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In the first part of this article a new method of proving existence of weak solutions
to stochastic differential equations with continuous coefficients having at most linear
growth was developed. In this second part, we show that the same method may
be used even if the linear growth hypothesis is replaced with a suitable Lyapunov
condition.
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Let us consider a stochastic differential equation
dX = b(r, X)dt + o(r, X)dW,  X(0) 2 v, (1)

where b: [0, 7] x R" — R", ¢: [0, T] x R" — M, ,, are Borel functions and v
is a Borel probability measure on R™. (In what follows, we shall denote by IM,,,,.,,
the space of all m-by-n matrices over R endowed with the Hilbert-Schmidt norm
IA]l = (TrAA®)'2.)

If the coefficients b and ¢ are continuous in the second variable and satisfy a
linear growth hypothesis

162, X)|| + [lo(z, )|l
sup sup
t€[0,7] xeR™ 1+ ”x”

oo, )
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then there exists a weak solution to (1) by a theorem established by Skorokhod
some 50 years ago. All proofs of his result that we know have a common basic
structure: (1) is approximated with equations having a solution, then tightness of
laws of solutions to these approximating equations is shown, and finally, cluster
points of the set of laws are identified as weak solutions to (1). In the first part of
our article [1], we proposed a new, fairly elementary, version of this argument. In [1],
tightness is proved by means of compactness properties of fractional integrals, while
the identification procedure uses results on preservation of the local martingale
property under convergence in law, avoiding thus both Skorokhod’s theorem on
almost surely converging realizations of converging laws and results on integral
representation of martingales with absolutely continuous quadratic variation, see [1]
for more details and references.

The purpose of this article, which may be viewed as a short addendum to [1],
is to show that the new method may be used even if (2) is relaxed to existence of a
suitable Lyapunov function. Namely, we shall prove the following result.

Theorem 1. Assume that a hypothesis

(A) b(r,-) and o(r, -) are continuous on R™ for any r € [0, T| and both functions b, ¢
are locally bounded on [0, T] x R™, i.e.,

sup sup {[|b(r,2)|| v lo(r. 2)]|} < oo

rel0.7] |zll <L
for all L > 0,

is satisfied and a function V € €*(IR™) may be found such that

(L1) there exists an increasing function k : R, —]0, oo[ such that
lim x(r) = +o0

and V(x) = k(||x||) for all x € R™,
(L2) there exists y > 0 such that

(b(t, x), DV(x)) + éTr(o—(t, x)*D*V(x)a(t, x)) < yV(x)

for all (¢, x) € [0, T] x R™

Then there exists a weak solution to (1).

(By DV and D?V we denote the first and second Fréchet derivative of V,
respectively.) The assumption (L2) is the well-known Khas’'minskii’s condition
for nonexplosion (see [2], Theorem 3.5, where equations with locally Lipschitz
continuous coefficients are considered), however, we do not work with local
solutions and construct global solutions directly. To prove Theorem 1, we
approximate coefficients » and o with bounded continuous functions. Essentially, we
mimick the proof of tightness of the laws of solutions to approximating equations
from [1], however, in absence of (2) we do not have uniform moment estimates for
approximating processes X, at our disposal, instead, we have to resort to a well
known trick from stability theory and show, roughly speaking, that (e " V(X,(?)))
are supermartingales. As a consequence, the proof is less straightforward than the
corresponding one in [1]. Once tightness is proved, the identification procedure from
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[1] may be applied without any change, since it does not depend on any particular
form of approximations. More precisely, in [1], Remark 3.2, we proved:

Proposition 2. Let the assumption (A) be satisfied. Let there exist Borel functions b, :
[0,7T] x R" — R™ and 6, : [0, T] x R" — M k > 1, such that

1. b.(r,-), a,(r,-) are continuous on R™ for any r € [0, T] and k > 1,

2. by (r,-) = b(r,-), oy (r,-) = a(r,-) locally uniformly on R™ as k — oo for any r €
[0. 7],

3. the functions by, o, are locally bounded on [0, T] x R™ uniformly in k > 1, that is

sup sup_sup {[|b(r. )| V [lox(r. )|} < oo

k=1 rel0.7] |z <L

for each L > 1.

Suppose that for any k > 1 there exists a weak solution ((Qy, F*, (FF), P,), W;, X;)
to the problem

dX = b,(1, X) dt + o,(1, X) dW, X(0) ~ v. 3)

If {P, o X;'; k> 1} is a tight set of probability measures on €([0, T]; R™) then there
exists a weak solution to (1).

Before proceeding to the proof of Theorem 1, we shall recall some definitions
and give a few illustrative examples. First, a weak solution to (1) is a triple
(G, %,(%6,),0), W, X), where (G, G, (6,), Q) is a stochastic basis with a filtration
(€,) that satisfies the usual conditions, W is an n-dimensional (%,)-Wiener process
and X is an R™-valued (%,)-progressively measurable process such that Qo
X(0)™! = v and

X(1) = X(0) + /0[ b(r, X(r))dr + /Ot a(r, X(r)) dW(r)

for all r €[0,7] @Q-almost surely. In the proof, we use the Riemann-Liouville
(or fractional integral) operator: if g €]1, oo], « 6]15’ 1] and f € L%([0, T]; R™), a
function R, f : [0, T] — IR™ is defined by

(RSO = [ (=9 f)ds, 0=1=T.

The (easy) properties of R, : f —> R, f that we need are summarized in [1], Lemma
2.2. Finally, by ¢, , we shall denote the set of all 7 € €'([0, T] x R™) such that
h(t,-) € ‘€*(R™) for each € [0, 7] and D,h, D’h are continuous functions on
[0, T] x R™, D h(t, x) and D*h(t, x) being the first and second Fréchet derivative of
h(t,-) at the point x, respectively.

Example.

(a) If the coefficients b and ¢ satisfy (A) and (2) then Theorem 1 is applicable. More
generally, assume that

2(b(1, %), x) + o (t, 0)II* < K(1 + [lx]°)
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for some K < oo and all ¢ € [0, 7], x € R™. Then the Lyapunov function V:
x —> 1+ ||x||? satisfies (L1) and (L2).

Suppose that ¢ : [0, 7] x R — IR is a function bounded on bounded sets and
a(t,-) € €(R) for each ¢ € [0, T]. Then we may use Theorem 1 with a Lyapunov
function V: x —> log(e + x?) to deduce that a stochastic differential equation

dX = o(t, X)dW, X, ~v

has a weak solution. Of course, it is known that explosions cannot occur
for one-dimensional stochastic differential equations without drift, irrespective
of growth and continuity properties of o, but a proof based on Lyapunov
functions, when available, is much simpler than the one in the general case.
Let us consider a stochastic nonlinear oscillator ¥ + x**! = ¢(x)w, where k € N
and ¢ € €(IR), that is rigorously, a system

dX =vd:, dY =—-Xx*"dr+ o(X)dW. 4)

Theorem 1 with a choice

V:RZ— R, (*)—1lo erZMer2
: , e —
y T %1272

implies that there exists a weak solution of (4) with an arbitrary initial condition
v provided ¢%(x) = O(x*+?), x — Fo0.

Proof of Theorem 1. For k > 1, let us define

and

b(t, x), 0<t=<T, x| <k
b(t.x) = 1 b(t, )2 =k Y|x[))’, 0<1<T, k<|x| <2k
0 elsewhere,
a(t, x), 0<t<T, |x|| £k,
o (t,x) =1a(t,x)2—k"x]|), 0<t<T, k<|x| <2k,
0 elsewhere.

Obviously, Hypotheses 1 and 2 of Proposition 2 are satisfied, moreover |b,|| < |||

and

llo.ll < o]l on [0, T] x R™ for all k > 1 and, thus, Hypothesis 3 is satisfied as

well. The coefficients b, and ¢, are bounded, so Theorem 0.1 from [1] implies that
there exists a weak solution ((Q, F*, (F}), P,), W,, X,) of (3). Therefore, Theorem
1 will follow from Proposition 2 provided we show that {P, o X;!; k > 1} is a tight
set of measures.

Toward this end, let us define for any h € €, and k> 1 a function LA :

[0, T] x R" — R by

(L h)(t, x) = (b (1, x), D h(t, x)) + %Tr(o*k(t, x)*Dih(t, x)o, (2, x)),
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(t, x) € [0, T] x R™. The definition of b, and ¢, and the assumption (L2) imply that
L V(t,x) <yV(x) forallk>1 and (¢, x) [0, 7] x R".

A straightforward calculation shows that if we set U(t, x) = ¢ " V(x) then

ou
<E + LkU>(t, x) <0 forallk>1 and (¢, x)€[0,T] x R™. (5)

Let us fix £ > 1 for a while. From the It6 formula we get
Ut Ao, X (1 A 0) — Uls A g, Xy(s A @)
ine [ oU IAQ
-/ (T + Lkv) (R XN dr+ [ DU X () 0,1, X, (1) AW, (),
SAQ ot SAQ
and, thus,

Ut Ao, X (1 A @) — U(s A g, X (s A @)

< [ DU X)) 01l X, () AW () ©)

SAQ

by (5), whenever s, ¢ € [0, T], s < t and g is an [0, T]-valued (F¥)-stopping time.
First, let us choose s =0, L > 0, and

0=r1, =inf {r >0; | X.(n| = L}

(where we set inf @ = T). Since U(0, -) = V we obtain

INT

Ut A, X (1 A7) < V(X,(0) +/0 D U(r, Xi(r)) ap (r, X, (r)) AW, (r).
Let y € IR™ be an arbitrary Borel set such that
/ V(z) dv(z) < oo. (7
b

(Plainly, any compact set y satisfies (7).) Denoting by A the set {X,(0) € y} € 7§
we get

1, Ut A7, X (tAT)))
SLVEO) + [ LD X0 0, X,0) AW ()

As 1,1 . ((-)D, U, X, (1)) o, (-, Xi(+)) is bounded on [0, 7] x €, due to continuity
of D, U, local boundedness of ¢, and the definition of 7,, we have

EA Ut AT, X (1 Aty)) < EL,V(X(0) = E1,(X,(0) V(X,(0))

I AGLG!
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the right-hand side is independent of L > 0. Clearly, {t, = T} 1 Q, P,-almost surely
as L — oo, since X, has continuous trajectories, so

E1L U, X,(1) = [ V(2)dv(z) < o0

by the Fatou lemma.
In particular, if s, t € [0, T], s < ¢, then the conditional expectation

E,(1,U(1, X, () | F)

is well defined. Using (6) with the stopping time t,, replacing the Fatou lemma with
its version for conditional expectations but otherwise proceeding as above we arrive
at an estimate

E (LUt X (D) | FF) <1,U(s, X, (s)), 0<s<t=<T.
Consequently,  (1,U(#, X, (1)), 0<¢<T) is a nonnegative continuous

supermartingale. The maximal inequality for supermartingales implies

P sup 1,000 X,0) = 2} < S, ()Y, 0)

0<r<T

- % // V(z) dv(z),

hence, by the definition of U,

Pk{ sup 1(X, (0)V(X, (1) > z} < e)i / Vdv

0<r<T

for all 2 > 0; the estimate is uniform in k > 1. From Assumption (L1), we deduce
that

e’
P, sup L(X,(0)|X, (D] > A} < Vdy 8
s oo = 2 < 2 f ®
holds for all 2 > 0 and k > 1.

Now the proof of tightness of {P, o X;!'; k > 1} can be completed essentially in
the same manner as in the proof of Proposition 2.1 in [1]. Let an arbitrary &€ > 0 be
given, we want to find a relatively compact set K € €([0, 7]; R™) so that

sup P {X, ¢ K} <e. )

k>1

Let us take an arbitrary p €]2,00[ and oce]%,%[ and recall that X, has a
representation (see e.g. [1, Lemma 2.5])

sin o
(R,Z)(1), 0=<t=<T,
Y

X (1) = X, (0) + [Rlbk(" Xk())](t) +
where

Z.(1) = f()'(t—s)-“ak(s, X,(s))dW,(s), 0<r<T.



Downloaded by [Matematicky Ustav Av Cr] at 13:28 19 June 2013

Weak Solutions of SDEs 669

The process Z, is plainly well defined for every r € [0, 7], since g, is a bounded
function. Let H C IR™ be a compact set such that v(R"\H) = P, {X,(0) € H} < &/8.
The set

sin 7o
R

x € H,

o Ws

K = {fe‘é([O,T];]R”’); f=x+Ryv+ -

v,we LP(0, T; R™), |u, v |wl|, < A}’

where by |- |, the norm of L”(0, T; R™) is denoted, is relatively compact owing to
compactness of the operators R, and R,. It remains to show that A > 0 may be
found for K to satisfy (9).

From (8) and (L1), we obtain that there exists 4, > 0 such that

T P>
sup P, {1,060 sup X0 = o = L [ Vav< 5,
k>1 0<t<T K(/Lo) H 8

therefore, the choice of H gives

skuE)P,({ sup | X, (0] > )vo} <

0<t<T

&~ o

Hence, if we set

B, = {we Qy OSUP X, (2, @) < 2}

<t<T

then P, (Q,\B,) < ¢/4 for all k > 1.
Obviously,

P (X, ¢ K} < P,{X,(0) £ H} +Pk{|bk(" X1, > A} +Pk{|Zk|p > A}~
By the Chebyshev inequality, we get

Pk{|bk(" X1, > A} < P, (Q\By) +Pk{w € B |b(-, X, (), > A}

e 1 r »
_Z‘f‘ﬁ i1g, A 16 (r, X (W) |7 dr
e T
< -+ — b (t, 2)|”
=3t 164 (2, 2)
Izl<7o
e T
<-4+ — b(t, 2)|”.
R Vi oGz, )
Iz01<7

The right-hand side is independent of k > 1, so there exists A; > 0 such that

sup Pu{ b, (- X, ()], = A} =

W[ M



Downloaded by [Matematicky Ustav Av Cr] at 13:28 19 June 2013

670 Hofmanovd and Seidler

for all A > A,. The norm |Z,|, may be estimated analogously. Clearly,
P{|Z,], > A} = PL(Q\By) + P{w € By: |Z,], > A}
< 2 +Pfwe B |Z], > A).
For each k > 1 let us define an (F)-stopping time {, by
(o =inf {t € [0, T]; X, (D] > A},

setting again inf § = 7. Using the Chebyshev and Young inequalities and noting
that {, = T on B, we obtain

1 T
Plowe By |Z,], > A} < 7 Bela, | 1Z(s)||” ds
1 T s ﬁ P
= CEL, /0 H /0 (s — u) o, (u, X, (1)) dW(w)| ds
1 T K P
= ﬁElek/o H/O (s —u) "y, (o (u, Xy (u)) dW(u) | ds
1 T s _ P
< B [ [ 6= 0 0w X aw)| o
G ! ’ —2u 2 i
< GE[ ([ 6= 07 g lo e Xw)|Pdu) - ds
C T p/? T
< ([ wran) B[ ol X)) du
C,T( (7 v
< 2L 24 s t, x)||”
< ([ ) sup ol
Izl <40
CT/[ T rr2
< 2 2“‘d) su t, x)|”,
<< ( [ waun) sup a0
Izl <20

where C, is a constant coming from the Burkholder-Gundy-Davis inequality. We
see that there exists a constant A, > 0 such that

sup P {|Z,], > A} < g

k>1

for all A > A, and hence the proof may be completed easily. Q.E.D.

References

1. Hofmanovd M., and Seidler J. 2012. On weak solutions of stochastic differential
equations. Stoch. Anal. Appl. 30(1):100-121.

2. Khasminskii R. 2012. Stochastic Stability of Differential Equations. 2nd ed., Springer,
Berlin.



