Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 22:1 (2008), 77–86

ON WEAKLY β-CONTINUOUS FUNCTIONS IN BITOPOLOGICAL SPACES

Sanjay Tahiliani

Abstract. As a generalization of β -continuous functions, we introduce and study several properties of weakly β -continuous functions in bitopological spaces and we obtain its several characterizations .

2000 Mathematics Subject Classification. 54C08,54E55.

Keywords and phrases. Bitopological spaces, β -open sets, weakly β -continuous function.

Received: November 22, 2007

Communicated by Dragan S. Djordjević

1. Introduction

The notion of β -open sets due to Mashhour et al.[1] or semi-preopen sets due to Andrijević [2] plays a significant role in general topology. In [1] the concept of β -continuous functions is introduced and further Popa and Noiri[13] studied the concept of weakly β -continuous functions.In 1992,Khedr et al.[10] introduced and studied semi-precontinuity or β -continuous bitopological spaces. In this paper,we introduce and study the notion of weakly β -continuous functions in bitopological spaces further and investigate the properties of these functions.

2. Preliminaries

Throughout the present paper, (X,τ_1,τ_2) (resp. (X,τ))) denotes a bitopological (resp.topological) space.Let (X,τ) be a topological space and A be a subset of X.The closure and interior of A are denoted by Cl(A) and Int(A) respectively.

Let (X,τ_1,τ_2) be a bitopological space and let A be a subset of X.The closure and interior of A with respect to τ_i are denoted by iCl(A) and iInt(A),respectively,for i=1,2.

Definition 2.1. A subset A of a bitopological space (X,τ_1,τ_2) is said to be

- (i).(i,j)-regular open[4] if A=iInt(j(Cl(A))) where $i\neq j$, i,j=1,2.
- (ii).(i,j)-regular closed[5] if A=iCl (j(Int(A))) where $i\neq j$, i,j=1,2.
- (iii).(i,j)-preopen[7] if $A \subseteq iInt(j(Cl(A)))$ where $i \neq j$, i,j=1,2.

Definition 2.2. A subset A of a bitopological space (X,τ_1,τ_2) is said to be

 (τ_i, τ_j) -semi-preopen(briefly (i,j)-semi-preopen)[10] if there exists a (i,j)-preopen set U such that U \subseteq A \subseteq jCl(U) or it is said to be (i,j)- β -open if A \subseteq jCl(iInt(jCl(A))),where $i\neq j, i,j=1,2$. The complement of (i,j)-semi-preopen

set is said to be (i,j)-semi-preclosed[10] or it is said to be (i,j)- β -closed if $iInt(jCl(iInt(A))\subseteq A$, where $i\neq j,i,j=1,2$.

Lemma 2.1.Let (X,τ_1,τ_2) be a topological space and $\{A_\lambda:\lambda\in\Delta\}$ be a family of subsets of X. Then

(i).If A_{λ} is (i,j)- β -open for each $\lambda \in \Delta$, then $\bigcup A_{\lambda}$ is (i,j)- β -open.

 $\lambda \in \Delta$

(ii). If A_{λ} is (i,j)- β -closed for each $\lambda \in \Delta$,then $\bigcap A_{\lambda}$ is (i,j)- β -closed.

 $\lambda \in \Lambda$

Proof. The proof follows from Theorem 3.2 of [10].

(ii). This is an immediate consequence of (i).

Definition 2.3.Let A be subset of a bitopological space (X,τ_1,τ_2) .

- (i). The (i,j) β -closure[10] of A, denoted by (i,j)- β Cl(A), is defined to be the intersection of all (i,j)- β -closed sets containing A.
- (ii). The (i,j) β -interior of A,denoted by (i,j)- β Int(A), is defined to be the union of all (i,j)- β -open sets contained in A.

Lemma 2.2.Let (X,τ_1,τ_2) be a bitopological space and A be a subset of X.Then

- (i).(i,j)- β Int(A) is (i,j)- β -open.
- (ii).(i,j)- β Cl(A) is (i,j)- β -closed.
- (iii). A is (i,j)- β -open if and only if A=(i,j)- β Int(A).
- (iv). A is (i,j)- β -closed if and only if A=(i,j)- $\beta Cl(A)$.

Proof.(i) and (ii) are obvious from Lemma 2.1.

(iii) and (iv) are obvious from (i) and (ii).

Lemma 2.3. For any subset A of a bitopological space $(X,\tau_1,\tau_2), x \in (i,j)$ - $\beta Cl(A)$ if and only if $U \cap A \neq \emptyset$ for every (i,j)- β -open set U containing x.

Lemma 2.4.Let (X,τ_1,τ_2) be a bitopological space and A be a subset of X.Then

- $(i).X\sim(i,j)-\beta Int(A)=(i,j)-\beta Cl(X\sim A).$
- (ii). $X\sim(i,j)-\beta Cl(A)=(i,j)-\beta Int(X\sim A)$.

Proof.(i).By Lemma 2.2, (i,j)- β Cl(A) is (i,j)- β -closed.Then X~(i,j)- β Cl(A) is (i,j)- β -open.On the other hand,X~(i,j)- β Cl(X~A) \subseteq A and hence X~(i,j)- β Cl(X~A) \subseteq (i,j)- β Int(A). Conversely,let $x \in (i,j)$ - β Int(A).Then there exists (i,j)- β -open set G such that $x \in G \subseteq A$.Then X~G is (i,j)- β -closed and X~A \subseteq X~G.Since $x \notin X$ ~G, $x \notin (i,j)$ - β Cl(X~A) and hence (i,j)- β Int(A) \subseteq X~(i,j)- β Cl(X~A).Therefore X~(i,j)- β Int(A)= (i,j)- β Cl(X~A).

(ii). This follows immediately from (i).

Definition 2.4.Let (X,τ_1,τ_2) be a bitopological space and A be a subset of X.A point x of X is said to be in the (i,j)- θ -closure[8] of A,denoted by (i,j)- $Cl_{\theta}(A)$, if $A \cap jCl(U) \neq \emptyset$ for every τ_i -open set U containing x,where i,j=1,2 and $i\neq j$.

A subset A of X is said to be (i,j)- θ -closed if A=(i,j)- $Cl_{\theta}(A)$. A subset A of X is said to be (i,j)- θ -open if $X\sim A$ is (i,j)- θ -closed. The (i,j)- θ -interior of A, denoted by (i,j)-Int $_{\theta}(A)$, is defined as the union of all (i,j)- θ -open sets contained in A. Hence $x\in (i,j)$ -Int $_{\theta}(A)$ if and only if there exists a τ_i -open set U containing x such that $x\in U\subseteq jCl(U)\subseteq A$.

Lemma 2.5. For a subset A of a bitopological space (X,τ_1,τ_2) , the following properties hold:

- (i). $X \sim (i,j)$ -Int_{θ}(A) = (i,j)-Cl_{θ}(X \sim A). (ii). $X \sim (i,j)$ -Cl_{θ}(A) = (i,j)-Int_{θ}(X \sim A).
- **Lemma 2.6**. [8].Let (X,τ_1,τ_2) be a bitopological space.If U is a τ_j -open set of X,then (i,j)- $Cl_{\theta}(U)$ =iCl(U)

Definition 2.5.A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be (i,j)-β-continuous[10] if $f^{-1}(V)$ is (i,j)-β-open in X for each σ_i -open set V of Y.

Definition 2.6.(i). A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be (i,j)- weakly precontinuous[12] if for each $x \in X$ and each σ_i -open set V of Y containing f(x), there exists (i,j)-preopen set U containing x such that $f(U) \subseteq jCl(V)$.

(ii). A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be (i,j)-weakly- β -continuous if for each $x \in X$ and each σ_i -open set V of Y containing f(x), there exists (i,j)- β -open set U containing x such that $f(U) \subseteq jCl(V)$.

A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be pairwise weakly precontinuous [12] (resp.pairwise weakly β -continuous) if f is weakly (1,2)-precontinuous and weakly (2,1)-precontinuous (resp. if f is weakly (1,2)- β -continuous and weakly (2,1)- β -continuous).

Remark 2.1. Since every (i,j)-preopen set is (i,j)-β-open ([10], Remark 3.1), every (i,j) weakly precontinuous function is (i,j) weakly β-continuous for i,j=1,2 and $i\neq j$. The converse is not true.

3. Characterizations

Theorem 3.1. For a function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (i). f is (i,j)-weakly β -continuous.
- (ii). (i,j)- $\beta Cl(f^{-1}(jInt(iCl(B))))) \subseteq f^{-1}(iCl(B))$ for every subset B of Y.
- (iii). (i,j)- β Cl(f⁻¹(jInt(F))) \subseteq f⁻¹(F) for every (i,j)-regular closed set F of Y.
- (iv). (i,j)- β Cl(f^{-1} (Cl(V)) $\subseteq f^{-1}$ (iCl(V)) for every σ_i -open set V of Y.
- (v). $f^{-1}(V) \subseteq (i,j)$ - $\beta Int(f^{-1}(jCl(V)))$ for every σ_i -open set V of Y.

Proof. (i) \rightarrow (ii). Let B be any subset of Y. Assume that $x \in X \sim$

 $f^{-1}(iCl(B))$. Then $f(x) \in Y \sim iCl(B)$ and so there exists a σ_i -open set V of Y containing f(x) such that $V \cap B = \emptyset$, so $V \cap jInt(iCl(B))) = \emptyset$ and hence $jCl(V) \cap jInt(iCl(B))) = \emptyset$. Therefore, there exists (i,j)-β-open set U containing x such that $f(U) \subseteq jCl(V)$. Hence we have $U \cap f^{-1}(jInt(iCl(B))) = \emptyset$ and $x \in X \sim (i,j)$ - $\beta Cl(f^{-1}(((jInt(iCl(B)))))$ by Lemma 2.3. Thus we obtain (i,j)- $\beta Cl(f^{-1}(((jInt(iCl(B)))))) \subseteq f^{-1}(iCl(B))$.

(ii) \rightarrow (iii).Let F be any (i,j)-regular closed set of Y.Then F=iCl(jInt(F) and we have (i,j)- β Cl(f⁻¹((jInt(F)))=(i,j)- β Cl(f⁻¹((jInt(iCl(jInt(F))))) \subseteq f⁻¹(iCl(jInt(F))) = f⁻¹(F).

- (iii) \rightarrow (iv). For any σ_j -open set V of Y, Then iCl(V) is (i,j)-regular closed. Then we have (i,j)- $\beta Cl(f^{-1}((V))) \subseteq (i,j)$ - $\beta Cl(f^{-1}((i)Int(iCl(V)))) \subseteq f^{-1}(iCl(V))$.
- (iv) \rightarrow (v).Let V be any σ_i -open set of Y.Then $Y\sim jCl(V)$ is σ_j -open set in Y and we have (i,j)- $\beta Cl(f^{-1}(Y\sim jCl(V)))\subseteq f^{-1}(iCl(Y\sim jCl(V)))$ and hence $X\sim (i,j)-\beta Int(f^{-1}(jCl(V)))\subseteq X\sim f^{-1}(iInt(jCl(V)))\subseteq X\sim f^{-1}(V)$. Therefore, we obtain $f^{-1}(V)\subseteq (i,j)-\beta Int(f^{-1}(jCl(V)))$.
- (v) \rightarrow (i).Let $x \in X$ and let V be a σ_i -open set containing f(x).We have $x \in f^{-1}(V) \subseteq (i,j)$ - β Int($f^{-1}(jCl(V))$).Put U=(i,j)- β Int($f^{-1}(jCl(V))$).By Lemma 2.2,U is (i,j)- β -open set containing x and $f(U) \subseteq jCl(V)$.This shows that f is (i,j)-weakly β -continuous.
- **Remark 3.1**.Let $\tau = \tau_1 = \tau_2$ and $\sigma = \sigma_1 = \sigma_2$. Then by Theorem 3.1 we obtain the results for a function $f:(X,\tau) \to (Y,\sigma)$ established in Theorem 2 of [13].

Theorem 3.2. For a function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (i). f is (i,j)-weakly β -continuous.
- (ii). $f((i,j)-\beta Cl(A)) \subseteq ((i,j)-Cl_{\theta}(f(A)))$ for every subset A of X.
- (iii). (i,j)- β Cl($f^{-1}(B)$) $\subseteq f^{-1}((i,j)-Cl_{\theta}(B))$ for every subset B of Y.
- (iv). (i,j)- $\beta Cl(f^{-1}(jInt((i,j)-Cl_{\theta}(B)))) \subseteq f^{-1}((i,j)-Cl_{\theta}(B))$ for every subset B of Y.
- **Proof.**(i) \rightarrow (ii). Assume that f is (i,j)-weakly β -continuous. Let A be any subset of X, $x \in (i,j)$ - $\beta Cl(A)$ and V be a σ_i -open set of Y containing f(x). Then there exists (i,j)- β -open set U containing x such that $f(U) \subseteq jCl(V)$. Since $x \in (i,j)$ - $\beta Cl(A)$, by Lemma 2.3, we obtain $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U) \cap f(A) \subseteq jCl(V) \cap f(A)$. Therefore, we obtain $f(x) \in (i,j)$ - $Cl_{\theta}(f(A))$.
- (ii) \rightarrow (iii).Let B be any subset of Y.Then we have $f((i,j)-\beta Cl(f^{-1}(B))) \subseteq (i,j)-Cl_{\theta}(f(f^{-1}(B))) \subseteq (i,j)-\beta Cl(f^{-1}(B)) \subseteq f^{-1}((i,j)-Cl_{\theta}(B))$.
- (iii) \rightarrow (iv).Let B be any subset of Y.Since (i,j)- $Cl_{\theta}(B)$ is σ_{i} -closed in Y,by Lemma 2.6, (i,j)- $\beta Cl(f^{-1}(jInt((i,j)-Cl_{\theta}(B)))) \subseteq f^{-1}((i,j)-Cl_{\theta}(B))) = f^{-1}(iCl(jInt(((i,j)-Cl_{\theta}(B)))) \subseteq f^{-1}(iCl((i,j)-Cl_{\theta}(B))) = f^{-1}((i,j)-Cl_{\theta}(B))$.
- (iv) \rightarrow (i).Let V be any σ_j -open set of Y.Then by Lemma 2.6,V \subseteq jInt(iCl(V))= jInt((i,j)-Cl $_{\theta}$ (V)) and we have (i,j)- β Cl(f $^{-1}$ (V)) \subseteq (i,j)- β Cl(f $^{-1}$ (jInt((i,j)-Cl $_{\theta}$ (B)))) \subseteq f $^{-1}$ ((i,j)-Cl $_{\theta}$ (V))= f $^{-1}$ (iCl(V)).Thus we have (i,j)- β Cl(f $^{-1}$ (V)) \subseteq f $^{-1}$ (iCl(V)).It follows from Theorem 3.1 that f is (i,j)-weakly β -continuous.
- **Remark 3.2.** By above Theorem, we obtain the results established in Theorem 4 of [13].
- **Definition 3.1**.A bitopological space (X,τ_1,τ_2) is said to be (i,j)-regular[9] if for each $x \in X$ and each τ_i -open set U containing x,there exists a τ_i -open set V such that $x \in V \subseteq jCl(V) \subseteq U$.
- **Lemma 3.1.**[14]. If a bitopological space (X,τ_1,τ_2) is (i,j)-regular,then (i,j)-Cl_{θ}(F)=F for every τ_i -closed set F.

Theorem 3.3.Let (Y,σ_1,σ_2) be an (i,j)-regular bitopological space. For a function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (i).f is (i,j)- β -continuous.
- (ii). $f^{-1}((i,j)-Cl_{\theta}(B))$ is $(i,j)-\beta$ -closed in X for every subset B of Y.
- (iii). f is (i,j)-weakly β-continuous.
- (iv). $f^{-1}(F)$ is (i,j)- β -closed in X for every (i,j)- θ -closed set F of Y.
- (v). $f^{-1}(F)$ is (i,j)- β -open in X for every (i,j)- θ -open set V of Y.

Proof.(i) \rightarrow (ii). Let B be any subset of Y.Since (i,j)- $Cl_{\theta}(B)$ is σ_i -closed in Y,it follows from Theorem 5.1 of [10] that $f^{-1}((i,j)-Cl_{\theta}(B))$ is $(i,j)-\beta$ -closed in X.

- (ii) \rightarrow (iii). Let B be any subset of Y.Then we have (i,j)- $\beta Cl(f^{-1}(B)) \subseteq (i,j)$ $\beta Cl(f^{-1}((i,j)-Cl_{\theta}(B))) = f^{-1}((i,j)-Cl_{\theta}(B))$. By Theorem 3.2, f is (i,j)-weakly- β -continuous.
- (iii) \rightarrow (iv). Let F be any (i,j)- θ -closed set of Y.Then by Theorem 3.2,(i,j)- β Cl(f $^{-1}$ (F)) \subseteq f $^{-1}$ ((i,j)-Cl $_{\theta}$ (F))= f $^{-1}$ (F). Therefore, by Lemma 2.2, f $^{-1}$ (F) is (i,j)- β -closed in X.
- (iv) \rightarrow (v). Let V be any (i,j)- θ -open set of Y.By (iv), $f^{-1}(Y \sim V) = X \sim f^{-1}(V)$ is (i,j)- β -closed in X and hence $f^{-1}(V)$ is (i,j)- β -open in X.
- (v) \rightarrow (i). Since Y is (i,j)-regular,by Lemma 3.1,(i,j)-Cl_{θ}(B)=B for every σ_i -closed set B of Y and hence σ_i -open set is (i,j)- θ -open. Therefore f $^{-1}$ (V) is (i,j)- β -open for every σ_i -open set V of Y.By Theorem 5.1 of [10], f is (i,j)- β -continuous.

4. Weak β-continuity and β-continuity

Definition 4.1. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be (i,j)-weakly* quasi continuous(briefly.w*.q.c)[14] if for every σ_i -open set V of Y, $f^{-1}(jCl(V)\sim V)$ is biclosed in X.

Theorem 4.1.If a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is (i,j)-weakly- β -continuous and (i,j)-w*.q.c,then f is (i,j)- β -continuous.

Proof.Let $x \in X$ and V be any σ_i -open set of Y containing f(x).Since f is (i,j)-weakly- β -continuous,there exists an (i,j)- β -open set U of X containing x such that $f(U) \subseteq jCl(V)$.Hence $x \notin f^{-1}(jCl(V) \sim V)$. Therefore, $x \in U \sim f^{-1}(jCl(V) \sim V) = U \cap (X \sim (f^{-1}(jCl(V) \sim V)))$. Since U is (i,j)- β -open and $X \sim (f^{-1}(jCl(V) \sim V))$ is biopen, by Theorem 3.3 of [10], $G = U \cap (X \sim (f^{-1}(jCl(V) \sim V)))$ is (i,j)- β -open. Then $x \in G$ and $f(G) \subseteq V$. For if $y \in G$, then $f(y) \notin (jCl(V) \sim V)$ and hence $f(y) \in V$. Therefore, f is (i,j)- β -continuous.

Definition 4.2. A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to have a (i,j)- β interiority condition if (i,j)- β Int $(f^{-1}(jCl(V))) \subseteq f^{-1}(V)$ for every σ_i -open set V of Y.

Theorem 4.2. If a function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (i,j)-weakly β -continuous and satisfies the (i,j)- β interiority condition, then f is (i,j)- β -continuous.

Proof.Let V be any σ_i -open set of Y.Since f is (i,j)-weakly β -continuous,by Theorem 3.1, $f^{-1}(V) \subseteq (i,j)$ - $\beta Int(f^{-1}(jCl(V)))$.By the (i,j)- $\beta interiority$ condition of f,we have (i,j)- $\beta Int(f^{-1}(jCl(V))) \subseteq f^{-1}(V)$ and hence (i,j)- $\beta Int(f^{-1}(jCl(V))) = f^{-1}(V)$.By Lemma 2.2, $f^{-1}(V)$ is (i,j)- β -open in X and thus f is (i,j)- β -continuous.

Definition 4.3. Let (X,τ_1,τ_2) be a bitopological space and let A be a subset of X.The (i,j)- β -frontier of A is defined as follows: (i,j)- β Fr(A)=(i,j)- β Cl(A) (i,j)- β Cl(A).

Theorem 4.3. The set of all points x of X for which a function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is not (i,j)-weakly β -continuous is identical with the union of the (i,j)- β -frontier of the inverse images of the σ_i -closure of σ_i -open sets of Y containing f(x).

Proof.Let x be a point of X at which f(x) is not (i,j)-weakly β -continuous. Then there exists a σ_i -open set V of Y containing f(x) such that $U \cap (X \sim f^{-1}(jCl(V))) \neq \emptyset$ for every (i,j)- β -open set U of X containing x.By Lemma $2.3, x \in (i,j)$ - $\beta Cl(X \sim f^{-1}(jCl(V)))$. Since $x \in f^{-1}(jCl(V))$, we have $x \in (i,j)$ - $\beta Cl(f^{-1}(jCl(V)))$ and hence $x \in (i,j)$ - $\beta Fr(f^{-1}(jCl(V)))$.

Conversely, if f is (i,j)-weakly β -continuous at x, then for each σ_i -open set V of Y containing f(x), there exists an (i,j)- β -open set U containing x such that $f(U) \subseteq jCl(V)$ and hence $x \in U \subseteq f^{-1}(jCl(V))$. Therefore we obtain that $x \in (i,j)$ - $\beta Int(f^{-1}(jCl(V)))$. This contradicts that $x \in (i,j)$ - $\beta Fr(f^{-1}(jCl(V)))$.

Remark 4.1. By above Theorem, we obtain the results established in Theorem 4.7 of [3].

5. Weak β -continuity and almost β -continuity

Definition 5.1.A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be (i,j)-almost β-continuous if for each $x \in X$ and each σ_i -open set V containing f(x), there exists an (i,j)-β-open set U of X containing x such that $f(U) \subseteq IInt(jCl(V))$.

Lemma 5.1. A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is (i,j)-almost β-continuous if and only if $f^{-1}(V)$ is (i,j)-β-open for each (i,j)-regular open set V of Y.

Definition 5.2.A bitopological space (X,τ_1,τ_2) is said to be (i,j)-almost regular[16] if for each $x \in X$ and each (i,j)-regular open set U containing x,there exists an (i,j)-regular open set V of X such that $x \in V \subseteq jCl(V) \subseteq U$.

Theorem 5.1. Let a bitopological space (Y,σ_1,σ_2) be (i,j)-almost regular. Then a function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is (i,j)-almost β -continuous if and only if it is (i,j)-weakly- β -continuous.

Proof. Necessity. This is obvious.

Sufficency. Suppose that f is (i,j)-weakly- β -continuous. Let V be any (i,j)-regular open set of Y and $x \in f^{-1}(V)$. Then we have $f(x) \in V$. By the almost (i,j)-regularity of Y, there exists an (i,j)-regular open set V_0 of Y such that $f(x) \in V_0 \subseteq jCl(V_0) \subseteq V$. Since f is (i,j)-weakly- β -continuous, there exists an (i,j)- β -open set U of X containing x such that $f(U) \subseteq jCl(V_0) \subseteq V$. This implies that $x \in U \subseteq f^{-1}(V)$. Therefore we have $f^{-1}(V) \subseteq (i,j)$ - β -open and by Lemma 5.1, f is (i,j)-almost β -continuous.

Remark 5.1. By above theorem, we obtain the result established in Theorem 6 of [11].

Definition 5.3. A bitopological space (X,τ_1,τ_2) is said to be pairwise Hausdroff or pairwise- $T_2[9]$ if for each pair of distinct points x and y of X,there exists τ_i -open set U containing x and a τ_j -open set V containing y such that $U \cap V = \emptyset$ for $i \neq j, i, j = 1, 2$.

Definition 5.4. A bitopological space (X,τ_1,τ_2) is said to be pairwise β-Hausdroff or pairwise β-T₂ if for each pair of distinct points x and y of X,there exists a (i,j)-β-open set U containing x and a τ_i -open set V containing y such that $U \cap V = \emptyset$ for $i \neq j, i, j = 1, 2$.

Theorem 5.2.Let (X,τ_1,τ_2) be a bitopological space. If for each pair of distinct points x and y in X, there exists a function f of (X,τ_1,τ_2) into pairwise T_2 bitopological space (Y,σ_1,σ_2) such that

```
(i).f(x) \neqf(y).
(ii).f is (i,j)-weakly-\beta-continuous at x,
(iii). f is (j,i)-almost-\beta-continuous at y,
then (X,\tau<sub>1</sub>,\tau<sub>2</sub>) is pairwise \beta-T<sub>2</sub>.
```

Proof.Let x and y be a pair of distinct points of X.Since Y is pairwise $-T_2$, there exists a σ_i -open set U containing f(x) and a σ_i -open set V containing

f(y) such that U∩V= Ø.Since U and V are disjoint,we have jCl(U) \cap jInt(iCl(V))= Ø.Since f is (i,j)-weakly-β-continuous at x,there exists an (i,j)-β-open set U_x of X containing x such that f(U_x) \subseteq jCl(U).Since f is (j,i)- almost-β-continuous at y,there exists (j,i)-β-open set U_y of X containing y such that f(U_y) \subseteq jInt(iCl(V)).Hence we have U_x \cap U_y = Ø.This shows that (X,τ₁,τ₂) is pairwise β-T₂.

Remark 5.2. By above theorem, we obtain the result established in Theorem 13 of [11].

6.Some Properties

Definition 6.1. A bitopological space (X,τ_1,τ_2) is said to be pairwise Urysohn[6] if for each distinct points x,y of X, there exists τ_i open set U and τ_j open set V such that $x \in U$, $y \in V$ and $jCl(U) \cap iCl(V) = \emptyset$ for $i \neq j$, i,j=1,2.

Theorem 6.1. If (Y,σ_1,σ_2) is pairwise Urysohn and $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is pairwise weakly- β -continuous injection,then (Y,σ_1,σ_2) is pairwise β -T₂.

Proof.Let x and y be two distinct points of X.Then $f(x) \neq f(y)$.Since Y is pairwise Urysohn,there exist τ_i -open set U and τ_j -open set V such that $f(x) \in U, f(y) \in V$ and $jCl(U) \cap iCl(V) = \emptyset$.Hence $f^{-1}(jCl(U)) \cap f^{-1}(iCl(V)) = \emptyset$

Ø.Therefore, (i,j)- β Int $(f^{-1}(jCl(U))) \cap (j,i)$ - β Int $(f^{-1}(jCl(V))) = \emptyset$. Since f is pairwise weakly β -continuous,by Theorem 3.1 , $x \in f^{-1}(U) \subseteq (i,j)$ - β Int $(f^{-1}(jCl(U)))$ and $y \in f^{-1}(V) \subseteq (j,i)$ - β Int $(f^{-1}(iCl(V)))$. This implies that (X,τ_1,τ_2) is pairwise β - T_2 .

Remark 6.1. By above theorem, we obtain the result established in Theorem 4.4 of [3].

Definition 6.2. A bitopological space (X,τ_1,τ_2) is said to be pairwise connected [15](resp.pairwise β-connected) if it cannot be expressed as the union of two non empty disjoint sets U and V such that U is τ_i open and V is τ_i open(resp.U is (i,j)-β-open and V is (j,i)-β-open).

Theorem 6.2. If a function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is pairwise weakly- β -continuous surjection and (X,τ_1,τ_2) is pairwise β -connected, then (Y,σ_1,σ_2) is pairwise connected.

Proof. Suppose that (Y,σ_1,σ_2) is not pairwise connected. Then there exists a τ_i -open set U and τ_j -open set V such that $U \neq \emptyset, V \neq \emptyset$, $U \cap V = \emptyset$ and $U \cup V = X$. Since f is surjective, $f^{-1}(U)$ and $f^{-1}(V)$ are non empty. Morever $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ and $f^{-1}(U) \cup f^{-1}(V) = X$. Since f is pairwise weakly β -continuous, by Theorem 3.1, we have $f^{-1}(U) \subseteq (i,j)$ - β Int($f^{-1}(jCl(U))$). Since U and V are σ_j -closed and σ_i -closed, respectively, we have $f^{-1}(U) \subseteq (i,j)$ - β Int($f^{-1}(U)$) and $f^{-1}(V) \subseteq (j,i)$ - β Int($f^{-1}(U)$). Hence $f^{-1}(U) = (i,j)$ - β Int($f^{-1}(U)$) and $f^{-1}(V) = (j,i)$ - β Int($f^{-1}(V)$). By Lemma 2.2, $f^{-1}(U)$ is (i,j)- β -open and $f^{-1}(V)$ is (j,i)- β -open in (X,τ_1,τ_2) . This shows that (X,τ_1,τ_2) is not pairwise connected.

Remark 6.2. By above theorem, we obtain the result established in Theorem 13 of [13].

Definition 6.3. A subset K of a bitopological space (X,τ_1,τ_2) is said to be (i,j)-quasi H-closed relative to X [4] if for each cover $\{U_\alpha:\alpha\in\Delta\}$ of K by τ_i -open sets of X,there exists a finite subset Δ_0 of Δ such that $K\subseteq\cup\{jCl(U_\alpha):\alpha\in\Delta_0\}$.

Definition 6.4. A subset K of a bitopological space (X,τ_1,τ_2) is said to be (i,j)- β -compact relative to X if every cover of K by (i,j)- β -open sets of X has a finite subcover.

Theorem 6.3. If $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is pairwise weakly- β -continuous and K is (i,j)- β -compact relative to X, then f(K) is (i,j)-quasi H-closed relative to Y.

Proof.Let K be (i,j)- β -compact relative to X and $\{V_\alpha:\alpha\in\Delta\}$ be any cover of f(K) by σ_i -open sets of (Y,σ_1,σ_2) . Then $f(K)\subseteq\cup\{V_\alpha:\alpha\in\Delta\}$ and so $K\subseteq\cup\{f^{-1}(V_\alpha):\alpha\in\Delta\}$. Since f is (i,j) weakly- β -continuous, by Theorem 3.1 ,we have $f^{-1}(V_\alpha)\subseteq(i,j)$ - β Int $(f^{-1}(jCl(V_\alpha)))$ for each $\alpha\in\Delta$. Therefore, $K\subseteq\cup\{(i,j)$ - β Int $(f^{-1}(jCl(V_\alpha)))$ is (i,j)- β -compact relative to X and (i,j)- β Int $(f^{-1}(jCl(V_\alpha)))$ is (i,j)- β -open for each $\alpha\in\Delta$, there exists a finite subset Δ_0 of Δ such that $K\subseteq\cup\{(i,j)$ - β Int $(f^{-1}(jCl(V_\alpha)))$: $\alpha\in\Delta_0\}$. This implies that $f(K)\subseteq\cup\{f((i,j)$ - β Int $(f^{-1}(jCl(V_\alpha)))$: $\alpha\in\Delta_0\}\subseteq\cup\{f(f^{-1}(i,j)$ - β Int $(f^{-1}(i,j)$ - β Int $(f^{-1}(i,j$

References

- 1. M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assint Univ., **12** (1983) 77-90.
- 2. D.Andrijević, Semi-preopen sets, Mat. Vesnik., 38 (1) (1986) 24-32.
- 3. C.W.Baker,On contra almost β-continuous functions and weakly β-continuous functions,Kochi Journal of Mathematics.,**1** (1) (2006), 1-6.
- 4. G.K.Banerjee,On pairwise almost strongly θ-continuous mappings, Bull.Calcutta.Math.Soc., **73** (1981), 237-246.
- 5. S.Bose, Semi-open sets, semi-continuity and semi-open mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73 (1981), 345-354.
- S.Bose and D.Sinha, Pairwise almost continuous map and weakly continuous maps in bitopological spaces, Bull. Cal. Math. Soc., 74 (1982), 195-206.
- 7. M.Jelić, A decomposition of pairwise continuity, J.Inst.Math.Comput. Sci.Math.Ser., **3** (1990), 25-29.
- 8. C.G.Kariofillis,On pairwise almost compactness,Ann.Soc.Sci. Bruxelles,**100** (1986),129-137.
- 9. J.C.Kelly,Bitopological spaces,Proc.London. Math.Soc. **13** (3) (1963) 71-89.
- 10. F.H.Khedr,S.M.Al-Areefi and T.Noiri,Precontinuity and semi-precontinuity in bitopological spaces,Indian J.Pure Appl.Math.,23 (1992),625-633.
- 11. T.Noiri and V.Popa, On almost β-continuous functions, Acta.Math. Hungar., **79** (4) (1998) 329-339.
- 12. T.Noiri and V.Popa,On weakly precontinuous functions in bitopolo gical spaces,Soochow Journal of Mathematics,**33** (1) (2007),87-100.
- 13. V.Popa and T.Noiri,On weakly β-continuous functions.An.Univ. Timisoara .Ser.stiint.Mat., **32** (1994) 83-92.
- 14. V.Popa and T.Noiri,Some properties of weakly quasi-continuous functions in bitopological spaces,Mathematica (Cluj) **46** (69) (2004), 105-112.
- 15. W.J.Previn, Connectedness in bitopological spaces, Indag. Math., 29

(1967),369-372.

16. A.R.Singal and S.P.Arya, On pairwise almost regular spaces, Glasnik Mat.Ser III,**6** (26) (1971),335-343.

Address

Department of Mathematics, Delhi University, Delhi-110007, India Postal Address: 250, Double Storey, New Rajinder Nagar, New Delhi-110060,

E-mail: sanjaytahiliani@yahoo.com