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Extended Abstract

Abstract

We propose a new attack on Feistel ciphers with a non-surjective round
function. CAST and LOKI91 are examples of such ciphers. We extend the
attack towards ciphers that use a non–uniformly distributed round function
and apply the attack to CAST.

1 Introduction

The Feistel structure is a very common structure for block ciphers, the most
prominent example being the Data Encryption Standard [FI46]. Although DES
has been a worldwide de facto standard since 1977, everybody agrees that it is
reaching the end of its life time. The main reason is the size of the key, which
is only 56 bits. The key size was already a topic of discussion in the seventies
[DH77], and it was shown recently by M. Wiener that at present an exhaustive
key search in 3.5 hours requires only 1 million US$ of equipment [W93]. Of more
theoretical interest are recent cryptanalytic techniques such as differential [BS93]
and linear [Ma93a, Ma94] cryptanalysis which provide techniques to recover the
key faster than exhaustive search. Currently, they do not offer a threat for
practical applications, but it can be expected that within the next five years
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practical attacks are developed. These problems can be overcome easily by using
triple DES with two keys, at the cost of a reduced performance.
A second problem of the DES is the fact that it was designed taking into

account 1977 hardware constraints. In spite of this, very fast software imple-
mentations have been reported (7 Mbit/s on a 80586/60MHz and 12 Mbit/s on
a HP-715/80). However, algorithm designers hope to exploit in a more efficient
way the present day computer architectures, and to achieve a better tradeoff be-
tween security and speed. In order to build on the experience gathered with the
cryptanalysis of DES, most designers prefer to keep the Feistel structure. Exam-
ples of such proposals are FEAL [M91], LOKI91 [LOKI91], Blowfish [S94], and
CAST [AT93, HT94, A94]. By introducing new structures for the round func-
tion, designers try to improve the performance and to reduce the vulnerability to
differential and linear attacks. However, this might introduce new vulnerabilities,
especially if the number of rounds is reduced in order to optimize the speed.
In this extended abstract we will concentrate on the weaknesses that are

introduced by the use of non–surjective or, more general, non–uniform round
functions. Several studies revealed that in general large S-boxes are more resistant
against linear or differential cryptanalysis. It is even argued that one can choose
random S-boxes and obtain a secure cipher. We show that this is not always
true. In section 2 we describe the general principle of our attack. In section 3 we
apply the attack to CAST and LOKI91. In section 4 we conclude by discussing
some design principles.

2 General principle

We first explain our notation and then we present the attack and an extension.

2.1 Notation

Consider a Feistel cipher, consisting of n rounds (with n even). The plaintext
input consists of two p–bit blocks L0 and R0, the key is denoted by K, the
ciphertext by (Ln, Rn). Each round takes a 2p–bit message input block (Li, Ri)
and a k–bit key input (Ki). The round output is given by:

Ri = Li−1 ⊕ Fi(Ki ⊕Ri−1)
Li = Ri−1 i = 1, . . . , n− 1.

For the last round (no swapping) this becomes:

Ln = Ln−1 ⊕ Fn(Kn ⊕Rn−1)
Rn = Rn−1 .
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Then the following relation holds:

βn(L0, R0, K) =
n/2
⊕

i=1

F2i(K2i ⊕R2i−1) = R0 ⊕ Ln n ≥ 2, even. (1)

For unbalanced round functions F2i, the sum βn will be unbalanced if we assume
that the round keys are independent. We expect that this also holds for most
key schedulings. Since not all values of βn have the same probability, an attacker
gathers statistical information about the plaintext by looking at the ciphertext.

2.2 Basic attack

If we take the last round out of the sum, (1) becomes

βn−2(L0, R0, K) =
n/2−1
⊕

i=1

F2i(K2i ⊕R2i−1) = R0 ⊕ Ln ⊕ Fn(Kn ⊕Rn) . (2)

Non–surjective round functions F2i will result in a non–surjective βn−2 for small
enough values of n. This is quantified in the following lemma.

Lemma 1 Denote by f the fraction of p-bit vectors that are a possible output of
the round function, and by fn−2 the fraction of possible values for βn−2. If the

round functions are behave as ‘random functions’:

fn−2 = 1− (1− fn−4 · f)
2p

. (3)

Proof: We can write
βn−2 = βn−4 ⊕ Fn−2 .

A value X is a possible value for βn−2 iff

X = Y ⊕ Z , (4)

and Y , Z are possible values for βn−4 and Fn−2 respectively. There are 2
p solutions

for (4). A value for βn−2 is impossible iff for all solutions (X,Y ) holds that X or
Y is impossible. By application of the product rule we obtain

1− fn−2 = (1− fn−4 · f)
2p

.

A non–surjective βn−2 makes the following attack possible. For all values
Kn calculate the right hand side of (2) by use of the known plaintext R0 and
the ciphertext Ln. Check whether this is a possible value for βn−2. Wrong
key guesses will eventually produce a value that is outside the range of βn−2.
Since there are 2k possible round keys Kn, we need on average −k/ log2(fn−2)
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plaintext/ciphertext pairs to determine the right value of Kn. The work factor
of the attack is 2k/(1− fn−2).
For small values of k, one can search for several round keys at once. This way,

fn−4 can be used instead of fn−2.

2.3 Statistical attack

Equation (3) shows that for larger values of n, fn−2 goes very fast to 1. But βn−2

will not be uniformly distributed: all outputs are possible, but they don’t occur
with the same probability. For still larger values of n, βn−2 becomes close to a
“random function”, which should be a design goal. Our attack can be modified to
deal with surjective but unbalanced βn’s. First calculate the relative probabilities
for each possible value of βn−2. Then calculate the right hand side of (2) for every
value of Kn and for every known plaintext–ciphertext pair. It is now possible to
calculate the a posteriori probability for the key candidates.
By Bayes’ rule we can express the probability Pr(Kn|R0, Ln) that Kn is the

correct key, given R0 and Ln:

Pr(Kn|R0, Ln) =
Pr(Kn) Pr(R0, Ln|Kn)

Pr(R0, Ln)
=
Pr(Kn) Pr(βn−2)

Pr(βn)
.

Let us denote with Pri(Kn) the probability that Kn is the right key after the
processing of the i–th known plaintext (Pr0(Kn) = 1/2

k). We have

Pr i(Kn) =
Pri−1(Kn) Pr(β

i
n−2
)

Pr(βi
n)

=
1

2k

i
∏

j=1

Pr(βj
n−2)

Pr(βj
n)

.

This expression can be evaluated for each key candidate and assigns to each
round key a probability that can be used for a ranking of the most probable keys.

3 Application to CAST and LOKI91

3.1 CAST

The round function of CAST is constructed as follows: if b1b2b3b4 denotes the
four byte input, the output is obtained by adding the output of the four S-boxes:

F (b1b2b3b4) = S1[b1]⊕ S2[b2]⊕ S3[b3]⊕ S4[b4] .

The four Si are tables with eight input and 32 output bits. Since each S-box
has only eight input bits, its output can only take 256 values in GF(232). If the
four S-boxes are selected at random, the expected number of possible outputs is
(1− e−1)× 232, where e denotes the natural logarithm base. This value can also
be computed from (3), since adding the outputs of the S-boxes corresponds to
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concatenating rounds. Table 1 gives the f -values for the combination of 1, 2, 3,
and 4 S-boxes.

# S-boxes f
1 5.96× 10−8

2 1.53× 10−5

3 3.90× 10−3

4 6.32× 10−1

Table 1: f -values for the combination of 1 to 4 S-boxes.

The CAST S-boxes are constructed from eight–bit bent functions that are
the Walsh transforms of the concatenation of four six–bit bent functions. We
constructed S-boxes following this design principle and obtained the same value
for f .
We can summarize the CAST key scheduling in the following way: for each

round first an “initial value” of two bytes is calculated from the master key. This
calculation is simple for the first rounds, and more complicated for the last round.
These two bytes are expanded in a non-linear way to the 32–bit round key. The
entropy of each round key is therefore at most 16 bits. This enables us to search
for three round keys at once.
We can apply the simple attack on six rounds of CAST. Equation (2) becomes:

β4 = F2 = R0⊕L6⊕F (K4⊕R6⊕F (K5⊕L6⊕F (K6⊕R6)))⊕F (K6⊕R6). (5)

R0 is a part of the plaintext, L6 and R6 form the ciphertext. K4, K5, and
K6 are the round keys we are searching for. Note that by swapping plaintext
and ciphertext, we can apply the same attack to find K1, K2, and K3. The
work factor of the attack is then 1.5 × 248. The number of required texts is
only − log(248)/ log(1 − e−1) ≈ 82. Note that in [HT94] it is estimated that the
required number of known plaintexts to break six rounds of CAST with a linear
attack is at least 218.
Since the sum of two CAST round functions is surjective, the simple attack

is not applicable to more than six rounds. The statistical attack needs a table
of size 232. Although this is not infeasible, we are currently unable to actually
implement this attack. We are developing an implementation for a mini-version
of CAST that operates on a four byte input and with S-boxes that consist of 16
4–bit functions.

3.2 LOKI91

The round function of LOKI91 takes a 32–bit message input and exors this with
a 32–bit round key. These 32 bits are expanded to 48 bits and split into four
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parts. Each part enters the 12×8–bit S-box. This produces the 8×4 = 32 output
bits. Note that of the 48 input bits to the nonlinear part, 32 bits are pairwise
equal. In [Kn94] L. R. Knudsen observed that this implies that the output can
only take a fraction of 8

13
of the possible values.

Each round key consists of 32 bits. The key scheduling of LOKI91 is such that
K2i = K2i−1 <<< 12, i = 1, 2, . . . , 8, where <<< denotes “left wise rotation.”
Therefore we can search for the round keys of two rounds at once, and apply
the basic attack to five rounds of LOKI91. We did not implement the statistical
attack for LOKI91. Since f is about the same for LOKI91 and CAST, we expect
comparable results, except for the fact that we only can peel off two rounds.

4 Discussion

We have shown that the use of uniformly distributed round functions is probably
a good design criterion for Feistel ciphers. Feistel ciphers that make use of non–
surjective round functions should use a number n of rounds that is large enough
to make βn−2 at least surjective. In order to counter the statistical attack, the
sum should have a distribution which is close to uniform. We conjecture that the
deviations of the different outputs squared approximates the number of required
known plaintexts. Therefore this type of attack will become infeasible for a large
number of rounds.
With respect to the key scheduling of CAST [A94], we can say that round

keys with 16 bit entropy are inadequate. The computational cost for an attacker
to peel off several rounds is too low. This makes CAST more vulnerable to our
attack than LOKI91.
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