiently large, which
implies

lim sup
r→�

�L�fr� ≤ �L�f�

and �L is upper semicontinuous at f . �
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Weak Solutions of SDEs 121

Proof of Lemma 3.6. Here we follow Jacod and Shiryaev [11] closely. First, note
that for any given u > 0 q-almost any trajectory of �•�Z� has only finitely many
jumps of size greater than u. For brevity, set

!�L�Z� = lim
M→L+

�M�Z�− �L�Z�

and define recursively random times

�0�u� = 0� �p�u� = inf
{
L > �p�u� !�L�Z� > u

}
� u > 0� p ∈ �	

Plainly, the set

{
L ≥ 0 q��p�u� = L� > 0

}
is at most countable for any p ∈ � and u > 0, hence it only remains to note that

{
L ≥ 0 q�!�L�Z� > 0� > 0

} = �⋃
p=0

�⋃
r=1

{
L ≥ 0 q��p�r

−1� = L� > 0
}
	

�
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