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In the first part of this article a new method of proving existence of weak solutions
to stochastic differential equations with continuous coefficients having at most linear
growth was developed. In this second part, we show that the same method may
be used even if the linear growth hypothesis is replaced with a suitable Lyapunov
condition.
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Let us consider a stochastic differential equation

dX = b�t� X� dt + ��t� X� dW� X�0�
�∼ �� (1)

where b � �0� T�×�m −→ �m, � � �0� T�×�m −→ �m×n are Borel functions and �
is a Borel probability measure on �m. (In what follows, we shall denote by �m×n

the space of all m-by-n matrices over � endowed with the Hilbert-Schmidt norm
�A� = �TrAA∗�1/2.)

If the coefficients b and � are continuous in the second variable and satisfy a
linear growth hypothesis

sup
t∈�0�T�

sup
x∈�m

�b�t� x�� + ���t� x��
1+ �x� < �� (2)
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664 Hofmanová and Seidler

then there exists a weak solution to (1) by a theorem established by Skorokhod
some 50 years ago. All proofs of his result that we know have a common basic
structure: (1) is approximated with equations having a solution, then tightness of
laws of solutions to these approximating equations is shown, and finally, cluster
points of the set of laws are identified as weak solutions to (1). In the first part of
our article [1], we proposed a new, fairly elementary, version of this argument. In [1],
tightness is proved by means of compactness properties of fractional integrals, while
the identification procedure uses results on preservation of the local martingale
property under convergence in law, avoiding thus both Skorokhod’s theorem on
almost surely converging realizations of converging laws and results on integral
representation of martingales with absolutely continuous quadratic variation, see [1]
for more details and references.

The purpose of this article, which may be viewed as a short addendum to [1],
is to show that the new method may be used even if (2) is relaxed to existence of a
suitable Lyapunov function. Namely, we shall prove the following result.

Theorem 1. Assume that a hypothesis

(A) b�r� ·� and ��r� ·� are continuous on �m for any r ∈ �0� T� and both functions b, �
are locally bounded on �0� T�×�m, i.e.,

sup
r∈�0�T�

sup
�z�≤L

{�b�r� z�� ∨ ���r� z��} < �

for all L ≥ 0,

is satisfied and a function V ∈ �2��m� may be found such that

(L1) there exists an increasing function 	 � �+ −→�0��� such that

lim
r→� 	�r� = +�

and V�x� ≥ 	��x�� for all x ∈ �m,
(L2) there exists 
 ≥ 0 such that


b�t� x��DV�x�� + 1
2
Tr

(
��t� x�∗D2V�x���t� x�

) ≤ 
V�x�

for all �t� x� ∈ �0� T�×�m.

Then there exists a weak solution to (1).

(By DV and D2V we denote the first and second Fréchet derivative of V ,
respectively.) The assumption (L2) is the well-known Khas’minskii’s condition
for nonexplosion (see [2], Theorem 3.5, where equations with locally Lipschitz
continuous coefficients are considered), however, we do not work with local
solutions and construct global solutions directly. To prove Theorem 1, we
approximate coefficients b and � with bounded continuous functions. Essentially, we
mimick the proof of tightness of the laws of solutions to approximating equations
from [1], however, in absence of (2) we do not have uniform moment estimates for
approximating processes Xk at our disposal, instead, we have to resort to a well
known trick from stability theory and show, roughly speaking, that �e−
tV�Xk�t���
are supermartingales. As a consequence, the proof is less straightforward than the
corresponding one in [1]. Once tightness is proved, the identification procedure from
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Weak Solutions of SDEs 665

[1] may be applied without any change, since it does not depend on any particular
form of approximations. More precisely, in [1], Remark 3.2, we proved:

Proposition 2. Let the assumption (A) be satisfied. Let there exist Borel functions bk �
�0� T�×�m −→ �m and �k � �0� T�×�m −→ �m×n, k ≥ 1, such that

1. bk�r� ·�, �k�r� ·� are continuous on �m for any r ∈ �0� T� and k ≥ 1,
2. bk�r� ·� → b�r� ·�, �k�r� ·� → ��r� ·� locally uniformly on �m as k → � for any r ∈

�0� T�,
3. the functions bk, �k are locally bounded on �0� T�×�m uniformly in k ≥ 1, that is

sup
k≥1

sup
r∈�0�T�

sup
�z�≤L

{�bk�r� z�� ∨ ��k�r� z��
}
< �

for each L ≥ 1.

Suppose that for any k≥ 1 there exists a weak solution ���k��
k� �� k

t ��Pk��Wk� Xk�
to the problem

dX = bk�t� X� dt + �k�t� X� dW� X�0�
�∼ �� (3)

If Pk � X−1
k � k ≥ 1� is a tight set of probability measures on ���0� T���m� then there

exists a weak solution to (1).

Before proceeding to the proof of Theorem 1, we shall recall some definitions
and give a few illustrative examples. First, a weak solution to (1) is a triple
��G��� ��t��Q��W�X�, where �G��� ��t��Q� is a stochastic basis with a filtration
��t� that satisfies the usual conditions, W is an n-dimensional ��t�-Wiener process
and X is an �m-valued ��t�-progressively measurable process such that Q �
X�0�−1 = � and

X�t� = X�0�+
∫ t

0
b�r� X�r�� dr +

∫ t

0
��r� X�r�� dW�r�

for all t ∈ �0� T� Q-almost surely. In the proof, we use the Riemann-Liouville
(or fractional integral) operator: if q ∈�1���, � ∈� 1

q
� 1� and f ∈ Lq��0� T���m�, a

function R�f � �0� T� −→ �m is defined by

(
R�f

)
�t� =

∫ t

0
�t − s��−1f�s� ds� 0 ≤ t ≤ T�

The (easy) properties of R� � f −→ R�f that we need are summarized in [1], Lemma
2.2. Finally, by �1�2 we shall denote the set of all h ∈ �1��0� T�×�m� such that
h�t� ·� ∈ �2��m� for each t ∈ �0� T� and Dxh, D2

xh are continuous functions on
�0� T�×�m, Dxh�t� x� and D2

xh�t� x� being the first and second Fréchet derivative of
h�t� ·� at the point x, respectively.

Example.

(a) If the coefficients b and � satisfy (A) and (2) then Theorem 1 is applicable. More
generally, assume that

2
b�t� x�� x� + ���t� x��2 ≤ K
(
1+ �x�2)
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666 Hofmanová and Seidler

for some K < � and all t ∈ �0� T�, x ∈ �m. Then the Lyapunov function V �
x −→ 1+ �x�2 satisfies (L1) and (L2).

(b) Suppose that � � �0� T�×� −→ � is a function bounded on bounded sets and
��t� ·� ∈ ���� for each t ∈ �0� T�. Then we may use Theorem 1 with a Lyapunov
function V � x −→ log�e+ x2� to deduce that a stochastic differential equation

dX = ��t� X� dW� X0
�∼ �

has a weak solution. Of course, it is known that explosions cannot occur
for one-dimensional stochastic differential equations without drift, irrespective
of growth and continuity properties of �, but a proof based on Lyapunov
functions, when available, is much simpler than the one in the general case.

(c) Let us consider a stochastic nonlinear oscillator ẍ + x2k+1 = ��x�ẇ, where k ∈ �
and � ∈ ����, that is rigorously, a system

dX = Y dt� dY = −X2k+1 dt + ��X� dW� (4)

Theorem 1 with a choice

V � �2 −→ ��

(
x
y

)
−→ log

(
e+ x2k+2

2k+ 2
+ y2

2

)

implies that there exists a weak solution of (4) with an arbitrary initial condition
� provided �2�x� = O�x2k+2�, x → ±�.

Proof of Theorem 1. For k ≥ 1, let us define

bk�t� x� =



b�t� x�� 0 ≤ t ≤ T� �x� ≤ k�

b�t� x�
(
2− k−1�x�)2� 0 ≤ t ≤ T� k < �x� ≤ 2k�

0 elsewhere,

and

�k�t� x� =



��t� x�� 0 ≤ t ≤ T� �x� ≤ k�

��t� x�
(
2− k−1�x�)� 0 ≤ t ≤ T� k < �x� ≤ 2k�

0 elsewhere.

Obviously, Hypotheses 1 and 2 of Proposition 2 are satisfied, moreover �bk� ≤ �b�
and ��k� ≤ ��� on �0� T�×�m for all k ≥ 1 and, thus, Hypothesis 3 is satisfied as
well. The coefficients bk and �k are bounded, so Theorem 0.1 from [1] implies that
there exists a weak solution ���k��

k� �� k
t ��Pk��Wk� Xk� of (3). Therefore, Theorem

1 will follow from Proposition 2 provided we show that Pk � X−1
k � k ≥ 1� is a tight

set of measures.
Toward this end, let us define for any h ∈ �1�2 and k ≥ 1 a function Lkh �

�0� T�×�m −→ � by

�Lkh��t� x� = 
bk�t� x��Dxh�t� x�� +
1
2
Tr

(
�k�t� x�

∗D2
xh�t� x��k�t� x�

)
�
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Weak Solutions of SDEs 667

�t� x� ∈ �0� T�×�m. The definition of bk and �k and the assumption (L2) imply that

LkV�t� x� ≤ 
V�x� for all k ≥ 1 and �t� x� ∈ �0� T�×�m�

A straightforward calculation shows that if we set U�t� x� = e−
tV�x� then

(
�U

�t
+ LkU

)
�t� x� ≤ 0 for all k ≥ 1 and �t� x� ∈ �0� T�×�m� (5)

Let us fix k ≥ 1 for a while. From the Itô formula we get

U�t ∧ ��Xk�t ∧ ���− U�s ∧ ��Xk�s ∧ ���

=
∫ t∧�

s∧�

(
�U

�t
+ LkU

)
�r� Xk�r�� dr +

∫ t∧�

s∧�
DxU�r� Xk�r��

∗�k�r� Xk�r�� dWk�r��

and, thus,

U�t ∧ ��Xk�t ∧ ���− U�s ∧ ��Xk�s ∧ ���

≤
∫ t∧�

s∧�
DxU�r� Xk�r��

∗�k�r� Xk�r�� dWk�r� (6)

by (5), whenever s� t ∈ �0� T�, s ≤ t and � is an �0� T�-valued �� k
r �-stopping time.

First, let us choose s = 0, L ≥ 0, and

� = �L ≡ inf
{
r ≥ 0� �Xk�r�� ≥ L�

(where we set inf ∅ = T ). Since U�0� ·� = V we obtain

U�t ∧ �L� Xk�t ∧ �L�� ≤ V�Xk�0��+
∫ t∧�L

0
DxU�r� Xk�r��

∗�k�r� Xk�r�� dWk�r��

Let � ⊆ �m be an arbitrary Borel set such that

∫
�
V�z� d��z� < �� (7)

(Plainly, any compact set � satisfies (7).) Denoting by A the set Xk�0� ∈ �� ∈ � k
0

we get

1AU�t ∧ �L� Xk�t ∧ �L��

≤ 1AV�Xk�0��+
∫ t∧�L

0
1ADxU�r� Xk�r��

∗�k�r� Xk�r�� dWk�r��

As 1A1�0��L��·�DxU�·� Xk�·��∗�k�·� Xk�·�� is bounded on �0� T�×�k due to continuity
of DxU , local boundedness of �k and the definition of �L, we have

Ek1AU�t ∧ �L� Xk�t ∧ �L�� ≤ Ek1AV�Xk�0�� = Ek1��Xk�0��V�Xk�0��

=
∫
�
V�z� d��z��
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668 Hofmanová and Seidler

the right-hand side is independent of L ≥ 0. Clearly, �L = T� ↑ �k Pk-almost surely
as L → �, since Xk has continuous trajectories, so

Ek1AU�t� Xk�t�� ≤
∫
�
V�z� d��z� < �

by the Fatou lemma.
In particular, if s� t ∈ �0� T�, s ≤ t, then the conditional expectation

Ek

(
1AU�t� Xk�t�� �� k

s

)
is well defined. Using (6) with the stopping time �L, replacing the Fatou lemma with
its version for conditional expectations but otherwise proceeding as above we arrive
at an estimate

Ek

(
1AU�t� Xk�t�� �� k

s

) ≤ 1AU�s� Xk�s��� 0 ≤ s ≤ t ≤ T�

Consequently,
(
1AU�t� Xk�t��� 0 ≤ t ≤ T

)
is a nonnegative continuous

supermartingale. The maximal inequality for supermartingales implies

Pk

{
sup
0≤t≤T

1��Xk�0��U�t� Xk�t�� > �

}
≤ 1

�
Ek1��Xk�0��V�Xk�0��

= 1
�

∫
�
V�z� d��z��

hence, by the definition of U ,

Pk

{
sup
0≤t≤T

1��Xk�0��V�Xk�t�� > �

}
≤ e
T

�

∫
�
V d�

for all � > 0; the estimate is uniform in k ≥ 1. From Assumption (L1), we deduce
that

Pk

{
sup
0≤t≤T

1��Xk�0���Xk�t�� > �

}
≤ e
T

	���

∫
�
V d� (8)

holds for all � > 0 and k ≥ 1.
Now the proof of tightness of Pk � X−1

k � k ≥ 1� can be completed essentially in
the same manner as in the proof of Proposition 2.1 in [1]. Let an arbitrary � > 0 be
given, we want to find a relatively compact set K ⊆ ���0� T���m� so that

sup
k≥1

Pk

{
Xk � K

} ≤ �� (9)

Let us take an arbitrary p ∈�2��� and � ∈� 1
p
� 1
2 � and recall that Xk has a

representation (see e.g. [1, Lemma 2.5])

Xk�t� = Xk�0�+
[
R1bk�·� Xk�·��

]
�t�+ sin ��

�
�R�Zk��t�� 0 ≤ t ≤ T�

where

Zk�t� =
∫ t

0
�t − s�−��k�s� Xk�s�� dWk�s�� 0 ≤ t ≤ T�
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Weak Solutions of SDEs 669

The process Zk is plainly well defined for every t ∈ �0� T�, since �k is a bounded
function. Let H ⊆ �m be a compact set such that ���m\H� = PkXk�0� � H� < �/8.
The set

K =
{
f ∈ ���0� T���m�� f = x + R1v+

sin ��
�

R�w� x ∈ H�

v�w ∈ Lp�0� T��m�� �v�p ∨ �w�p ≤ �

}
�

where by � · �p the norm of Lp�0� T��m� is denoted, is relatively compact owing to
compactness of the operators R1 and R�. It remains to show that � > 0 may be
found for K to satisfy (9).

From (8) and (L1), we obtain that there exists �0 > 0 such that

sup
k≥1

Pk

{
1H�Xk�0�� sup

0≤t≤T

�Xk�t�� > �0

}
≤ e
T

	��0�

∫
H
V d� <

�

8
�

therefore, the choice of H gives

sup
k≥1

Pk

{
sup
0≤t≤T

�Xk�t�� > �0

}
<

�

4
�

Hence, if we set

Bk =
{
� ∈ �k� sup

0≤t≤T

�Xk�t� ��� ≤ �0
}
�

then Pk��k\Bk� < �/4 for all k ≥ 1.
Obviously,

PkXk � K� ≤ PkXk�0� � H�+ Pk

{�bk�·� Xk�·���p > �
}+ Pk

{�Zk�p > �
}
�

By the Chebyshev inequality, we get

Pk

{�bk�·� Xk�·���p > �
} ≤ Pk��k\Bk�+ Pk

{
� ∈ Bk� �bk�·� Xk�·���p > �

}

≤ �

4
+ 1

�p
Ek1Bk

∫ T

0
�bk�r� Xk�r���p dr

≤ �

4
+ T

�p
sup
0≤t≤T
�z�≤�0

�bk�t� z��p

≤ �

4
+ T

�p
sup
0≤t≤T
�z�≤�0

�b�t� z��p�

The right-hand side is independent of k ≥ 1, so there exists �1 > 0 such that

sup
k≥1

Pk

{�bk�·� Xk�·���p > �
} ≤ �

3
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670 Hofmanová and Seidler

for all � ≥ �1. The norm �Zk�p may be estimated analogously. Clearly,

Pk�Zk�p > �� ≤ Pk��k\Bk�+ Pk� ∈ Bk� �Zk�p > ��

≤ �

4
+ Pk� ∈ Bk� �Zk�p > ���

For each k ≥ 1 let us define an �� k
t �-stopping time �k by

�k = inf
{
t ∈ �0� T�� �Xk�t�� > �0

}
�

setting again inf ∅ = T . Using the Chebyshev and Young inequalities and noting
that �k = T on Bk we obtain

Pk� ∈ Bk� �Zk�p > �� ≤ 1
�p

Ek1Bk

∫ T

0
�Zk�s��p ds

= 1
�p

Ek1Bk

∫ T

0

∥∥∥∥
∫ s

0
�s − u�−��k�u� Xk�u�� dW�u�

∥∥∥∥
p

ds

= 1
�p

Ek1Bk

∫ T

0

∥∥∥∥
∫ s

0
�s − u�−�1�0��k��u��k�u� Xk�u�� dW�u�

∥∥∥∥
p

ds

≤ 1
�p

Ek

∫ T

0

∥∥∥∥
∫ s

0
�s − u�−�1�0��k��u��k�u� Xk�u�� dW�u�

∥∥∥∥
p

ds

≤ Cp

�p
Ek

∫ T

0

( ∫ s

0
�s − u�−2�1�0��k��u���k�u�Xk�u���2 du

)p/2

ds

≤ Cp

�p

( ∫ T

0
u−2� du

)p/2

Ek

∫ T

0
1�0��k��u���k�u�Xk�u���p du

≤ CpT

�p

( ∫ T

0
u−2� du

)p/2

sup
0≤t≤T
�z�≤�0

��k�t� x��p

≤ CpT

�p

( ∫ T

0
u−2� du

)p/2

sup
0≤t≤T
�z�≤�0

���t� x��p�

where Cp is a constant coming from the Burkholder-Gundy-Davis inequality. We
see that there exists a constant �2 > 0 such that

sup
k≥1

Pk

{�Zk�p ≥ �
}
<

�

3

for all � ≥ �2 and hence the proof may be completed easily. Q.E.D.
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