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Abstract. This paper considers weak supercyclicity for bounded linear operators on
a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-
space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable
operators are not weakly l-sequentially supercyclic, and (iii) weak l-sequential supercyclic-
ity is preserved between a unitary operator and its adjoint. On the other hand, weak
supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum
of the normed-space adjoint of a power bounded supercyclic operator is either empty or is
a singleton in the open unit disk, (v) weak l-sequential supercyclicity coincides with super-
cyclicity for compact operators, and (vi) every compact weakly l-sequentially supercyclic
operator is quasinilpotent.

Keywords: supercyclic operator; weakly supercyclic operator; weakly l-sequentially
supercyclic operator
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1. Introduction

The reason of this paper is to characterize weak supercyclicity, in particular, weak

l-sequential supercyclicity for bounded linear operators on a normed space. Section

2 deals with notation, terminology and basic notions that will be required through-

out the text. In Section 3 it is shown: (i) self-adjoint operators are not weakly

supercyclic (Theorem 3.1), (ii) diagonalizable operators are not weakly l-sequentially

supercyclic (Theorem 3.2), (iii) weak l-sequential supercyclicity is preserved between

a unitary operator and its adjoint (Theorem 3.3), and (iv) the point spectrum of

the normed-space adjoint of a power bounded supercyclic operator is either empty

or is a singleton in the open unit disk (Theorem 3.4), and it is also shown when this

happens for weakly l-sequentially supercyclic operators. The first result of Section 4

gives a first characterization for weakly l-sequentially supercyclic compact opera-

tors: they are supercyclic (Theorem 4.1)—does weak supercyclicity also coincide
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with weak l-sequential supercyclicity for compact operators? The section closes by

giving a full spectral characterization for weakly l-sequentially supercyclic compact

operators: they are quasinilpotent (Theorem 4.2).

2. Notation, terminology and basics

Let X be a nonzero complex normed space and let X ∗ be the dual of X . A subspace

of X is a closed linear manifold of X . IfM is a linear manifold of X , then its closure

M− is a subspace. The normed algebra of all operators on X (i.e., of all bounded

linear transformations of X into itself) will be denoted by B[X ]. For any operator T

on a normed space X let N (T ) = T−1{0} = {x ∈ X : Tx = 0} be the kernel of T ,

which is a subspace of X , and let R(T ) = T (X ) be the range of T , which is a linear

manifold of X . Let T ∗ in B[X ∗] stand for the normed-space adjoint of T.We use the

same notation for the Hilbert-space adjoint of a Hilbert-space operator.

For each normed-space operator T the limit r(T ) = lim
n

‖T n‖1/n exists in R and is

such that 0 6 r(T ) 6 ‖T ‖. If an operator T on a normed space is such that r(T ) = 0,

then it is quasinilpotent. On the other hand, if T is such that r(T ) = ‖T ‖, then it

is normaloid. Let σP (T ) = {λ ∈ C : N (λI − T ) 6= {0}} be the point spectrum of T ,

the set of eigenvalues of T. An operator T on a normed space X is power bounded

if sup
n>0

‖T n‖ <∞, and strongly stable or weakly stable if the X -valued sequence

{T nx}n>0 converges to zero in the norm topology or in the weakly topology of X ,

T nx→ 0 or T nx
w

−→ 0,

which means ‖T nx‖ → 0 or f(T nx) → 0 for every f ∈ X ∗ for every x ∈ X , respec-

tively. If X is a Banach space, such that T lies in the Banach algebra B[X ], then

let σ(T ) ⊂ C stand for the spectrum of T (which is compact and nonempty). In

this case, r(T ) coincides with the spectral radius of T ; that is, r(T ) = max
λ∈σ(T )

|λ|

(by the Gelfand-Beurling formula). Thus, if X is a Banach space, then T ∈ B[X ] is

quasinilpotent if and only if σ(T ) = {0}.

With the assumption that X is a normed space still in force, the orbit of a vector

y ∈ X under an operator T ∈ B[X ] is the set

OT (y) =
⋃

n>0

T ny =
{

T ny ∈ X : n ∈ N0

}

,

where N0 denotes the set of nonnegative integers—we write
⋃

n>0

T ny for the set
⋃

n>0

T n({y}) =
⋃

n>0

{T ny}. The orbit OT (A) of a set A ⊆ X under T is likewise
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defined: OT (A) =
⋃

n>0

T n(A) =
⋃

y∈A

OT (y). Let spanA stand for the linear span of

a set A ⊆ X and consider the projective orbit of a vector y under T , which is the

orbit of the one-dimensional space spanned by the singleton {y},

OT (span{y}) =
⋃

n>0

T n(span{y}) = {αT ny ∈ X : α ∈ C, n ∈ N0}.

The closure (in the norm topology of X ) of a set A ⊆ X is denoted by A−, and

the weak closure (in the weak topology of X ) is denoted by A−w. Thus, A is dense

or weakly dense if A− = X or A−w = X , respectively. A set A is weakly sequentially

closed if every A-valued weakly convergent sequence has its limit in A, and the weak

sequential closure A−sw of A is the smallest weakly sequentially closed subset of X

including A, and A is weakly sequentially dense if A−sw = X . The weak limit set

A−lw of a set A is the set of all weak limits of weakly convergent A-valued sequences,

and a set A is weakly l-sequentially dense if A−lw = X . In general, the inclusions

A− ⊆ A−lw ⊆ A−sw ⊆ A−w are proper (see, e.g. [30], pages 259, 260, [5]). However,

if a set A ⊆ X is convex, then A− = A−w (see, e.g. [10], Theorem V.1.4), and so if

A is convex, then the above chain of inclusions becomes an identity.

A vector y ∈ X is supercyclic or weakly supercyclic for an operator T ∈ B[X ] if

OT (span{y})
− = X or OT (span{y})

−w = X ,

and it is weakly l-sequentially supercyclic or weakly sequentially supercyclic if

OT (span{y})
−lw = X or OT (span{y})

−sw = X ,

respectively. An operator T ∈ B[X ] is supercyclic, weakly l-sequentially supercyclic,

weakly sequentially supercyclic, or weakly supercyclic if it has a supercyclic, a weakly

l-sequentially supercyclic, a weakly sequentially supercyclic, or a weakly supercyclic

vector, respectively. Thus,

supercyclicity =⇒
weak l-sequential

supercyclicity
=⇒

weak sequential

supercyclicity
=⇒

weak

supercyclicity.

So a vector y ∈ X is supercyclic or weakly l-sequentially supercyclic for an operator

T ∈ B[X ] (i.e. OT (span{y})− = X or OT (span{y})−lw = X ) if and only if for every

x ∈ X there is a C-valued sequence {αi}i>0 (that depends on x and y, and consists

of nonzero numbers) such that for some subsequence {T ni}i>0 of {T n}n>0,

αiT
niy → x or αiT

niy
w

−→ x,
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respectively. Weak l-sequential supercyclicity was considered in [6] (and implicitly

in [4]), and it was referred to as weak 1-sequential supercyclicity in [30]. Although

there are reasons for such a terminology, we have changed it here to weak l-sequential

supercyclicity, replacing the numeral “1” with the letter “l” for “limit”. Any form

of cyclicity implies separability for X (see, e.g. [23], Section 3).

The contribution to linear dynamics of the present paper in contrast with [4], [5],

[6], [30] is the characterization of weak l-sequential supercyclicity for further classes of

operators (including self-adjoint, diagonalizable, unitary, normal, hyponormal, and

compact) as in Theorems 3.1, 3.2, 3.3, 3.4 and Theorems 4.1 and 4.2. These were

carried out here on Banach spaces (or normed spaces when completeness was not

necessary) or, in particular, on Hilbert spaces. The stronger notion of hypercyclicity

has been investigated in Fréchet spaces, or F -spaces, or locally convex spaces (see,

e.g. [2], [5], [7], [8], [15], [26]). Some of the above classes of operators may have a nat-

ural extention on some of these spaces, which perhaps might be worth investigating

in light of the weaker notion of weak l-sequential supercyclicity. However, we refrain

from going further than Banach spaces (or normed spaces) here to keep up with the

focus on the main topic of the paper.

3. Adjointness and weak supercyclicity

The following proposition summarizes a few known results that will be often re-

quired throughout the next two sections, which are germane to Hilbert spaces. An

operator T on a Hilbert space is self-adjoint or unitary if T ∗ = T or TT ∗ = T ∗T = I,

respectively, where I stands for the identify operator. A unitary operator is abso-

lutely continuous, singular-continuous, or singular-discrete if its scalar spectral mea-

sure is absolutely continuous, singular-continuous, or singular-discrete, respectively,

with respect to normalized Lebesgue measure on the σ-algebra of Borel subsets of

the unit circle. An operator is an isometry if T ∗T = I and a coisometry if its adjoint

is an isometry. Thus, a unitary is an isometry and a coisometry, which means an in-

vertible isometry. An operator is normal if TT ∗ = T ∗T , hyponormal if TT ∗ 6 T ∗T ,

and cohyponormal if its adjoint is hyponormal. These are all normaloid operators.

Some extensions along the lines discussed in Proposition 3.1 below from hyponormal

to further classes of normaloid operators, such as paranormal operators and beyond,

have recently been considered in literature (see, e.g. [12], Corollary 3.1, [13], Theo-

rem 2.7), but again we refrain from going further than hyponormal operators here

to keep up with the focus on the main topic of the paper.

Proposition 3.1. The following assertions hold for Hilbert-space operators.

(a) No hyponormal operator is supercyclic (no unitary operator is supercyclic).
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(b) A hyponormal weakly supercyclic operator is a multiple of a unitary.

(c) There exist weakly l-sequentially supercyclic unitary operators.

(d) A weakly l-sequentially supercyclic unitary operator is singular-continuous.

P r o o f. (a) See [9], Theorem 3.1 (for the unitary case see also [3] proof of

Theorem 2.1).

(b) See [4], Theorem 3.1.

(c) See [4], Example 3.6 (also [4], pages 10, 12, [30], Proposition 1.1, Theorem 1.2).

(d) See [22], Theorem 4.2. �

Although a unitary operator can be weakly supercyclic, a self-adjoint cannot.

Theorem 3.1. A self-adjoint operator on a Hilbert space is not weakly super-

cyclic.

P r o o f. Since a weakly supercyclic hyponormal operator is a multiple of a uni-

tary operator (cf. Proposition 3.1 (b)), if T is self-adjoint on a Hilbert space H and

weakly supercyclic, then it is a self-adjoint multiple of a unitary, which implies that

T 2 is a positive multiple of the identity, say, T 2 = |β|2I and so T n = |β|nI if n is

even or T n = |β|n−1T if n is odd. Thus, the projective orbit of any vector z ∈ H is

included in a pair of one-dimensional subspaces

OT (span{z}) = {αT nz ∈ H : α ∈ C, n ∈ N0}

⊆ {αz ∈ H : α ∈ C} ∪ {αTz ∈ H : α ∈ C} = span{z} ∪ span{Tz},

which is not dense in H in the weak topology if dimH > 1. Hence, a self-adjoint

operator T (on a space of dimension greater than 1) is not weakly supercyclic. �

Normal operators are not supercyclic (neither are hyponormal) but can be weakly

l-sequentially supercyclic (so can unitary), but diagonalizable operators cannot.

Theorem 3.2. A diagonalizable operator on a Hilbert space is not weakly l-

sequentially supercyclic.

P r o o f. A diagonalizable operator T on a Hilbert space H is precisely an op-

erator unitarily equivalent to a diagonal operator (see, e.g. [21], Proposition 3.A).

So it is normal and therefore if it is weakly supercyclic, then it acts on a separa-

ble Hilbert space (i.e. H is separable), and it is a multiple of a unitary operator

(cf. Proposition 3.1 (b)). Thus, such a unitary operator is unitarily equivalent to

a unitary diagonal U on ℓ2+, which is discrete (i.e. singular-discrete). If, in addition,

T is weakly l-sequentially supercyclic, then so is U , and hence U must be singular-

continuous (cf. Proposition 3.1 (d)), which is a contradiction. Then a diagonalizable

operator is not weakly l-sequentially supercyclic. �
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Remark 3.1. It was asked in [22], Question 5.1, whether every weakly super-

cyclic unitary operator is singular-continuous. An affirmative answer ensures that

Theorem 3.2 holds if weakly l-sequentially supercyclic is replaced by weakly super-

cyclic.

If T is an invertible supercyclic, then so is its inverse [3], Section 4, [27], Corol-

lary 2.4. There are, however, invertible weakly supercyclic operators in B[ℓp] =

B[ℓp(Z)] for any p ∈ [2,∞) whose inverses are not weakly supercyclic, see [28], Corol-

lary 2.5. For p = 2 this exhibits a Hilbert-space invertible operator whose inverse is

not weakly supercyclic. Since for p = 2 such an operator is not unitary, the following

question crops up: if a unitary operator is weakly supercyclic, is its inverse (i.e. its

adjoint) weakly supercyclic? Recall that the adjoint of a supercyclic coisometry may

not be supercyclic (example: a backward unilateral shift S∗ is a supercyclic coisome-

try ([19], Theorem 3), while its adjoint, the unilateral shift S, being an isometry is not

supercyclic ([19], page 564, also see [3], Proof of Theorem 2.1, [23], Lemma 4.1 (b)).

The same happens with weak supercyclicity: the adjoint of a weakly supercyclic

coisometry may not be weakly supercyclic (example: S is not weakly supercyclic by

Proposition 3.1 (b), but S∗ is weakly supercyclic, since it is supercyclic). However, if

an isometry is invertible and weakly l-sequentially supercyclic, then it has a weakly

l-sequentially supercyclic adjoint (i.e. inverse), as we show in Theorem 3.3 below.

Let D stand for the open unit disk (about the origin in the complex plane C), let

D
− (the closure of D) stand for the closed unit disk, and let their boundary T = ∂D

stand for unit circle (about the origin).

Theorem 3.3. A unitary operator on a Hilbert space is weakly l-sequentially

supercyclic if and only if its adjoint is weakly l-sequentially supercyclic.

P r o o f. We split the proof into 2 parts.

Part 1. Let µ be a positive measure on the σ-algebra AT of Borel subsets of

the unit circle T and consider the Hilbert space L2(T, µ). Let ϕ : T → T denote the

identity function, ϕ(γ) = γ µ-a.e. for γ ∈ T, and consider the multiplication operator

Uµ : L
2(T, µ) → L2(T, µ) induced by ϕ, Uµψ = ϕψ, which is given by

(Uµψ)(γ) = ϕ(γ)ψ(γ) = γψ(γ) µ-a.e. for γ ∈ T,

so that U∗

µψ = ϕψ, which is given by

(U∗

µψ)(γ) = ϕ(γ)ψ(γ) = γψ(γ) µ-a.e. for γ ∈ T,

for every ψ ∈ L2(T, µ). It is clear that Uµ is unitary. Let C : L2(T, µ) → L2(T, µ) de-

note the complex conjugate transformation (i.e. C(ψ) = ψ), which has the following
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properties: it is a contraction (thus norm continuous), weakly continuous (in fact,

〈C(ζk−ζ);ψ〉 = 〈ζk − ζ;ψ〉 for every ζk, ζ, ψ ∈ L2(T, µ)), an involution (i.e. C2 = I),

additive, and conjugate homogeneous (i.e. C(αf) = αC(f)).

Claim 1. CUµ = U∗

µC.

P r o o f. C(Uµψ) = (Uµψ) = ϕψ = ϕ ψ = ϕC ψ) = U∗

µ(Cψ) for any

ψ ∈ L2(T, µ). �

Claim 2. Let {Unk}k>0 be an arbitrary subsequence of {U
n}n>0, let {αk}k>0 be

any sequence of scalars, and let ϕ, ψ be functions in L2(T, µ). Then

αkU
nk
µ ϕ

w
−→ ψ if and only if αkU

∗nk
µ ϕ

w
−→ ψ.

P r o o f. Since C is weakly continuous, it follows by Claim 1 (since C is conjugate

homogeneous) that if αkU
nk
µ ϕ

w
−→ ψ, then

αkU
∗nk
µ ϕ = αkU

∗nk
µ (Cϕ) = αkC(U

nk
µ ϕ) = C(αkU

nk
µ ϕ)

w
−→ C(ψ) = ψ.

Dually, since C and the adjoint operation are involutions, the converse holds. �

Take an arbitrary ψ ∈ L2(T, µ). If Uµ is weakly l-sequentially supercyclic, then

there is a supercyclic vector ϕ ∈ L2(T, µ) for Uµ, a sequence of nonzero numbers

{αk(ϕ, ψ)}k>0, and a corresponding subsequence {Unk
µ }k>0 of {Un

µ }n>0 such that

αk(ϕ, ψ)U
nk
µ ϕ

w
−→ ψ.

According to Claim 2 this happens if and only if

αk(ϕ, ψ)U
∗nk
µ ϕ

w
−→ ψ = ψ,

and so ϕ is a weakly l-sequentially supercyclic vector for U∗

µ, and hence U
∗

µ is weakly

l-sequentially supercyclic. Again the converse holds dually. Therefore,

Uµ is weakly l-sequentially supercyclic if and only if so is its adjoint U
∗

µ.

Part 2. Take a unitary operator U on a Hilbert space H. If U is weakly super-

cyclic, then it is weakly cyclic, and so it is cyclic (i.e. if there exists a vector

y ∈ H such that OU (span{y})−w = H, then
(

span
⋃

n
Uny

)−

= (spanOU (y))
− =

(spanOU (y))
−w = H because spanOU (y) is convex). Cyclicity implies star-cyclicity,

which in turn implies separability for H—since U is normal, star-cyclicity for U

means: there exists a vector y ∈ H for which
(

span
⋃

n
UnU∗ny

)−w

= H—see,
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e.g. [21], pages 73 and 74. Star-cyclicity ensures, by the Spectral Theorem, that U

is unitarily equivalent to a unitary multiplication operator Uµ on L
2(T, µ) induced

by the identity function ϕ : T → T (thus of multiplicity one), where the positive

measure µ on AT is finite and supported on σ(U) ⊆ T—see, e.g. [21], Part (a),

proof of Theorem 3.11. If, in addition, the unitary U on H is weakly l-sequentially

supercyclic, then so is the unitary multiplication operator Uµ on L
2(T, µ) (which

is unitarily equivalent to it), and the result of Part 1 ensures that U∗

µ is weakly

l-sequentially supercyclic, and so is the unitary U∗ (which again is unitarily equiva-

lent to U∗

µ). Dually, if U
∗ is weakly l-sequentially supercyclic, then so is U . �

Corollary 3.1. A hyponormal (normal) operator is weakly l-sequentially super-

cyclic if and only if its adjoint is weakly l-sequentially supercyclic.

P r o o f. Proposition 3.1 (b) and Theorem 3.3. �

If T is a power bounded operator on a Banach space, then r(T ) 6 1 (equivalently,

σ(T ) ⊆ D
−) and so σP (T ) ⊆ D

−. As we will see in the proof of Theorem 4.2., if an

operator T on a Banach space is supercyclic, then the point spectrum of its normed-

space adjoint σP (T
∗) has at most one element. As a consequence of the forthcoming

Theorem 3.4, if a supercyclic operator T is power bounded, then this possible unique

element λ of σP (T
∗) is such that |λ| < 1 (so that σP (T

∗) ⊆ {λ} ⊂ D).

To proceed we need the following definition. A normed space X is said to be

of type 1 if convergence in the norm topology for an arbitrary X -valued sequence

{xk} coincides with weak convergence plus convergence of the norm sequence {‖xk‖}

(i.e. xk → x ⇐⇒ {xk
w

−→ x and ‖xk‖ → ‖x‖}—also called Radon-Riesz space and

the Radon-Riesz property, respectively; see, e.g. [24], Definition 2.5.26). Hilbert

spaces are Banach spaces of type 1 [16], Problem 20.

Theorem 3.4. Let T ∈ B[X ] be a supercyclic (or weakly l-sequentially super-

cyclic) operator on a normed space X . Suppose there exists a nonzero eigenvalue λ

of T ∗ (i.e. 0 6= λ ∈ σP (T
∗)) and take any nonzero eigenvector f ∈ X ∗ of T ∗ ∈ B[X ∗]

associated with λ (i.e. 0 6= f ∈ N (λI − T ∗)). Then for every supercyclic (or weakly

l-sequentially supercyclic) vector y for T and every x ∈ X such that f(x) 6= 0

(i.e. x ∈ X \ N (f)), there exists a subsequence {nk}k>0 of the integers {n}n>0 such

that
f(x)

f(y)

1

λnk
T nky −→ x or

f(x)

f(y)

1

λnk
T nky

w
−→ x

(i.e. we may set αk(x, y) = (λnk)−1f(x)/f(y)). In particular,

1

λnk
T nky −→ y or

1

λnk
T nky

w
−→ y.
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Moreover:

(a) If T is power bounded and supercyclic, then |λ| < 1.

(b) If T is power bounded and weakly l-sequentially supercyclic on a type 1 normed

space, and if |f(y)| = ‖f‖ lim
n

‖T ny‖ for some weakly l-sequentially supercyclic

vector y and some 0 6= f ∈ N (λI − T ∗), then |λ| < 1.

P r o o f. Let T ∈ B[X ] be an operator on a normed space X and consider its

normed-space adjoint T ∗ ∈ B[X ∗]. Let λ be a nonzero eigenvalue of T ∗ and take any

nonzero eigenvector f ∈ X ∗ associated with the nonzero eigenvalue λ of T ∗ such that

(∗) f(T nx) = λnf(x)

for every n > 0 and every x ∈ X . (Indeed, f(T nx) = (T n∗f)(x) = (T ∗nf)(x) =

(λnf)(x) = λnf(x).) Suppose T is supercyclic (or weakly l-sequentially supercyclic).

Fix an arbitrary (nonzero) supercyclic (or weakly l-sequentially supercyclic) vec-

tor y ∈ X for T , and take an arbitrary vector x ∈ X . Thus, there is a sequence

of nonzero numbers {αk(y, x)}k>0 and a corresponding subsequence {T nk}k>0 of

{T n}n>0 (which depends on x and y) such that

αk(y, x)T
nky −→ x or αk(y, x)T

nky
w

−→ x.

So, according to (∗) (for the supercyclic case recall that f is continuous),

αk(y, x)λ
nkf(y) = αk(y, x)f(T

nky) = f(αk(y, x)T
nky) → f(x).

Observe that

(∗∗) f(y) 6= 0.

(Indeed, by the above convergence if f(y) = 0, then f(x) = 0 for every x ∈ X , which

is a contradiction). Hence,

αk(y, x)λ
nk →

f(x)

f(y)
,

and so if f(x) 6= 0 (which ensures (αk(y, x)λ
nk)−1 → f(y)/f(x)), then

f(x)

f(y)

1

λnk
T nky −→ x or

f(x)

f(y)

1

λnk
T nky

w
−→ x.

In particular, by setting x = y,

1

λnk
T nky −→ y or

1

λnk
T nky

w
−→ y.
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Moreover: (a) If a power bounded operator T on a normed space X is supercyclic,

then it is strongly stable, see [3], Theorem 2.2. Thus, in this case T nky → 0 so

λnk → 0 (since (λnk)−1T nky → y 6= 0), which implies |λ| < 1.

(b) Suppose |λ| = 1. From (∗) and (∗∗),

|f(T ny)| = |f(y)| 6= 0

for every n > 0, so

f(T ny) 9 0 and 0 < lim inf
n

|f(T ny)|,

for every weakly l-sequentially supercyclic vector y and every nonzero eigenvector f

associated with the eigenvalue λ. Then T ny
w
9 0, so T is not weakly stable. However,

according to [23], Theorem 6.2, if a power bounded operator T on a type 1 normed

space X is weakly l-sequentially supercyclic, then either

(i) T is weakly stable, or

(ii) if y is any weakly l-sequentially supercyclic vector such that T ny
w
9 0, then for

every nonzero f ∈ X ∗ such that f(T ny) 9 0 either

lim inf
n

|f(T ny)| = 0, or lim sup
j

|f(T nky)| < ‖f‖ lim sup
j

‖T njy‖ for some subsequence

{nj}j>0 of {n}n>0.

Consider a weakly l-sequentially supercyclic power bounded operator T on a type 1

normed space. By the above results if |λ| = 1, then |f(y)| < ‖f‖ lim sup
nj

‖T njy‖

for some subsequence {nj}j>0 of {n}n>0 for every weakly l-sequentially supercyclic

vector y and every nonzero eigenvector f associated with the eigenvalue λ (since

|f(T ny)| = |f(y)|). Therefore if |f(y)| = ‖f‖ lim
n

‖T ny‖ for some weakly l-sequentially

supercyclic vector y and some nonzero eigenvector f associated with the eigenvalue λ,

then |λ| 6= 1, and hence |λ| < 1 (since T is power bounded). �

Remark 3.2. Since isometries are weakly supercyclic only if they are unitaries

(cf. Proposition 3.1 (b)), and since there exist weakly l-sequentially supercyclic uni-

taries (cf. Proposition 3.1 (c)), it follows by Theorem 3.4 that if T is a weakly

l-sequentially supercyclic isometry on a Hilbert space (so it is unitary, and so is

its adjoint), then |λ| < 1 whenever λ ∈ σP (T
∗) so that σP (T

∗) = ∅. Actually, by

Theorem 3.3 the unitary T ∗ is weakly l-sequentially supercyclic as well, and Propo-

sition 3.1 (d) says that the weakly l-sequentially supercyclic unitaries T and T ∗ must

be singular-continuous, and cyclic (in particular, weakly l-sequentially supercyclic)

singular-continuous unitaries have no eigenvalues. Indeed, if a star-cyclic (equiv-

alently, a cyclic) singular-continuous unitary has an eigenvalue, then there exists

a unitary multiplication operator Uµ induced by the identity function with respect
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to some positive singular-continuous measure µ on AT (after the Spectral Theo-

rem), which has an eigenvalue λ, and this implies γψ(γ) = λψ(γ) µ-a.e. for γ ∈ T

for some nonzero eigenvector ψ associated with the eigenvalue λ. So γ = λ for ev-

ery γ ∈ T \ N (ψ) ∈ AT. Therefore since µ(T \ N (ψ)) 6= 0, we get µ({λ}) > 0 which

is a contradiction (because, being continuous, µ is null when acting on measurable

singletons).

4. Compactness and weak supercyclicity

To begin with we need an auxiliary result on the range R(T ) of an operator T .

Lemma 4.1. If an operator T on a normed space X is weakly supercyclic, then

R(T )− = R(T )−wl = R(T )−w = X .

P r o o f. If a set A ⊆ X is convex, then A− = A−w, and so A− = A−wl = A−w.

Since a linear manifold is trivially convex,

R(T )− = R(T )−wl = R(T )−w.

But the projective orbit of any vector u ∈ X is included in the range of T ,

OT (span{u}) = {αT nu ∈ X : α ∈ C, n ∈ N0}

⊆ {z ∈ X : z = Tx for some x ∈ X} = R(T ).

Thus, if T is weakly supercyclic, then OT (span{y})−w = X for some y ∈ X , so

R(T )−w = X . �

Theorem 4.1 gives a first characterization for weakly l-sequentially supercyclic

compact operators: they are supercyclic.

Theorem 4.1. A compact operator on a normed space is weakly l-sequentially

supercyclic if and only if it is supercyclic.

P r o o f. Suppose T is a weakly l-sequentially supercyclic operator on a normed

space X . Take an arbitrary x ∈ X such that x ∈ R(T )− according to Lemma 4.1.

Thus, there exists an X -valued sequence {xk}k>0 such that

Txk → x.
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Since T is weakly l-sequentially supercyclic, there exists a nonzero vector y ∈ X

such that for each xk there exists a sequence of nonzero numbers {αj(xk)}j>0 and

a corresponding subsequence {T nj}j>0 of {T n}n>0 such that

αj(xk)T
njy

w
−→ xk.

If in addition T is compact, then

αj(xk)T
nj+1y → Txk

for every k (convergence in the norm topology, see e.g. [20], Problem 4.69). Thus

(∗) αj(xk)T
nj+1y −→

j
Txk −→

k
x.

This ensures the existence of a sequence of nonzero numbers {αi(x)}i>0 such that

(∗∗) αi(x)T
niy → x

for some subsequence {T ni}i>0 of {T
n}n>0. Indeed, consider both convergences

in (∗). Take an arbitrary ε > 0. Thus, there exists a positive integer kε such that

‖Txk−x‖ 6 ε/2 whenever k > kε.Moreover, for each k there exists a positive integer

jε,k such that ‖αj(xk)T
nj+1y − Txk‖ 6 ε/2 whenever j > jε,k. Therefore

j > jε,kε
=⇒ ‖αj(xkε

)T nj+1y − x‖ 6 ‖αj(xkε
)T nj+1y − Txkε

‖+ ‖Txkε
− x‖ 6 ε.

For each integer i > 1 set ε = 1/i. Consequently, set k(i) = kε = k1/i and j(i) =

jε,kε
= j1/i,ki

, so that αj(xkε
) = αj(xk(i)). Thus, for every integer i > 1 there is

another integer j(i) > 1 such that ‖αj(xk(i))T
nj+1y − x‖ 6 1/i whenever j > j(i).

Hence,

‖αj(i)(xk(i))T
nj(i)+1y − x‖ 6

1

i
for every integer i > 0,

and so there exists a sequence of nonzero numbers {αj(i)(xk(i))}i>0 for which

αj(i)(xk(i))T
nj(i)+1y → x.

By setting αi(x) = αj(i)(xk(i)) and T
ni = T nj(i)+1 we get: there exists a sequence

of nonzero numbers {αi(x)}i>0 and a subsequence {T ni}i>0 of {T n}n>0 such that

(∗∗) holds true. Thus, T is supercyclic (since x was taken to be an arbitrary vector

in X ). Therefore if T is weakly l-sequentially supercyclic, then T is supercyclic. The

converse is trivial. �

382



The next result gives an elementary proof that the classical Volterra operator

V ∈ B[Lp[0, 1]] given by V (f)(s) =
∫ s

0 f(t) dt for every f ∈ Lp[0, 1] for p > 1, is not

weakly l-sequentially supercyclic. A previous nonelementary proof that the Volterra

operator is not even weakly supercyclic was given in [25], Section 2.

Corollary 4.1. The Volterra operator is not weakly l-sequentially supercyclic.

P r o o f. It was shown in [14] that the Volterra operator is not supercyclic. It is

well known that the Volterra operator is compact (see, e.g. [1], Example 7.8). Thus,

the Volterra operator is not weakly l-sequentially supercyclic by Theorem 4.1. �

Question 4.1. Does weak supercyclicity coincide with weak l-sequential super-

cyclicity for compact operators on normed spaces?

Theorem 4.1 yields an immediate proof that a compact hyponormal (equivalently,

a compact normal) operator is not weakly l-sequentially supercyclic.

Corollary 4.2. A compact hyponormal operator is not weakly l-sequentially

supercyclic.

P r o o f. A hyponormal operator on a Hilbert space is never supercyclic

(cf. Proposition 3.1 (a)). Thus, the claimed result follows from Theorem 4.1. �

Remark 4.1. The above result can be proved without using Theorem 4.1 neither

Proposition 3.1 (a), but using the results in Proposition 3.1 (b), (d) as follows. Sup-

pose a nonzero operator T on a Hilbert space is weakly supercyclic. If T is compact

and hyponormal, then it is a compact nonzero multiple of a unitary U , since a weakly

supercyclic hyponormal is a multiple of a unitary (cf. Proposition 3.1 (b)). Thus, T

and so U are invertible compact, and hence they must act on a finite-dimensional

space (since the collection of all compact operators on a normed space X is an ideal

of B[X ], and the identity operator is not compact on an infinite-dimensional space).

On the other hand, a weakly l-sequentially supercyclic unitary operator is singular-

continuous (cf. Proposition 3.1 (d)), and so it must act on an infinite-dimensional

space (since on a finite-dimensional space spectra are finite, where unitaries are

singular-discrete). This leads to a contradiction. Thus, a compact hyponormal op-

erator is not weakly l-sequentially supercyclic.

As it is well-known, a compact operator is hyponormal if and only if it is compact

and normal (see, e.g. [20], Problem 6.23), which means a compact diagonalizable;

equivalently, a countable weighted sum of projections (according to the Spectral

Theorem). Thus, the result in Corollary 4.2 (compact hyponormal are not weakly

l-sequentially supercyclic; and so not supercyclic) also follows from Theorem 3.2.

383



Theorem 4.2 fully characterizes weakly l-sequentially supercyclic compact opera-

tors: they are quasinilpotent.

Theorem 4.2. A compact weakly l-sequentially supercyclic operator is quasi-

nilpotent (acting on an infinite-dimensional Banach space).

P r o o f. Take T ∈ B[X ], where X is a normed space, and let Tm∗ ∈ B[X ∗] be

the normed-space adjoint of Tm ∈ B[X ] for an arbitrary nonnegative integerm. Sup-

pose T is compact and weakly l-sequentially supercyclic (thus weakly supercyclic).

Let σP (T
∗) be the point spectrum of T ∗. Theorem 4.1 says that the compact T

is supercyclic, and hence #σP (T
∗) 6 1; that is, T ∗ has at most one eigenvalue.

(This has been verified for supercyclic operators in a Hilbert space setting in [17],

Proposition 3.1, and extended to a normed space setting in [3], Theorem 3.2). Since

the operator T in B[X ] is compact, its normed-space adjoint T ∗ in B[X ∗] is com-

pact as well (see, e.g. [29], Theorem 4.15). The dual X ∗ of a normed space X is

a Banach space, and so the spectrum of T ∗ is nonempty. Since T ∗ is compact,

σ(T ∗) \ {0} = σP (T
∗) \ {0} (Fredholm alternative). Moreover, if X is infinite di-

mensional, then so is X ∗, and hence 0 ∈ σ(T ∗) (i.e. zero lies in σ(T ∗) since an in-

vertible compact operator must act on a finite-dimensional space). Summing up: if

T is a weakly l-sequentially supercyclic compact operator on an infinite-dimensional

normed space, then

#σP (T
∗) 6 1, σ(T ∗) \ {0} = σP (T

∗) \ {0}, and 0 ∈ σ(T ∗).

Since #σP (T
∗) 6 1, either σP (T

∗) = {λ} for λ 6= 0, or σP (T
∗) ⊆ {0}.

(a) Suppose σP (T
∗) = {λ} for some 0 6= λ ∈ C. Since 0 ∈ σ(T ∗) and σ(T ∗) \ {0} =

σP (T
∗) \ {0}, we get σ(T ∗) = {0, λ}. If X is a Banach space, then σ(T ) is a compact

nonempty set such that σ(T ) = σ(T ∗) = {0, λ} (see, e.g. [10]—for Hilbert-space ad-

joint this becomes σ(T ) = σ(T ∗)∗ = {0, λ}, which does not alter the next argument).

The spectrum of a weakly l-sequentially supercyclic operator T on a Banach space

is such that all components of the spectrum meet one and the same circle about the

origin of the complex plane for some finite (nonnegative) radius. (Again, this has

been verified for supercyclic operators on a Hilbert space in [17], Proposition 3.1,

and for weakly hypercyclic operators on a Banach space regarding the unit circle

in [11], Theorem 3, and extended to weakly supercyclic operators on a Banach space

in [4], Proposition 3.5). Then {λ} 6= {0} cannot be a component of σ(T ), and hence

σP (T
∗) 6= {λ} for λ 6= 0, leading to a contradiction.

(b) Thus, σP (T
∗) ⊆ {0} so σ(T ∗) = σ(T ) = {0} and T is quasinilpotent. �

Remark 4.2. (a) A hypercyclic operator is not compact, and there is no super-

cyclic operator on a complex normed space with finite dimension greater than 1,
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see [18], Section 4. There are, however, compact supercyclic operators on a separa-

ble infinite-dimensional complex Banach space, see [18], Theorem 1 and Section 4.

(b) The Volterra operator is an example of a compact quasinilpotent operator that

is not supercyclic (and so it is not weakly l-sequentially supercyclic) but, according

to item (a) above and Theorems 4.1, 4.2, there exist quasinilpotent supercyclic oper-

ators. It was also shown in [27], Corollary 5.3, that if the adjoint of a bilateral or of

a unilateral weighted shift on ℓ2 or on ℓ2+ has a weighting sequence possessing a sub-

sequence that goes to zero, then there is an infinite-dimensional subspace whose all

nonzero vectors are supercyclic for it. In particular, this happens for weighted shifts

with weighting sequences converging to zero, and so this happens for the adjoint of

compact quasinilpotent weighted shifts.
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