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ON WEAKLY PROJECTIVE SYMMETRIC MANIFOLDS

A. A. SHAIKH AND SHYAMAL KUMAR HUI

Abstract. The object of the present paper is to study weakly projective
symmetric manifolds and its decomposability with several non-trivial exam-
ples. Among others it is shown that in a decomposable weakly projective
symmetric manifold both the decompositions are weakly Ricci symmetric.

1. Introduction

The notions of weakly symmetric and weakly projective symmetric man-
ifolds were introduced by Tamássy and Binh [6] and later Binh [1] studied
decomposable weakly symmetric manifolds. A non-flat Riemannian manifold
(Mn, g)(n > 2) is called a weakly symmetric manifold if its curvature tensor
R of type (0,4) satisfies the condition

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) + B(Y )R(X,Z, U, V )

+ C(Z)R(Y, X, U, V ) + D(U)R(Y, Z, X, V )

+ E(V )R(Y, Z, U,X)

(1.1)

for all vector fields X, Y, Z, U, V ∈ χ(Mn), where A,B, C,D and E are 1-forms
(not simultaneously zero) and ∇ denotes the operator of covariant differenti-
ation with respect to the Riemannian metric g. The 1-forms are called the
associated 1-forms of the manifold and an n-dimensional manifold of this kind
is denoted by (WS)n. Moreover, it is to be noted that in a (WS)n, B = C
and D = E [2] and hence the defining condition (1.1) of a (WS)n reduces to

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) + B(Y )R(X, Z, U, V )

+ B(Z)R(Y, X, U, V ) + D(U)R(Y, Z,X, V )

+ D(V )R(Y, Z, U,X),

(1.2)

where A, B and D are 1-forms (not simultaneously zero). A non-projectively
flat Riemannian manifold (Mn, g)(n > 2) (this condition will be assumed
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throughout the paper) is said to be a weakly projective symmetric manifold
if its projective curvature tensor P of type (0,4) satisfies the condition

(∇XP )(Y, Z, U, V ) = A(X)P (Y, Z, U, V ) + B(Y )P (X, Z, U, V )

+ C(Z)P (Y, X, U, V ) + D(U)P (Y, Z, X, V )

+ E(V )P (Y, Z, U,X)

(1.3)

for all vector fields X, Y, Z, U, V ∈ χ(Mn), where A,B, C,D and E are 1-forms
(not simultaneously zero) and ∇ denotes the operator of covariant differenti-
ation with respect to the Riemannian metric g ( [6]). Such an n-dimensional
manifold is denoted by (WPS)n.

Also in 1993 Tamássy and Binh [7] introduced the notion of a weakly Ricci
symmetric manifold. A Riemannian manifold (Mn, g)(n > 2) is called weakly
Ricci symmetric manifold if its Ricci tensor S of type (0,2) is not identically
zero and satisfies the condition

(1.4) (∇XS)(Y, Z) = A(X)S(Y, Z) + B(Y )S(Z, X) + D(Z)S(Y,X),

where A, B and D are three non-zero 1-forms and ∇ denotes the operator of
covariant differentiation with respect to the Riemannian metric g. Such an
n-dimensional manifold is denoted by (WRS)n.

The aim of the present paper is to study a (WPS)n. Section 2 deals with
some basic results of (WPS)n. In [6] Tamássy and Binh found out the neces-
sary and sufficient condition for a weakly symmetric manifold to be a weakly
projective symmetric manifold with the same associated 1-forms, namely, they
obtained the following result:

Theorem A. A Riemannian manifold (Mn, g)(n ≥ 4) is weakly symmetric
and also weakly projective symmetric with the same associated 1-forms A, B,
C, D and associated vector field F 6= 0 if and only if the Ricci tensor S
vanishes.

In a (WS)n, the associated 1-forms B = C and D = E. However, in a
(WPS)n this is not true, in general. In section 2 of the paper it is shown
that in a (WPS)n, the associated 1-forms B = C but D 6= E and hence the
defining condition (1.3) of a (WPS)n reduces to

(∇XP )(Y, Z, U, V ) = A(X)P (Y, Z, U, V ) + B(Y )P (X,Z, U, V )

+ B(Z)P (Y,X, U, V ) + D(U)P (Y, Z, X, V )

+ E(V )P (Y, Z, U,X),

(1.5)

where A, B, D and E are 1-forms (not simultaneously zero). It is proved that in
a (WPS)n, if the Ricci tensor is of Codazzi type, then r

n
is an eigenvalue of the

Ricci tensor S corresponding to the eigenvector L defined by g(X,L) = α(X).
Also it is shown that in a (WPS)n, r

n
is an eigenvalue of the Ricci tensor S

corresponding to the eigenvector ρ2 defined by g(X, ρ2) = T (X) = B(X) +
E(X) for all X.
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Section 3 deals with an Einstein (WPS)n and it is proved that an Einstein
(WPS)n is a (WS)n provided that A + B + D is not everywhere zero. Also it
is shown that if the vector L defined by g(X, L) = α(X) is a concurrent vector
field in an Einstein (WPS)n, then it reduces to a (WS)n.

Section 4 is devoted to the study of decomposable (WPS)n which is generally
called the product (WPS)n and it is shown that in such a manifold one of the
decomposition is Ricci symmetric and the other is projectively flat. Shaikh
and Jana [5] already proved that every (WS)n is not a (WRS)n, in general. In
this paper it is shown that if a Riemannian manifold (Mn, g) is a decomposable
(WPS)n such that M = Mp

1 ×Mn−p
2 (2 ≤ p ≤ n− 2), then M1 is (WRS)p and

M2 is (WRS)n−p. The last section deals with several non-trivial examples of
(WPS)n and also of decomposable (WPS)n.

2. Some basic results of (WPS)n

In this section, we derive some formulas, which will be needed to the study
of a (WPS)n. The projective curvature tensor P of type (0,4) is given by
(2.1)

P (Y, Z, U, V ) = R(Y, Z, U, V )− 1

n− 1
[S(Z, U)g(Y, V )− S(Y, U)g(Z, V )],

where S is the Ricci tensor of type (0,2) of the manifold. Let

{ei : i = 1, 2, . . . , n}
be an orthonormal basis of the tangent space at any point of the manifold.
Then the Ricci tensor S of type (0,2) and the scalar curvature r are given by
the following:

S(X,Y ) =
n∑

i=1

R(ei, X, Y, ei) and r =
n∑

i=1

S(X, Y ) =
n∑

i=1

g(Qei, ei),

where Q is the Ricci-operator i.e., g(QX, Y ) = S(X,Y ).
Now, from (2.1), we have the following:

(2.2)
n∑

i=1

P (ei, Z, U, ei) = 0 =
n∑

i=1

P (ei, ei, U, V ) =
n∑

i=1

P (Y, Z, ei, ei),

and

(2.3)
n∑

i=1

P (Y, ei, ei, V ) =
n

n− 1
[S(Y, V )− r

n
g(Y, V )].

Also from (2.1), it follows that

(i) P (Y, Z, U, V ) = −P (Z, Y, U, V ),

(ii) P (Y, Z, U, V ) 6= −P (Y, Z, V, U),

(iii) P (Y, Z, U, V ) 6= P (U, V, Y, Z),

(iv) P (X,Y, Z, U) + P (Y, Z, X, U) + P (Z, X, Y, U) = 0.

(2.4)
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Proposition 2.1. The defining condition of a (WPS)n can always be ex-
pressed in the form (1.5).

Proof. Interchanging Y and Z in (1.3) we get

(∇XP )(Z, Y, U, V ) = A(X)P (Z, Y, U, V ) + B(Z)P (X,Y, U, V )

+ C(Y )P (Z,X, U, V ) + D(U)P (Z, Y, X, V )

+ E(V )P (Z, Y, U,X).

(2.5)

Adding (1.3) and (2.5) we obtain by virtue of (2.4)(i) that

(2.6) γ(Y )P (X,Z, U, V ) + γ(Z)P (X,Y, U, V ) = 0,

where γ(X) = B(X)− C(X) for all X.
If we choose a vector field ρ such that γ(ρ) 6= 0, then putting Y = Z = ρ

in (2.6) we get P (X, ρ, U, V ) = 0.
Again setting Z = ρ in (2.6) we obtain P (X,Y, U, V ) = 0 for all vector fields

X, Y , U and V , which contradicts to our assumption that the manifold is not
projectively flat. Hence, we must have γ(X) = 0 for all X and consequently
B(X) = C(X) for all X.

But, in view of (2.4)(ii), it follows that the relation D = E does not hold in a
(WPS)n. Hence, the defining condition of a (WPS)n can be written as (1.5).
This proves the proposition. ¤
Proposition 2.2. In a Riemannian manifold (Mn, g)(n > 2), the Ricci tensor
is of Codazzi type if and only if

(2.7) (∇XP )(Y, Z, U, V ) + (∇Y P )(Z,X, U, V ) + (∇ZP )(X,Y, U, V ) = 0.

Proof. We first suppose that in a Riemannian manifold (Mn, g)(n > 2), the
Ricci tensor S is of Codazzi type [3]. Then we have

(2.8) (∇XS)(Y, Z) = (∇Y S)(X,Z) = (∇ZS)(X,Y )

for all vector fields X, Y , Z on the manifold.
From (2.1) it follows by virtue of Bianchi identity that

(∇XP )(Y, Z, U, V ) + (∇Y P )(Z,X,U, V ) + (∇ZP )(X,Y, U, V ) =

− 1

n− 1
[g(Y, V ){(∇XS)(Z,U)− (∇ZS)(X, U)}

+ g(Z, V ){(∇Y S)(X,U)− (∇XS)(Y, U)}
+ g(X, V ){(∇ZS)(Y, U)− (∇Y S)(Z, U)}].

(2.9)

Using (2.8) in (2.9) we obtain (2.7).
Conversely, if a Riemannian manifold satisfies the relation (2.7), then (2.9)

yields

g(Y, V ){(∇XS)(Z, U)− (∇ZS)(X, U)}
+ g(Z, V ){(∇Y S)(X,U)− (∇XS)(Y, U)}
+ g(X, V ){(∇ZS)(Y, U)− (∇Y S)(Z,U)} = 0.

(2.10)
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Putting Y = V = ei in (2.10) and taking summation over i, 1 ≤ i ≤ n, we
obtain (∇XS)(Z, U) = (∇ZS)(X, U) for all X,Z, U ∈ χ(Mn) and hence the
Ricci tensor is of Codazzi type. This proves the proposition. ¤

In view of (1.5), the relation (2.7) reduces to the following:

(2.11) α(X)P (Y, Z, U, V ) + α(Y )P (Z,X,U, V ) + α(Z)P (X,Y, U, V )

+ E(V )[P (Y, Z, U,X) + P (Z,X, U, Y ) + P (X, Y, U, Z)] = 0

where α(X) = A(X)− 2B(X) for all X.
Setting Y = V = ei in (2.11) and taking summation over i, 1 ≤ i ≤ n, we

get

(2.12) α(P (Z, X)U) = 0.

Again putting X = U = ei in (2.12) and taking summation over i, 1 ≤ i ≤ n,
we get

(2.13) α(QZ) =
r

n
α(Z),

that is, S(Z, L) = r
n
g(Z, L). This leads to the following:

Proposition 2.3. If in a (WPS)n, the Ricci tensor is of Codazzi type then
r
n

is an eigenvalue of the Ricci tensor S corresponding to the eigenvector L
defined by g(X,L) = α(X) for all X.

Next, by virtue of (1.5), the relation (2.9) takes the form

α(X)P (Y, Z, U, V ) + α(Y )P (Z,X, U, V ) + α(Z)P (X,Y, U, V )

+ E(V )[P (Y, Z, U,X) + P (Z, X, U, Y ) + P (X, Y, U, Z)]

= − 1

n− 1
[g(Y, V ){(∇XS)(Z,U)− (∇ZS)(X,U)}

+ g(Z, V ){(∇Y S)(X, U)− (∇XS)(Y, U)}
+ g(X,V ){(∇ZS)(Y, U)− (∇Y S)(Z,U)}].

(2.14)

Setting Y = V = ei in (2.14) and taking summation over i, 1 ≤ i ≤ n, we get

(2.15) α(R(Z, X)U)− 1

n− 1
[α(Z)S(X,U)− α(X)S(Z,U)]

=
n− 2

n− 1
[(∇ZS)(X, U)− (∇XS)(Z,U)].

Putting X = U = ei in (2.15) and taking summation over i, 1 ≤ i ≤ n, we
obtain

(2.16)
n− 2

2n
dr(Z) = α(QZ)− r

n
α(Z).

If the manifold is of constant scalar curvature then (2.16) reduces to (2.13)
and hence we can state the following:
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Proposition 2.4. If a (WPS)n is of constant scalar curvature, then r
n

is an
eigenvalue of the Ricci tensor S corresponding to the eigenvector L defined by
g(X,L) = α(X) for all X.

Again using (2.1) the equation (1.5) becomes

(∇XR)(Y, Z, U, V )

− 1
n− 1

[(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )]

= A(X)[R(Y, Z, U, V )− 1
n− 1

{S(Z, U)g(Y, V )− S(Y, U)g(Z, V )}]

+ B(Y )[R(X, Z,U, V )− 1
n− 1

{S(Z,U)g(X, V )− S(X, U)g(Z, V )}]

+ B(Z)[R(Y,X, U, V )− 1
n− 1

{S(X, U)g(Y, V )− S(Y, U)g(X, V )}]

+ D(U)[R(Y, Z,X, V )− 1
n− 1

{S(Z, X)g(Y, V )− S(Y, X)g(Z, V )}]

+ E(V )[R(Y,Z, U,X)− 1
n− 1

{S(Z, U)g(Y,X)− S(Y, U)g(Z, X)}].

(2.17)

Setting Y = V = ei in (2.17) and taking summation over i, 1 ≤ i ≤ n, we
have

(2.18) B(R(X, Z)U)− E(R(U,X)Z) =

= − 1

n− 1
[B(X)S(Z, U)B(Z)S(X,U) + E(X)S(Z, U)− E(QU)g(Z, X)].

Also putting Z = U = ei in (2.18) and taking summation over i, 1 ≤ i ≤ n, we
obtain

(2.19) T (QX) =
r

n
T (X),

which can be written as

(2.20) S(X, ρ2) =
r

n
g(X, ρ2),

where g(X, ρ2) = T (X) = B(X) + E(X) for all X.
This leads to the following:

Proposition 2.5. In a (WPS)n,
r
n

is an eigenvalue of the Ricci tensor S
corresponding to the eigenvector ρ2 defined by g(X, ρ2) = T (X) for all X.

3. Einstein (WPS)n

Let us consider a (WPS)n, which is an Einstein manifold. Then we have

(3.1) S(X, Y ) =
r

n
g(X, Y ),

from which it follows that

(3.2) dr(X) = 0 and (∇ZS)(X, Y ) = 0 for all X,Y, Z.
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By virtue of (3.1) and (3.2), it follows from (2.1) that

(3.3) P (Y, Z, U, V ) =

R(Y, Z, U, V )− r

n(n− 1)
[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )]

and

(3.4) (∇XP )(Y, Z, U, V ) = (∇XR)(Y, Z, U, V ).

In view of (3.3) and (3.4), (1.5) reduces to

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) + B(Y )R(X,Z, U, V )

+ B(Z)R(Y, X, U, V ) + D(U)R(Y, Z,X, V )

+ E(V )R(Y, Z, U,X)− r

n(n− 1)
[A(X)

{g(Z, U)g(Y, V )− g(Y, U)g(Z, V )}
+ B(Y ){g(Z, U)g(X, V )− g(X, U)g(Z, V )}
+ B(Z){g(X,U)g(Y, V )− g(Y, U)g(X, V )}
+ D(U){g(Z, X)g(Y, V )− g(Y, X)g(Z, V )}
+ E(V ){g(Z, U)g(Y, X)− g(Y, U)g(Z,X)}].

(3.5)

Using (1.2) in (3.5) we obtain

[E(V )−D(V )]R(Y, Z, U,X) =
r

n(n− 1)
[A(X){g(Z,U)g(Y, V )

− g(Y, U)g(Z, V )}+ B(Y ){g(Z,U)g(X,V )− g(X,U)g(Z, V )}
+ B(Z){g(X,U)g(Y, V )− g(Y, U)g(X, V )}+ D(U){g(Z, X)g(Y, V )

− g(Y, X)g(Z, V )}+ E(V ){g(Z, U)g(Y,X)− g(Y, U)g(Z,X)}].

(3.6)

Setting X = U = ei in (3.6) and then taking summation over i, 1 ≤ i ≤ n, we
get

(3.7) r[A(Z)g(Y, V )− A(Y )g(Z, V )− (n− 1)B(Y )g(Z, V )

+ (n− 1)B(Z)g(Y, V ) + D(Z)g(Y, V )−D(Y )g(Z, V )] = 0.

Further setting Z = V = ei in (3.7) and taking summation over i, 1 ≤ i ≤ n,
we have

(3.8) r[A(Y ) + (n− 1)B(Y ) + D(Y )] = 0.

Again contracting (3.6) over X and Y we obtain
r

n
[E(V )−D(V )]g(Z, U) =

r

n(n− 1)
[A(V )g(Z, U)

− A(U)g(Z, V ) + B(V )g(Z, U)

−B(U)g(Z, V )− (n− 1)D(U)g(Z, V )

+ (n− 1)E(V )g(Z,U)].

(3.9)
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Now, setting Z = V = ei in (3.9) and taking summation over i, 1 ≤ i ≤ n, we
get

(3.10) r[A(U) + B(U) + (n− 1)D(U)] = 0 for all U.

Replacing U by Y in the above equation we have

(3.11) r[A(Y ) + B(Y ) + (n− 1)D(Y )] = 0.

Also setting Y = V = ei in (3.6) and taking summation over i, 1 ≤ i ≤ n, we
get

E(R(X,U)Z)−D(R(X,U)Z) =
r

n(n− 1)
[(n− 1)A(X)g(Z, U)

+ B(X)g(Z,U)−B(Z)g(X,U) + (n− 1)B(Z)g(X, U)

+ (n− 1)D(U)g(Z,X) + E(X)g(Z,U)− E(U)g(Z,X)],

which yields, on further contraction with respect to Z and U , that

r[nA(X) + 2B(X) + 2D(X)] = 0 for all X.

Interchanging X and Y in the above equation we have

(3.12) r[nA(Y ) + 2B(Y ) + 2D(Y )] = 0.

Adding (3.8), (3.11) and (3.12) we obtain

r = 0 if A(Y ) + B(Y ) + D(Y ) 6= 0 for all Y.

This leads to the following:

Theorem 3.1. An Einstein (WPS)n is a (WS)n provided that A + B + D is
not everywhere zero on the manifold.

Definition 3.1. In a Riemannian manifold a vector field W is said to be
parallel if it satisfies the following condition:

(3.13) ∇XW = 0 for all X.

Let us now consider an Einstein (WPS)n in which the vector field L defined
by g(X, L) = A(X)− 2B(X) is a parallel vector field. Then we have

(3.14) ∇XL = 0 for all X.

Therefore, using Ricci identity we get

R(X, Y, L, U) = 0,

which yields

(3.15) S(Y, L) = 0.

From (3.15) and (2.20) , it follows that r = 0 if ‖L‖2 6= 0.
Again if r = 0 then (3.1) implies that S(X,Y ) = 0 and consequently the

manifold is a (WS)n. Thus, we can state the following:
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Theorem 3.2. If in an Einstein (WPS)n the vector field L defined by
g(X,L) = α(X) is a parallel vector field, then it is a (WS)n provided that
‖L‖2 6= 0.

Definition 3.2. A vector field F on a Riemannian manifold is said to be
concurrent [4] if (∇XF ) = kX, where k is a constant.

In particular if k = 0 then F is said to be a parallel vector field.

Next, we suppose that in an Einstein (WPS)n the vector field L defined by
g(X,L) = α(X) = A(X)− 2B(X) is a concurrent vector field.

Then we have

(3.16) ∇XL = kX,

where k is a constant.
Making use of Ricci identity we have R(X,Y, L, U) = 0, which implies that

(3.17) S(Y, L) = 0 for all Y.

Now, (3.17) yields r = 0 provided that ‖L‖2 6= 0.
Thus, arguing as in the case of parallel vector field we obtain that the man-

ifold under consideration is a (WS)n. Hence, we can state the following:

Theorem 3.3. If in an Einstein (WPS)n the vector field L defined by

g(X,L) = α(X)

is a concurrent vector field, then it is a (WS)n provided that ‖L‖2 6= 0.

4. Decomposable (WPS)n

A Riemannian manifold (Mn, g) is said to be decomposable [8] if it can be
expressed as Mp

1 ×Mn−p
2 for 2 ≤ p ≤ n− 2, that is, in some coordinate neigh-

bourhood of the Riemannian manifold (Mn, g), the metric can be expressed
as

(4.1) ds2 = gijdxidxj = g̃abdxadxb+
∗
gαβ dxαdxβ,

where g̃ab are functions of x1, x2, · · · , xp(p < n) denoted by x̃ and
∗
gαβ are

functions of xp+1, xp+2, · · · , xn denoted by
∗
x; a, b, c, · · · run from 1 to p and

α, β, γ, · · · run from p + 1 to n. The two parts of (4.1) are the metrics of
Mp

1 (p ≥ 2) and Mn−p
2 (n − p ≥ 2) which are called the decomposition of the

manifold Mn = Mp
1 ×Mn−p

2 (2 ≤ p ≤ n− 2).
Let (Mn, g) be a Riemannian manifold such that Mp

1 ×Mn−p
2 for 2 ≤ p ≤

n−2. Here throughout this section each object denoted by a ‘tilde’ is assumed
to be from M1 and each object denoted by a ‘star’ is assumed to be from M2.
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Let X̃, Ỹ , Z̃, Ũ , Ṽ ∈ χ(M1) and
∗
X,

∗
Y ,

∗
Z,

∗
U ,

∗
V ∈ χ(M2), then we have the

following relations:

R(
∗
X, Ỹ , Z̃, Ũ) = 0 = R(X̃,

∗
Y , Z̃,

∗
U) = R(X̃,

∗
Y ,

∗
Z,

∗
U),

(∇ ∗
X

R)(Ỹ , Z̃, Ũ , Ṽ ) = 0 = (∇X̃R)(Ỹ ,
∗
Z, Ũ ,

∗
V ) = (∇ ∗

X
R)(Ỹ ,

∗
Z, Ũ ,

∗
V ),

R(X̃, Ỹ , Z̃, Ũ) = R̃(X̃, Ỹ , Z̃, Ũ); R(
∗
X,

∗
Y ,

∗
Z,

∗
U) =

∗
R (

∗
X,

∗
Y ,

∗
Z,

∗
U),

S(X̃, Ỹ ) = S̃(X̃, Ỹ ); S(
∗
X,

∗
Y ) =

∗
S (

∗
X,

∗
Y ),

(∇X̃S)(Ỹ , Z̃) = (∇̃X̃S)(Ỹ , Z̃); (∇ ∗
X

S)(
∗
Y ,

∗
Z) = (

∗
∇ ∗

X
S)(

∗
Y ,

∗
Z),

and r = r̃+
∗
r, where r, r̃, and

∗
r are the scalar curvature of M , M1, M2 respec-

tively. Let us consider a Riemannian manifold (Mn, g) which is a decomposable
(WPS)n. Then Mn = Mp

1 ×Mn−p
2 , (2 ≤ p ≤ n− 2).

Now, from (2.1), we have

(4.2) P (
∗
Y , Z̃, Ũ , Ṽ ) = 0 = P (Ỹ ,

∗
Z,

∗
U,

∗
V ),

(4.3) P (
∗
Y , Z̃, Ũ ,

∗
V ) = − 1

n− 1
S(Z̃, Ũ)g(

∗
Y ,

∗
V ),

(4.4) P (
∗
Y ,

∗
Z, Ũ , Ṽ ) = 0

and

(4.5) P (
∗
Y , Z̃,

∗
U, Ṽ ) =

1

n− 1
S(

∗
Y ,

∗
U)g(Z̃, Ṽ ).

Again from (1.5), we have

(∇X̃P )(Ỹ , Z̃, Ũ , Ṽ ) = A(X̃)P (Ỹ , Z̃, Ũ , Ṽ ) + B(Ỹ )P (X̃, Z̃, Ũ , Ṽ )

+ B(Z̃)P (Ỹ , X̃, Ũ , Ṽ ) + D(Ũ)P (Ỹ , Z̃, X̃, Ṽ )

+ E(Ṽ )P (Ỹ , Z̃, Ũ , X̃).

(4.6)

Changing X̃ by
∗
X in (4.6) we get

(4.7) A(
∗
X)P (Ỹ , Z̃, Ũ , Ṽ ) = 0.

Similarly we have

(4.8) B(
∗
Y )P (X̃, Z̃, Ũ , Ṽ ) = 0,

(4.9) D(
∗
U)P (Ỹ , Z̃, X̃, Ṽ ) = 0

and

(4.10) E(
∗
V )P (Ỹ , Z̃, Ũ , X̃) = 0.
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Now, putting X̃ =
∗
X, Ỹ =

∗
Y in (4.6) we get

(4.11) D(Ũ)S(
∗
Y ,

∗
X)g(Z̃, Ṽ )− E(Ṽ )S(Z̃, Ũ)g(

∗
Y ,

∗
X) = 0.

Similarly, putting Ỹ =
∗
Y , Ṽ =

∗
V in (4.6) we obtain

(4.12) (∇X̃S)(Z̃, Ũ) = A(X̃)S(Z̃, Ũ) + B(Z̃)S(X̃, Ũ) + D(Ũ)S(Z̃, X̃).

Also putting X̃ =
∗
X, Ỹ =

∗
Y , Ũ =

∗
U in (4.6) we have

(4.13) (∇ ∗
X

S)(
∗
Y ,

∗
U) = A(

∗
X)S(

∗
Y ,

∗
U) + B(

∗
Y )S(

∗
X,

∗
U) + D(

∗
U)S(

∗
Y ,

∗
X).

In the similar way, from (4.6), we have the following:

(4.14) D(
∗
U)S(Ỹ , X̃)g(

∗
Z,

∗
V )− E(

∗
V )S(

∗
Z,

∗
U)g(Ỹ , X̃) = 0,

(4.15) A(X̃)P (
∗
Y ,

∗
Z,

∗
U,

∗
V ) = 0,

(4.16) B(Ỹ )P (
∗
X,

∗
Z,

∗
U,

∗
V ) = 0,

(4.17) D(Ũ)P (
∗
Y ,

∗
Z,

∗
X,

∗
V ) = 0,

(4.18) E(Ṽ )P (
∗
Y ,

∗
Z,

∗
U,

∗
X) = 0

and

(∇ ∗
X

P )(
∗
Y ,

∗
Z,

∗
U,

∗
V ) = A(

∗
X)P (

∗
Y ,

∗
Z,

∗
U,

∗
V ) + B(

∗
Y )P (

∗
X,

∗
Z,

∗
U,

∗
V )

+ B(
∗
Z)P (

∗
Y ,

∗
X,

∗
U,

∗
V ) + D(

∗
U)P (

∗
Y ,

∗
Z,

∗
X,

∗
V )

+ E(
∗
V )P (

∗
Y ,

∗
Z,

∗
U,

∗
X).

(4.19)

From (4.7)–(4.10) we have two cases. Namely,

(I) A = B = D = E = 0 on M2,
(II) M1 is projectively flat.

At first, we consider the case (I). Then from (4.19) we have

(∇ ∗
X

P )(
∗
Y ,

∗
Z,

∗
U,

∗
V ) = 0,

that is,

(4.20) (∇ ∗
X

R)(
∗
Y ,

∗
Z,

∗
U,

∗
V )

− 1

n− 1
[(∇ ∗

X
S)(

∗
Z,

∗
U)g(

∗
Y ,

∗
V )− (∇ ∗

X
S)(

∗
Y ,

∗
U)g(

∗
Z,

∗
V )] = 0.

Setting
∗
Z=

∗
V =

∗
eα in (4.20) and taking summation over α, p + 1 ≤ α ≤ n, we

obtain

(4.21) (∇ ∗
X

S)(
∗
Y ,

∗
U) = 0,
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which implies that M2 is a Ricci symmetric manifold.
Secondly, we discuss the case of (II).
Since, M1 is projectively flat, it is a manifold of constant curvature. Hence

we can state the following:

Theorem 4.1. Let (Mn, g) be a Riemannian manifold such that M = Mp
1 ×

Mn−p
2 , (2 ≤ p ≤ n− 2). If M is a (WPS)n then the following holds:

(I) In the case of A = B = D = E = 0 on M2, the manifold M2 is Ricci
symmetric.

(II) When M1 is projectively flat, it is a manifold of constant curvature.

Similarly, we have from (4.15) — (4.18) that

Theorem 4.2. Let (Mn, g) be a Riemannian manifold such that M = Mp
1 ×

Mn−p
2 , (2 ≤ p ≤ n− 2). If M is a (WPS)n then the following holds:

(I) In the case of A = B = D = E = 0 on M1, the manifold M1 is Ricci
symmetric.

(II) When M2 is projectively flat, it is a manifold of constant curvature.

Next, we consider the contraction with respect to
∗
X and

∗
Y in (4.11) and

obtain

(4.22) D(Ũ)
∗
r g(Z̃, Ṽ )− (n− p)E(Ṽ )S(Z̃, Ũ)] = 0,

which yields

(4.23) E(QŨ) = r1D(Ỹ ),

where

(4.24) r1 =
p

n− p

∗
r .

Similarly, from (4.14) we have

(4.25) E(Q
∗
U) = r2E(

∗
U),

where

(4.26) r2 =
n− p

p
r̃.

Thus, we can state the following:

Theorem 4.3. Let (Mn, g) be a Riemannian manifold such that M = Mp
1 ×

Mn−p
2 , (2 ≤ p ≤ n − 2). If M is a (WPS)n then the 1-forms D and E are

related by E(QŨ) = r1D(Ỹ ) on M1, where r1 = p
n−p

∗
r and E(Q

∗
U) = r2E(

∗
U)

on M2, where r2 = n−p
p

r̃.

Again from (4.12) and (4.13) we can state the following:

Theorem 4.4. Let (Mn, g) be a Riemannian manifold such that M = Mp
1 ×

Mn−p
2 , (2 ≤ p ≤ n−2). If M is a (WPS)n then the manifold M1 is a (WRS)p

and the manifold M2 is a (WRS)n−p.
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5. Some Examples of (WPS)n and decomposable (WPS)n

Example 5.1. Let M4 = {(x1, x2, x3, x4) ∈ R4 : 0 < x1 < π
2
, 0 < x2 < π

2
} be a

manifold endowed with the metric

(5.1) ds2 = (dx1)2 + sin2 x1(dx2)2 + sin2 x1 sin2 x2(dx3)2 + (dx4)2.

Then the only non-vanishing components of the Christoffel symbols, the cur-
vature tensor, Ricci tensor, scalar curvature, projective curvature tensor are
given by

Γ1
22 = −1

2
sin(2x1), Γ1

33 = −1

2
sin(2x1) sin2 x2,

Γ2
33 = −1

2
sin(2x2), Γ2

12 = cot x1 = Γ3
13, Γ

3
23 = cot x2,

R1221 = − sin2 x1, R1331 = − sin2 x1 sin2 x2, R2332 = − sin4 x1 sin2 x2,

S11 = −2, S22 = −2 sin2 x1, S33 = −2 sin2 x1 sin2 x2, r = −6 6= 0,

P1221 = −1

3
sin2 x1 = −P1212, P1331 = −1

3
sin2 x1 sin2 x2 = −P1313,

P2332 = −1

3
sin4 x1 sin2 x2 = −P2323, P1441 = −2

3
,

P2424 = −2

3
sin2 x1, P3434 = −2

3
sin2 x1 sin2 x2

and the components that can be obtained from these by the symmetry proper-
ties. The covariant derivatives of all components of projective curvature tensor
are vanish. In terms of local coordinate system we consider the components of
the 1-forms A, B, D and E as follows:

Ai = Bi = Di = Ei = 0 for i = 1, 2, 3, 4.

Then one can easily prove that (M4, g) is a (WPS)4 with non-vanishing scalar
curvature.

Thus, we can state the following:

Theorem 5.1. Let (M4, g) be a Riemannian manifold endowed with the metric
given in (5.1). Then (M4, g) is a weakly projective symmetric manifold with
non-vanishing scalar curvature, which is projectively symmetric.

Example 5.2. Let Mn = {(x1, x2, x3, · · · , xn) ∈ Rn : 0 < x1 < π
2
, 0 < x2 < π

2
}

be a manifold endowed with the metric

(5.2) ds2 = (dx1)2 + sin2 x1(dx2)2 + sin2 x1 sin2 x2(dx3)2 +
n∑

k=4

(dxk)2.

Then the only non-vanishing components of the Christoffel symbols, the cur-
vature tensor, Ricci tensor, scalar curvature, projective curvature tensor are
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given by

Γ1
22 = −1

2
sin(2x1), Γ1

33 = −1

2
sin(2x1) sin2 x2,

Γ2
33 = −1

2
sin(2x2), Γ2

12 = cot x1 = Γ3
13, Γ

3
23 = cot x2,

R1221 = − sin2 x1, R1331 = − sin2 x1 sin2 x2, R2332 = − sin4 x1 sin2 x2,

S11 = −2, S22 = −2 sin2 x1, S33 = −2 sin2 x1 sin2 x2, r = −6 6= 0,

P1221 = −n− 3

n− 1
sin2 x1 = P1212, P1331 = −n− 3

n− 1
sin2 x1 sin2 x2 = P1313,

P2332 = −n− 3

n− 1
sin4 x1 sin2 x2 = P2323, P1kk1 =

2

n− 1
,

P2kk2 =
2

n− 1
sin2 x1, P3kk3 =

2

n− 1
sin2 x1 sin2 x2, for 4 ≤ k ≤ n.

and the components that can be obtained from these by the symmetry prop-
erties.

In view of the above all the covariant derivatives of the projective curvature
tensor are vanish.

Therefore, our Mn with the considered metric g in (5.2) is a Riemannian
manifold of non-vanishing scalar curvature.

In terms of local coordinate system we consider the components of the 1-
forms A, B, D and E as follows:

Ai = Bi = Di = Ei = 0 for i = 1, 2, · · · , n.

Then (Mn, g) is a (WPS)n and hence we can state the following:

Theorem 5.2. Let (Mn, g)(n ≥ 4) be a Riemannian manifold equipped with
the metric given in (5.2). Then (Mn, g)(n ≥ 4) is a weakly projective symmet-
ric manifold with non-vanishing scalar curvature, which is projectively sym-
metric.

Now, we consider the two manifolds (M4
1 , ds2

1) and (Mn−4
2 , ds2

2) where M4
1 =

R4 and Mn−4
2 = Rn−4,

(5.3) ds2
1 = (dx1)2 + sin2 x1[(dx2)2 + sin2 x2(dx3)2] + (dx4)2, ds2

2 =
n∑

k=5

(dxk)2.

Then (Mn, ds2) is obviously a decomposable manifold where ds2 is given by
(5.2). Hence we can state the following:

Theorem 5.3. Let (Mn, g)(n ≥ 4) be a Riemannian manifold endowed with
the metric given in (5.2). Then (Mn, g)(n ≥ 4) is a decomposable weakly pro-
jective symmetric manifold (M4

1 , ds2
1)× (Mn−4

2 , ds2
2) with non-vanishing scalar

curvature, where ds2
1 and ds2

2 are given in (5.3).
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Example 5.3. Let M = R4 be a manifold endowed with the metric

(5.4) ds2 = gijdxidxj = (1 + 2γ)[(dx1)2 + (dx3)2] + (dx2)2 + (dx4)2,

(i,j = 1,2,3,4), where γ = ex1

K2 6= 1
4

and K is a non-zero constant.
Then the only non-vanishing components of the Christoffel symbols, the

curvature tensor, Ricci tensor, scalar curvature, projective curvature tensor
and its covariant derivatives are given by

Γ1
11 =

γ

1 + 2γ
= Γ3

13 = −Γ1
33, R1331 =

γ

1 + 2γ
,

S11 =
γ

(1 + 2γ)2
= S33, r =

2γ

(1 + 2γ)3
6= 0,

P1212 = P1414 = P3434 =
γ

3(1 + 2γ)2
,

P2332 = − γ

3(1 + 2γ)2
, P1331 =

2

3

γ

1 + 2γ
= −P1313,

P1212,1 = P1414,1 = P3434,1 =
γ(1− 4γ)

3(1 + 2γ)3
,(5.5)

P2332,1 = − γ(1− 4γ)

3(1 + 2γ)3
,(5.6)

P1331,1 =
2γ(1− 4γ)

3(1 + 2γ)2
= −P1313,1(5.7)

and the components that can be obtained from these by the symmetry proper-
ties, where ‘,’ denotes the covariant differentiation with respect to the metric
tensor and Sij denotes the components of the Ricci tensor and r is the scalar
curvature of the manifold. Therefore, the manifold M4 with the considered
metric is a Riemannian manifold, which is neither projectively flat nor projec-
tively symmetric and is of non-vanishing scalar curvature.

We shall now show that this (M4, g) is a (WPS)4, that is, it satisfies (1.5).
In terms of local coordinate system, we consider the components of the

1-forms A, B, D and E as follows:

A(∂i) = Ai =

{
1−4γ
1+2γ

, for i = 1,

0, otherwise ,

Bi = Di = Ei = 0 for i = 1, 2, 3, 4,

(5.8)

where ∂i = ∂
∂xi .

In our M4 with the considered 1-forms, (1.5) reduces to the following equa-
tions:

P121l,i = AiP121l + B1Pi21l + B2P1i1l + D1P12il + ElP121i,(5.9)

P12t2,i = AiP12t2 + B1Pi2t2 + B2P1it2 + DtP12i2 + E2P12ti,(5.10)

P1u12,i = AiP1u12 + B1Piu12 + BuP1i12 + D1P1ui2 + E2P1u1i,(5.11)
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Pt212,i = AiPt212 + BtPi212 + B2Pti12 + D1Pt2i2 + E2Pt21i,(5.12)

P133l,i = AiP133l + B1Pi33l + B3P1i3l + D3P13il + ElP133i,(5.13)

P13w1,i = AiP13w1 + B1Pi3w1 + B3P1iw1 + DwP13i1 + E1P13wi,(5.14)

P1w31,i = AiP1w31 + B1Piw31 + BwP1i31 + D3P1wi1 + E1P1w3i,(5.15)

Pt331,i = AiPt331 + BtPi331 + B3Pti31 + D3Pt3i1 + E1Pt33i,(5.16)

P131s,i = AiP131s + B1Pi31s + B3P1i1s + D1P13is + EsP131i,(5.17)

P13t3,i = AiP13t3 + B1Pi3t3 + B3P1it3 + DtP13i3 + E3P13ti,(5.18)

P1p13,i = AiP1p13 + B1Pip13 + BpP1i13 + D1P1pi3 + E3P1p1i,(5.19)

Pt313,i = AiPt313 + BtPi313 + B3Pti13 + D1Pt3i3 + E3Pt31i,(5.20)

P14lu,i = AiP14lu + B1Pi4lu + B4P1ilu + DlP14iu + EuP14li,(5.21)

P14t4,i = AiP14t4 + B1Pi4t4 + B4P1it4 + DtP14i4 + E4P14ti,(5.22)

P1114,i = AiP1114 + B1Pi114 + B1P1i14 + D1P11i4 + E4P111i,(5.23)

Pt414,i = AiPt414 + BtPi414 + B4Pti14 + D1Pt4i4 + E4Pt41i,(5.24)

P233t,i = AiP233t + B2Pi33t + B3P2i3t + D3P23it + EtP233i,(5.25)

P23w2,i = AiP23w2 + B2Pi3w2 + B3P2iw2 + DwP23i2 + E2P23wi,(5.26)

P2w32,i = AiP2w32 + B2Piw32 + BwP2i32 + D3P2wi2 + E2P2w3i,(5.27)

Ps332,i = AiPs332 + BsPi332 + B3Psi32 + D3Ps3i2 + E2Ps33i,(5.28)

P343t,i = AiP343t + B3Pi43t + B4P3i3t + D3P34it + EtP343i,(5.29)

P34w4,i = AiP34w4 + B3Pi4w4 + B4P3iw4 + DwP34i4 + E4P34wi,(5.30)

P3334,i = AiP3334 + B3Pi334 + B3P3i34 + D3P33i4 + E4P333i,(5.31)

Pv434,i = AiPv434 + BvPi434 + B4Pvi34 + D3Pv4i4 + E4Pv43i,(5.32)

where i = 1, 2, 3, 4; l = 1, 2, 3, 4; t = 2, 3, 4; u = 1, 3, 4; w = 1, 2, 4; v = 1, 3; s =
3, 4; p = 1, 4; v = 2, 4. Since, for the cases other than (5.9) – (5.32), the
components of each term of (1.5) either vanishes identically or the relation (1.5)
holds trivially using the skew-symmetry property of P .

Now, using (5.5) and (5.8), it follows, for i = 1, that right hand side

of (5.9)(for l = 2) = (A1 + B1 + D1)P1212 = γ(1−4γ)
3(1+2γ)3

= P1212,1 = left hand

side of (5.9)(for l = 2).
For i = 2, 3, 4, the relation (5.8) implies that both sides of equation (5.9)

are equal. By the similar argument, it can be easily seen that the equa-
tions (5.10) – (5.32) hold. Thus, the manifold under consideration is weakly
projective symmetric.

Hence, we can state the following:

Theorem 5.4. Let (M4, g) be a Riemannian manifold endowed with the met-
ric given in (5.4). Then (M4, g) is a weakly projective symmetric manifold
with non-vanishing scalar curvature, which is neither projectively flat nor pro-
jectively symmetric but projectively recurrent.
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Example 5.4. Let M = Rn be a manifold endowed with the metric

(5.33) ds2 = gijdxidxj = 2γ[(dx1)2+(dx3)2]+δijdxidxj, (i, j = 1, 2, · · · , n),

where γ = ex1

K2 6= 1
4

and K is a non-zero constant.
Then the only non-vanishing components of the Christoffel symbols, the

curvature tensor, Ricci tensor, scalar curvature, projective curvature tensor
and its covariant derivatives are given by

Γ1
11 =

γ

1 + 2γ
= Γ3

13 = −Γ1
33, R1331 =

γ

1 + 2γ
,

S11 =
γ

(1 + 2γ)2
= S33, r =

2γ

(1 + 2γ)3
6= 0,

P1212 = P1414 = P3434 =
γ

(n− 1)(1 + 2γ)2
,

P2332 = − γ

(n− 1)(1 + 2γ)2
, P1331 =

n− 2

n− 1

γ

1 + 2γ
= −P1313,

P1k1k = P3k3k =
γ

(n− 1)(1 + 2γ)2
for 5 ≤ k ≤ n,

P1212,1 = P1414,1 = P3434,1 =
γ(1− 4γ)

(n− 1)(1 + 2γ)3
,(5.34)

P2332,1 = − γ(1− 4γ)

(n− 1)(1 + 2γ)3
,(5.35)

P1331,1 =
(n− 2)γ(1− 4γ)

(n− 1)(1 + 2γ)2
= −P1313,1,(5.36)

P1k1k,1 = P3k3k,1 =
γ(1− 4γ)

(n− 1)(1 + 2γ)3
for 5 ≤ k ≤ n(5.37)

and the components that can be obtained from these by the symmetry proper-
ties, where ‘,’ denotes the covariant differentiation with respect to the metric
tensor and Sij denotes the components of the Ricci tensor and r is the scalar
curvature of the manifold. Therefore, the manifold Mn with the considered
metric is a Riemannian manifold, which is neither projectively flat nor projec-
tively symmetric and is of non-vanishing scalar curvature.

We shall now show that this (Mn, g) is a (WPS)n, that is, it satisfies (1.5).
In terms of local coordinate system, if we consider the components of the

1-forms A, B, D and E as

A(∂i) = Ai =

{
1−4γ
1+2γ

, for i = 1,

0, otherwise ,

Bi = Di = Ei = 0 for i = 1, 2, · · · , n,

(5.38)
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where ∂i = ∂
∂xi .

In our Mn with the considered 1-forms, (1.5) reduces to the following equations:

P121l,i = AiP121l + B1Pi21l + B2P1i1l + D1P12il + ElP121i,(5.39)

P12t2,i = AiP12t2 + B1Pi2t2 + B2P1it2 + DtP12i2 + E2P12ti,(5.40)

P1u12,i = AiP1u12 + B1Piu12 + BuP1i12 + D1P1ui2 + E2P1u1i,(5.41)

Pt212,i = AiPt212 + BtPi212 + B2Pti12 + D1Pt2i2 + E2Pt21i,(5.42)

P133l,i = AiP133l + B1Pi33l + B3P1i3l + D3P13il + ElP133i,(5.43)

P13w1,i = AiP13w1 + B1Pi3w1 + B3P1iw1 + DwP13i1 + E1P13wi,(5.44)

P1w31,i = AiP1w31 + B1Piw31 + BwP1i31 + D3P1wi1 + E1P1w3i,(5.45)

Pt331,i = AiPt331 + BtPi331 + B3Pti31 + D3Pt3i1 + E1Pt33i,(5.46)

P131s,i = AiP131s + B1Pi31s + B3P1i1s + D1P13is + EsP131i,(5.47)

P13t3,i = AiP13t3 + B1Pi3t3 + B3P1it3 + DtP13i3 + E3P13ti,(5.48)

P1p13,i = AiP1p13 + B1Pip13 + BpP1i13 + D1P1pi3 + E3P1p1i,(5.49)

Pt313,i = AiPt313 + BtPi313 + B3Pti13 + D1Pt3i3 + E3Pt31i,(5.50)

P14lu,i = AiP14lu + B1Pi4lu + B4P1ilu + DlP14iu + EuP14li,(5.51)

P14t4,i = AiP14t4 + B1Pi4t4 + B4P1it4 + DtP14i4 + E4P14ti,(5.52)

P111q,i = AiP111q + B1Pi11q + B1P1i1q + D1P11iq + EqP111i,(5.53)

Pt414,i = AiPt414 + BtPi414 + B4Pti14 + D1Pt4i4 + E4Pt41i,(5.54)

P233t,i = AiP233t + B2Pi33t + B3P2i3t + D3P23it + EtP233i,(5.55)

P23w2,i = AiP23w2 + B2Pi3w2 + B3P2iw2 + DwP23i2 + E2P23wi,(5.56)

P2w32,i = AiP2w32 + B2Piw32 + BwP2i32 + D3P2wi2 + E2P2w3i,(5.57)

Ps332,i = AiPs332 + BsPi332 + B3Psi32 + D3Ps3i2 + E2Ps33i,(5.58)

P343t,i = AiP343t + B3Pi43t + B4P3i3t + D3P34it + EtP343i,(5.59)

P34w4,i = AiP34w4 + B3Pi4w4 + B4P3iw4 + DwP34i4 + E4P34wi,(5.60)

P333q,i = AiP333q + B3Pi33q + B3P3i3q + D3P33iq + EqP333i,(5.61)

Pv434,i = AiPv434 + BvPi434 + B4Pvi34 + D3Pv4i4 + E4Pv43i,(5.62)

P1k1l,i = AiP1k1l + B1Pik1l + BkP1i1l + D1P1kil + ElP1k1i,(5.63)

P1kmk,i = AiP1kmk + B1Pikmk + BkP1imk + DmP1kik + EkP1kmi,(5.64)

P1y1k,i = AiP1y1k + B1Piy1k + ByP1i1k + D1P1yik + EkP1y1i,(5.65)

Ptk1k,i = AiPtk1k + BtPik1k + BkPti1k + D1Ptkik + EkPtk1i,(5.66)

P3k3l,i = AiP3k3l + B3Pik3l + BkP3i3l + D3P3kil + ElP3k3i,(5.67)

P3kwk,i = AiP3kwk + B3Pikwk + BkP3iwk + DwP3kik + EkP3kwi,(5.68)

P3z3k,i = AiP3z3k + B3Piz3k + BzP3i3k + D3P3zik + EkP3z3i,(5.69)

Ptk3k,i = AiPtk3k + BtPik3k + BkPti3k + D3Ptkik + EkPtk3i,(5.70)
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where i = 1, 2, · · · , n; l = 1, 2, · · · , n; t = 2, 3, · · · , n; u = 1, 3, 4, · · · , n;
w = 1, 2, 4, · · · , n; v = 2, 4, · · · , n; s = 3, 4, · · · , n; p = 1, 4, · · · , n; q =
4, 5, · · · , n; m = 2, 3, 4; y = 1, 3, 4; z = 1, 2, 3, 4. Since, for the cases other
than (5.39) – (5.70), the components of each term of (1.5) either vanishes
identically or the relation (1.5) holds trivially using the skew-symmetry prop-
erty of P .

Then it can be easily shown that the manifold under consideration is weakly
projective symmetric and hence we can state the following:

Theorem 5.5. Let (Mn, g) be a Riemannian manifold endowed with the met-
ric given in (5.33). Then (Mn, g) is a weakly projective symmetric manifold
with non-vanishing scalar curvature, which is neither projectively flat nor pro-
jectively symmetric but projectively recurrent.

Let (M4
3 , g3) be a Riemannian manifold in Example 5.3. and (Rn−4, g0) be

an (n−4) dimensional Euclidean space with standard metric g0. Then (Mn, g)
in Example 5.4. is a product manifold of (M4

3 , g3) and (Rn−4, g0). Thus, we
can state the following:

Theorem 5.6. Let (Mn, g)(n ≥ 4) be a Riemannian manifold endowed with
the metric given in (5.33). Then (Mn, g)(n ≥ 4) is a decomposable weakly
projective symmetric manifold (M4

3 , g3)× (Rn−4, g0) with non-vanishing scalar
curvature, which is neither projectively flat nor projectively symmetric but pro-
jectively recurrent.

Example 5.5. Let M = {(x1, x2, x3, x4) ∈ R4 : 0 < x4 < 1} be a manifold
endowed with the metric

(5.71) ds2 = gijdxidxj = (x4)
4
3 [(dx1)2 + (dx4)2] + (dx2)2 + (dx3)2,

(i, j = 1, 2, 3, 4). Then the only non-vanishing components of the Christof-
fel symbols, the curvature tensor, Ricci tensor, scalar curvature, projective
curvature tensor and its covariant derivatives are given by

Γ1
14 = Γ4

44 =
2

3x4
= −Γ4

11, R1441 = − 2

3(x4)
2
3

,

S11 = S44 = − 2

3(x4)2
,

r = − 4

3(x4)
10
3

6= 0, P1212 = P1313 = − 2

9(x4)2
,

P1441 = − 4

9(x4)
2
3

= −P1414, P2442 = P3443 =
2

9(x4)2
,

P1212,4 = P1313,4 =
20

27(x4)3
,(5.72)

P1441,4 =
40

27(x4)
5
3

= −P1414,4,(5.73)
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P2442,4 = − 20

27(x4)3
= P3443,4(5.74)

and the components that can be obtained from these by the symmetry proper-
ties, where ‘,’ denotes the covariant differentiation with respect to the metric
tensor. Therefore, the manifold M4 with the considered metric is a Riemann-
ian manifold, which is neither projectively flat nor projectively symmetric and
is of non-vanishing scalar curvature.

We shall now show that this (M4, g) is a (WPS)4, that is, it satisfies (1.5).
In terms of local coordinate system we consider the components of the 1-

forms A, B, D and E as follows:

A(∂i) = Ai =

{
− 10

3x4 , for i = 4

0, otherwise ,

Bi = Di = Ei = 0 for i = 1, 2, 3, 4,

(5.75)

where ∂i = ∂
∂xi .

In our M4 with the considered 1-forms, (1.5) reduces to the following equations:

P121l,i = AiP121l + B1Pi21l + B2P1i1l + D1P12il + ElP121i,(5.76)

P12t2,i = AiP12t2 + B1Pi2t2 + B2P1it2 + DtP12i2 + E2P12ti,(5.77)

P1u12,i = AiP1u12 + B1Piu12 + BuP1i12 + D1P1ui2 + E2P1u1i,(5.78)

Pt212,i = AiPt212 + BtPi212 + B2Pti12 + D1Pt2i2 + E2Pt21i,(5.79)

P131u,i = AiP131u + B1Pi31u + B3P1i1u + D1P13iu + EuP131i,(5.80)

P13t3,i = AiP13t3 + B1Pi3t3 + B3P1it3 + DtP13i3 + E3P13ti,(5.81)

P1p13,i = AiP1p13 + B1Pip13 + BpP1i13 + D1P1pi3 + E3P1p1i,(5.82)

Pt313,i = AiPt313 + BtPi313 + B3Pti13 + D1Pt3i3 + E3Pt31i,(5.83)

P144l,i = AiP144l + B1Pi44l + B4P1i4l + D4P14il + ElP144i,(5.84)

P14v1,i = AiP14v1 + B1Pi4v1 + B4P1iv1 + DvP14i1 + E1P14vi,(5.85)

P1v41,i = AiP1v41 + B1Piv41 + BvP1i41 + D4P1vi1 + E1P1v4i,(5.86)

Pt441,i = AiPt441 + BtPi441 + B4Pti41 + D4Pt4i1 + E1Pt44i,(5.87)

P141t,i = AiP141t + B1Pi41t + B4P1i1t + D1P14it + EtP141i,(5.88)

P14q4,i = AiP14q4 + B1Pi4q4 + B4P1iq4 + DqP14i4 + E4P14qi,(5.89)

P1114,i = AiP1114 + B1Pi114 + B1P1i14 + D1P11i4 + E4P111i,(5.90)

Pt414,i = AiPt414 + BtPi414 + B4Pti14 + D1Pt4i4 + E4Pt41i,(5.91)

P244t,i = AiP244t + B2Pi44t + B4P2i4t + D4P24it + EtP244i,(5.92)

P24v2,i = AiP24v2 + B2Pi4v2 + B4P2iv2 + DvP24i2 + E2P24vi,(5.93)

P2v42,i = AiP2v42 + B2Piv42 + BvP2i42 + D4P2vi2 + E2P2v4i,(5.94)

Ps442,i = AiPs442 + BsPi442 + B4Psi42 + D4Ps4i2 + E2Ps44i,(5.95)

P344t,i = AiP344t + B3Pi44t + B4P3i4t + D4P34it + EtP344i,(5.96)
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P34v3,i = AiP34v3 + B3Pi4v3 + B4P3iv3 + DvP34i3 + E3P34vi,(5.97)

P3v43,i = AiP3v43 + B3Piv43 + BvP3i43 + D4P3vi3 + E3P3v4i,(5.98)

P4443,i = AiP4443 + B4Pi443 + B4P4i43 + D4P44i3 + E3P444i,(5.99)

where i = 1, 2, 3, 4; l = 1, 2, 3, 4; t = 2, 3, 4; u = 1, 3, 4; p = 1, 4; v = 1, 2, 3; q =
2, 3; s = 3, 4, since for the cases other than (5.76) – (5.99), the components of
each term of (1.5) either vanishes identically or the relation (1.5) holds trivially
using the skew-symmetry property of P .

Now, using (5.72) and (5.75), it follows for i = 4 that, right hand side
of (5.76)(for l = 2) = A4P1212 = 20

27(x4)3
= P1212,4 = left hand side of (5.76)(for

l = 2).
For i = 1, 2, 3, the relation (5.39) implies that both sides of equation (5.40)

are equal. By the similar argument, it can be easily seen that the equa-
tion (5.41) – (5.63) holds. Thus, the manifold under consideration is weakly
projective symmetric manifold.

Hence, we can state the following:

Theorem 5.7. Let (M4, g) be a Riemannian manifold endowed with the met-
ric given in (5.75). Then (M4, g) is a weakly projective symmetric manifold
with non-vanishing scalar curvature, which is neither projectively flat nor pro-
jectively symmetric but projectively recurrent.

Example 5.6. Let M = {(x1, x2, x3, · · · , xn) ∈ Rn : 0 < x4 < 1} be a manifold
endowed with the metric

(5.100) ds2 = [(x4)
4
3 − 1][(dx1)2 + (dx4)2] + δabdxadxb,

where δab is the Kronecker delta and a, b run from 1 to n. Then the only
non-vanishing components of the Christoffel symbols, the curvature tensor,
Ricci tensor, scalar curvature, projective curvature tensor and its covariant
derivatives are given by

Γ1
14 = Γ4

44 =
2

3x4
= −Γ4

11, R1441 = − 2

3(x4)
2
3

,

S11 = S44 = − 2

3(x4)2
, r = − 4

3(x4)
10
3

6= 0,

P1212 = P1313 = − 2

3(n− 1)(x4)2
, P1441 = − 2(n− 2)

3(n− 1)(x4)
2
3

= −P1414,

P2442 = P3443 =
2

3(n− 1)(x4)2
, P1k1k = P4k4k = − 2

3(n− 1)(x4)2
,

P1212,4 = P1313,4 =
20

9(n− 1)(x4)3
,(5.101)

P1441,4 =
20(n− 2)

9(n− 1)(x4)
5
3

= −P1414,4,(5.102)
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P2442,4 = − 20

9(n− 1)(x4)3
= P3443,4,(5.103)

P1k1k,4 = P4k4k,4 =
20

9(n− 1)(x4)3
for 5 ≤ k ≤ n.(5.104)

If we consider the components of the 1-forms A, B, D and E as

A(∂i) = Ai =

{
− 10

3x4 , for i = 4,

0, otherwise,

Bi = Di = Ei = 0 for i = 1, 2, · · · , n,

where ∂i = ∂
∂xi , then it can be easily shown that Mn is a (WPS)n, which is

not projectively symmetric.

Hence, we can state the following:

Theorem 5.8. Let (Mn, g)(n ≥ 4) be a Riemannian manifold endowed with
the metric given in (5.100). Then (Mn, g) is a weakly projective symmetric
manifold with non-vanishing scalar curvature, which is not projectively sym-
metric but projectively recurrent.

Let (M4
5 , g5) be a Riemannian manifold in Example 5.5. and (Rn−4, g4) be

an (n−4) dimensional Euclidean space with standard metric g4. Then (Mn, g)
in Example 5.6. is a product manifold of (M4

5 , g5) and (Rn−4, g4). Thus, we
can state the following:

Theorem 5.9. Let (Mn, g)(n ≥ 4) be a Riemannian manifold endowed with
the metric given in (5.100). Then (Mn, g)(n ≥ 4) is a decomposable weakly
projective symmetric manifold (M4

5 , g5)× (Rn−4, g4) with non-vanishing scalar
curvature, which is not projectively symmetric but projectively recurrent.
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