
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
On Web Annotations: Promises and Pitfalls of Current Web Infrastructure

Venu Vasudevan and Mark Palmer,

Object Services and Consulting Inc.,

 venu@objs.com and mpalmer@nh.ultranet.com
y
e

e

e

d

n

n
e
,

at
d

t

 in
pt

n,

em

as

s

or
Abstract

Annotations are a broadly useful mechanism that can
support a number of useful document management
applications (third-party commentary, design
rationale, information filtering, and semantic labeling
of document content to name a few). The ubiquity of
web content motivates the need for web annotation
systems that are lightweight, efficient, non-intrusive
(preferably transparent), platform-independent and
scaleable. Building such a system using open and
standard web infrastructures (as opposed to
proprietary ones) facilitates widespread applicability
and deployment. In practice, there are a number of
ways to do this, all of which instantiate a common
abstract architecture based on intermediaries. The
paper describes our experiences with client and prox
server based implementations of the annotation syst
architecture. The implementations point to missing
elements in the current web infrastructure that make
any implementation of annotation systems less than
completely satisfactory. This paper discusses these
elements of current web infrastructure, and potential
changes to the web architecture that might make the
implementation of annotation systems more complet

1. Introduction
Large organizations increasingly use Intranets and th
World-Wide Web as a shared organizational memory
for their business processes. While the web has
simplified the process of publishing and retrieving
documents, the web collaboration model is an
asymmetric one with active information publishers an
passive information consumers. Annotations allow
third-parties to interactively and incrementally augme
web documents. An annotation system supports the
creation and retrieval of annotations, and composes
personalized "virtual documents" from the authored
document and associated annotations.

By varying the annotation vocabulary and compositio
semantics, an annotation system is usable in a numb
of document management applications. For instance
explicitly authored textual annotations are usable in
0-7695-0001-3/99 $1
-
m

.

t

r

review and rationale capture applications. Systems th
annotate documents with relevant information retrieve
from search engines, newgroups and other forums
[Elo96], are useful in intelligently contextualizing the
document to reader's interests. Effector annotations
(which are not visibly presented, but determine the
contents of the virtual document) are useful in conten
labeling and collaborative filtering. Document
ontology specifiers [Luke96] provide an example of
semantic annotations that label the concepts covered
sections of a web document, thus overlaying a conce
map on the document content.

An annotation framework needs to be customizable to
support this variety of document management functio
and to be non-intrusive to enable easy insertion into
enterprise Intranets or the public Internet. This paper
describes our efforts to build such an annotation syst
using open Internet frameworks, and avoiding
proprietary extensions to the infrastructure. The web
annotation framework described here can be viewed
a specialization of the intermediary architecture
[Thom98, Barr98]. Intermediaries are expansion joint
in the web client-server connection where the web
client-server interaction can be customized on a per
interaction basis without bringing down web clients or
services to do so. The intermediation approach also
allows annotation systems to be built using the open
API of current web clients, servers and proxies, and
without having to invent proprietary web tools.

In this paper, we focus on annotations as one behavi
supported by intermediation. First we outline the
elements of an intermediary-based annotation
architecture. The next two sections discuss our
experiences in building proxy-based and client-based
annotation systems. It has been our experience that
annotation systems are constrained both in capability
and efficiency by the limitations of current web
infrastructure. We find that the intermediary approach
offers a reasonable, uniform structure for extending
web client capability - externally to the browser. Yet
there is little support to date for extending capabilities
within popular browsers in the same principled way,
due to security mechanisms and divergent browser
designs. The last section discusses changes in web
architecture that would make it easier to build
0.00 (c) 1999 IEEE 1

g

n

i

a

l.

r,

d

f
or

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
annotation systems, and emerging standards that ma
help in this regard.

2. Architecture: Theme and Variations
Figure 1 shows an abstract annotation system
architecture that can be concretely implemented usin
client or server-side Internet frameworks. The main
components of the architecture are interceptors,
annotation repository services (AReS) and composers,
with the annotation delivery and composition styles
being personalized based on a user model. In concre
implementations of the architecture, elements within
the dashed rectangle are relocatable to the client, the
server or to a mediating proxy.

Figure 1: An Abstract Annotation System
Architecture

Interceptors tap into a web client-server interaction a
trigger the annotation process. To manufacture
annotated content, they invoke composers that
understand the process of rendering the document
content and annotations into a composite that is
personalized to the end user. Composers communica
with one or more AReS’es to retrieve annotation sets
appropriate to the document, user and context. A
reason for communicating with multiple AReS’es is
that a user may belong to multiple groups, and the
composed document may therefore require the merg
of private, group and public annotations. AReS'es
provide the repository function for the annotation
system.

To be able to efficiently compose annotation sets with
document content, composers operate on a documen
abstraction known as the document object model (or
DOM). The DOM provides a high-level API for
composers to directly access locations in the docume
where annotations are to be inserted, and facilitates
efficient composition. While it is not depicted as a
separate module in the abstract architecture, the
efficiency and level of abstraction of DOM support is
critical component of concrete annotation system
0-7695-0001-3/99 $1
y

te

d

te

ng

t

nt

architectures. The DOM may be provided by an
application module, or inherently by the annotation
infrastructure. The interceptor-composer-AReS
architecture outlined above can be customized to
handle a wide variety of annotation-related document
management functions depending on the levels of
capabilities in the interceptor, the composition
framework and the AReS. The kinds of functionality
supported by these components and its effect on the
overall annotation capability are described below.

2.1. Interceptors

Interceptors can modify the semantics of document
retrieval by either trapping and modifying the outgoing
request, the returned content, or by triggering other
actions as side-effects of the act of document retrieva
Accordingly we classify them as request, page or event
interceptors. Request interceptors intercept an outgoing
document URL request, and redirect the request to a
URL that returns the document augmented with
annotations. Page interceptors trap the contents of the
web document being retrieved and pass it along to the
annotation system to be augmented. Event interceptors
detect some event related to document retrieval by
subscribing to an event channel. The document event
triggers the annotation mechanism. An example of
event interception that is addressed subsequently in
greater detail is one of detecting that a document is
being loaded into the web browser, and using this
information to present the appropriate annotations.

2.2. Annotation Repository Services
(AReS)

The basic AReS functionality is the ability to create
annotation objects with attributes specifying the autho
timestamp, URL of the annotated document and
anchor information about the placement of annotation
sets within the document URL. Additionally, a basic
capability of AReS'es is an API to create/edit
annotations, and to filter and retrieve annotation sets
based on the above fields. Annotation set based
filtering is a broadly useful capability and can be used
in a number of ways. Author or group based filtering is
used to personalize the annotated document to the en
user. Timestamp-based filtering is useful to
incrementally retrieve new annotations for an
annotated document. Annotation sets may be a unit o
access control, in that they determine who can create
retrieve annotations corresponding to a particular
document group [Rosc96]. In a public and physically
distributed AReS, annotation sets may be a unit of
storage and distribution, with the set being stored on a
server that is close to the author or group that created
it.
0.00 (c) 1999 IEEE 2

e
t

a

e

e

n

t

r

l

o

a

 a

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
It is common for AReS'es to export their API via
HTTP or other Internet protocols. Such AReS wrappe
are referred to as annotation set servers, and the
protocol for querying them as the annotation protocol.
The Hypernews annotation set server [Brav] for
example, supports an annotation protocol that provid
the basic AReS capability but without anchor suppor
Annotation servers facilitate indirect annotations in
that the an annotation (or annotation set) can be
included as a hyperquery (i.e. a hyperlink that is a
really a query to the annotation server) rather than
necessarily being embedded by value. This is useful
richly annotated documents or for thin clients, where
delivering all the annotations by value to the client
might overwhelm the system or the user. In the more
semantic annotation applications, annotations need t
be delivered in a structured, parseable form as the
consumer of annotations is more likely a program, th
a human. HTML, while adequate for visually renderin
annotation sets, is cumbersome to parse and limited
its expressiveness. It is useful for annotation servers
deliver annotation sets in metadata formats such as
SOIF [Hard96] (and now XML), which are easily
parseable as they are self-describing (i.e. they describe
both the structure and the content of the annotation
set).

A category of document management applications
require annotations to be first-class objects that can
themselves be recursively annotated. In dialogue
management and document review applications
[Sumn96], annotations represent assertions or
comments by an author, and recursive annotations
represents responses or clarifications of the original
annotations. In design rational applications, annotatio
are used to explain or justify a decision, and recursiv
annotations may provide references to authoritative
texts that justify the explanation. Support for these
applications requires AReS’es that are annotation
graph servers. Annotation graph servers support links
between annotations, and a query API for graph-bas
queries of the annotation repository.

An orthogonal dimension to annotation set servers a
annotation graph servers is that of extensibility.
Extensible annotation servers export a schema API tha
allows new classes of annotation objects and link typ
to be dynamically added to the server. This is useful
where the same AReS is supporting a variety of
annotation applications with differing annotation
semantics.

2.3. Composers
Composers determine what it means to merge the
document with one or more annotation sets. We
categorize the composers (and composition) as eithe
stylistic, versioned or semantic depending on the
complexity of the composition algorithm. In stylistic
0-7695-0001-3/99 $
rs

s
.

for

o

n
g
in
to

ns

d

d

es

composition, annotations are data objects with
presentation semantics only, and composition is the
process of combining document data with annotation
data in a particular presentation style. Decisions for
stylistic composers include locating and anchoring the
annotation sets, and choosing a customized
presentation scheme for the annotation sets to visually
distinguish them from document content (unless visua
distinctions are undesirable). Stylistic composers may
support explicit (e.g. at a named HTML element) or
implicit (e.g. before or after a phrase) anchoring. In the
case of both anchoring schemes, composers may vary
in how they deal with anchor degradation, which is the
partial or total deletion of annotation anchors in
documents that are editable. Composers that support
annotation graphs may either use a flattened HTML
rendering of an annotation graph, or use specialized
graph display applets as embedded viewers to permit
navigation and edits to an annotation graph.

Versioned composition includes stylistic composition,
but takes the versioning semantics of both the
document and the annotation sets into account.
Composers that support versioned composition can
reason about how annotations interact with document
versioning. For instance, annotations may apply only t
a certain version of the document, or may tunnel
through to subsequent versions. To do lists that might
be used by collaborating authors of an online
document, are annotations that migrate to future
versions of the document until they are flagged as
done. Composers that deal with versioning semantics
allow the specification of version related annotation
policies.

Semantic composition applies to structured
annotations, which may or may not be visibly
presented along with the document. Semantic
annotations may be operations to be applied to the
document that are authored as annotations, or
annotations that are associated with the document by
knowledge-based processing (as opposed to explicit
authoring). Composers of semantic annotations may
know how to interpret the microlanguages in which
annotations are specified, or be experts in intelligently
retrieving annotation sets that are relevant to the
document. Filter annotations that conditionally elide
parts of a document, and systems like SHOE [Luke96]
that overlay the ontology of a page's contents as
annotations on the page are examples of annotations
that have internal structure. PLUM [Elo96], a system
that annotates news articles with the related
information personalized to the reader, is an example
where the annotations are textual, but are the result of
knowledge-based search.
10.00 (c) 1999 IEEE 3

a

e

o

o

o

s

,

d

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
3. Implementations

3.1. InterNote - A Proxy-Based Annotation
System Implementation

InterNote transparently annotates web content using
request interception architecture. A proxy server
intercepts requests from browsers for web documents
The proxy server then redirects the request to the
appropriate composer, depending on the kind of
stylistic, versioned or semantic composition dictated b
the user model and document type. The composer
retrieves annotations from one or more AReS’es and
returns the composed content to the web browser.
Other than some initial configuration, the user of the
web browser is unaware of mediation by a proxy
server, and the fact that (s)he is receiving a
personalized and virtual document. The
implementation uses existing proxy server mechanism
[Luot] not for the typical firewall proxy function, but to
inject application logic into a web transaction. We call
the proxy server an application proxy server, to
distinguish its role from security and firewall proxy
servers.

The InterNote application proxy server is implemented
using Jigsaw, a Java web server distributed by the
World-Wide Web consortium. Since the server is
implemented in Java (and therefore object-oriented),
more of the server’s internal architecture is exposed a
objects than is typical of web servers implemented in
other languages. This makes it easier to customize th
application proxy behavior. Requests in Jigsaw are
exposed as objects that can be modified by pre and p
methods. A request interceptor can therefore be built
using pre-methods that modify the request before the
server processes it. A page interceptor can similarly b
implemented as a post-method to the request object.
URLs in the server are not documents, but instances
(document handler) object types. The fact that all
URLs are programs, not data allows InterNote to defin
composers as URLs, and for the request interceptor t
simply use the standard HTTP protocol to
communicate with composers. New composer classe
can be defined in Jigsaw by the usual object-oriented
mechanisms to support various kinds of stylistic,
versioned and semantic composition. The next two
paragraphs describe some concrete details of the
InterNote implementation.

The InterNote implementation provides a composition
library with several useful stylistic composers, and
utility classes that support the development of other
kinds of composer classes. Support is provided for bo
explicit and implicit anchoring. Annotations can be
embedded at HTML anchors by value, as textual
hyperqueries, or hyperqueries whose results are
rendered by specialized viewers. In the third category
InterNote provides a treeviewer applet that display and
0-7695-0001-3/99 $1
.

y

s

s

st

e

f

e

th

allows the navigation of annotation graphs. The
treeviewer allows the user to view and navigate
dialogues that are structured as annotation trees.

InterNote uses the plug-in capability provided by web
browsers to handle multimedia annotations. This
allows audio or image objects to be attached to anchor
points as annotations. Multimedia annotation data is
authored using standard multimedia tools and
published to a web URL. A multimedia annotation
object in the AReS is authored as a hyperlink to the
multimedia content URL, with associated author,
timestamp and anchor information.

The AReS implemented using Object Design’s PSE
persistent store provides the annotation set server
function and an API for the creation and querying of
annotation graphs. . API is exported as CGI scripts,
therefore allowing for indirect annotations to be
embedded in the document as hyperqueries. The AReS
adds a request serialization layer that allows for multi-
user access of the AReS. The AReS provides support
for link objects, and built-in capabilities for several link
types. At this point, schema creation API has not been
exported in the annotation server, and adding new link
types requires programming the persistent store to
extend its schema. The AReS supports the SOIF
metadata format, in that annotation sets can be returne
as machine parseable SOIF. This API is used by the
annotation tree viewer to retrieve all or part of an
annotation tree, but is also useful for other programs
such as search engines to query the annotation
repository for search metadata.

Figure 2: Annotation sets displayed with embedded
viewers

Figure 2 presents an example of stylistic composition
using embedded viewers. A treeviewer applet is
embedded at each HTML anchor point with associated
annotations. The document shown in Figure 2
0.00 (c) 1999 IEEE 4

s

re
s

e

 i

e

.

s
b

d

er
so

te,

.

 to

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
discusses military strategy in an African war, and the
treeviewer applet within the browser window present
annotations that elaborate on a schematic that details
the armed forces strategy. Two separate dialogues a
associated within this schematic, each represented a
hyperlink (labeled “Annotation Tree0” and
“Annotation Tree1”). Clicking on these hyperlinks
causes an embedded JavaScript program to query th
remote annotation server, retrieve the selected
annotation dialogue graph as a parseable SOIF data
structure, and to transfer this set to the treeviewer for
rendering. Clicking on a treeviewer node presents the
text of the annotation and other associated metadata
the panel within the applet. Changing the user model
for a particular user can change the presentation styl
of the annotated document.

3.2. JotBot - Client-centric annotations
The JotBot prototype moves the intermediary function
within the client browser, so that annotations can be
accessed by common web browsers without needing
configure and run an intermediary proxy on the client
The composer is a Java Applet that retrieves and
presents annotations. Within browsers, the page and
request interceptor functions are not universally
available. Event interception was implemented by
making calls to the native-code browser interface
(DDE on Windows). This requires the user to
download native code and makes the applet require
privilege to run.

An alternate design for client event interception is to
place the browsing window and the composer window
in sibling frames. The composer can then poll via
JavaScript to read the location (URL) property of its
sibling frame. Security policy allows this only if both
frames have contents originating from the same file
server or domain name. However, a server
intermediary can prefix all URL references in each
page with the local domain name before sending the
page to the client, and remove the localized prefix
before fetching a referenced page. The event
interceptor also removes the false local prefix to read
the actual location. This design has the disadvantage
of using frames, though, in that visited pages cannot
bookmarked and the forward/back functions do not
work.
f

0-7695-0001-3/99 $1
 a

n

to

e

Figure 3: A JotBot Annotation Screen

With either of the above configurations, the browser
reports only events at a page or loadable object
granularity, so that annotations can only be associate
with a page and not placed within it. This limits the
ability to be specific with commentary, especially on
long pages. The composer applet occupies a second
browser instance and displays annotations for each
page in a frame that floats beside the browsing
window.

Each annotation names a Java class that the compos
loads and uses to present the annotation for viewing,
new presentation styles and behaviors are easy to
incorporate. By using the Java library, presentation
classes can display multimedia types. Examples of
presentation styles implemented to date are: audio no
image, text note, link, and survey. Annotations are
deleted from the repository after their expiration dates
Text annotations have a rating feature whereby users
can extend the life of useful information by pressing a
"Vote to Keep" button. This differs from Collaborative
Filtering ratings (e.g. as in GroupLens) in that the
ratings are not used to make predictions or
recommendations. Survey annotations allow the user
pose a question answerable by "agree/disagree" and
automatically track the responses of other users. This
feature allows an opinion poll to be affixed to a
relevant page, for quick consensus formation. An
asynchronous messaging facility allows users to
discover and send email to the list of authors who
created annotations on a given page, via SMTP.

Figure 3 shows three kinds of annotations associated
with the USA Today document on the right hand side o
the figure. The windows on the left of the figure are
annotation windows, and illustrate text, survey, and
link annotations (reading from top to bottom).
0.00 (c) 1999 IEEE 5

g
f
d

e

e

a
d

e

e

e

le

g
.

w

e
tt

a

h

r
se
ery

 to

lso

t

f
to

,

lly

hat

o

ither

an
 It

ors
on

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
4. Discussion

4.1. Current Web Infrastructures: Missing
Elements, potential fixes

One area where the web infrastructure is still maturin
is in its uniform support for transparent interception o
client-server transactions. Support for interception an
customization of a web interaction is far more readily
available in web proxies than in web servers (that are
not proxies) or web clients. The limitations of client-
side interception are particularly unfortunate, becaus
client-side solutions are more readily accepted by the
user community, and tend to have different scalability
properties than server or proxy based solutions. Whil
it is possible to build event interceptors on the client-
side, the open APIs of current web browsers do not
support either page interception or request interceptio
Page interception appears to be within closer reach,
elements of a page interception architecture are alrea
present in web client architectures. In current web
browsers, the contents of an HTML page that is in the
process of being loaded are reflected as objects in th
scripting language (e.g. JavaScript or VBScript)
supported by the browser. Code written in such a
scripting language can directly access and manipulat
the document as an HTML tag hierarchy. Potentially,
one could then write page interceptors in a scripting
language, that would then invoke composers (also
written in the scripting language) that would exploit th
DOM view of the document to compose annotations
into the page being loaded. However, restrictions in
current browser architectures make the DOM availab
only to scripts written in the scripting language that are
embedded in the page being loaded. This support for
client-side DOM, also known as level 0 DOM support
[DOM98], does not help in building an annotation
system, as annotation systems require agents outside
the document to manipulate the DOM. Ongoing work
at W3C's DOM working group [DOM98] aims to
extend the DOM, and make it accessible to programs
external to the browser. This would facilitate a full-
function, client-side annotation systems based on pa
interceptors in which composers external to the page

Proxy-based interception is fairly easy and flexible
when compared to client-side interception. Proxies,
especially those built on top of Java web servers allo
programmable access both to the outgoing request
object and the incoming document content. The form
is used to implement request interception, and the la
can be used to implement page interception. One
limitation of proxy-based interceptors, which is really
limitation of the HTTP protocol is that the proxy
cannot distinguish between request for a document, a
requests for sub-objects (e.g. embedded images) of t
document. Unless care is taken in the interceptor
implementation, the retrieval of an article with nine
0-7695-0001-3/99 $1
n.
s
y

e

r
er

nd
e

embedded images can look to the request intercepto
like ten document requests. This is inefficient, becau
the interceptor and the associated annotation machin
will be triggered far more often than is needed.
Another efficiency issue in proxy servers is that they
do not provide any built-in DOM support. The
composer or other application modules are expected
build a DOM abstraction of the retrieved document to
facilitate efficient composition. As more document
augmentation functions are supported by web proxy
servers, it would make sense that the proxy server a
provide built-in support for a DOM abstraction,
preferably the same abstraction as is provided via
scripting languages on the web clients.

Limitations of web browsers and of HTML as a layou
language make digital annotations somewhat more
limited than paper annotations. HTML as a layout
language is somewhat poorer than its proprietary
counterparts (e.g. RTF and MIF). For instance, no
HTML syntax for sidebars or change bars has been
standardized, although some draft proposals on the
subject have been issued. Similarly, there is no easy
way in HTML to render annotations on the sidelines o
a web page, an annotation style that is quite natural
annotators of paper books. While some of these
problems are likely to be addressed in the near future
work in [Mars97] points out the significant gap that
needs to be narrowed between digital and "human"
HCI’s before web content can be annotated as natura
as digital content.

4.2. Related Work
This section summarizes past and ongoing projects t
attempt to support the annotation of web documents.
No attempt is made to be exhaustive, as the goal is t
compare and contrast these with our efforts. The
approaches that these projects take to building a web
annotation system can be categorized into customized
content, customized protocol, customized infrastructure
and the COTS and open standards. Systems in the first
three categories require changes that are apparent e
to the information producer or the information
consumer (or both). The fourth category, which is the
philosophy we adopt, aims to support annotation
systems natively and unobtrusively.

CoNotes, a group annotation system from Cornell is
example of a customized content annotation system.
expects the document authors to anticipate places
where readers might wish to add commentary or
questions by inserting "annotation points" into the
original document. These anchors are used by the
CoNotes to compose annotations as inline links to
discussion threads. Dependence on specialized anch
means that CoNotes (and other customized annotati
systems) can only annotate documents under its
server's control. This is reasonable in small group
0.00 (c) 1999 IEEE 6

d
e
r
n
i
s

t
le

e
h
in

a
s

d

r

r
h
o

d

in

d

l

d

to

a
s

e
xt

s
r

ts

r

s

ns

g

d
rs

n

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
annotation scenarios such as the computer-aided
instruction scenario that CoNotes has been used in
[Davis95]. However, this approach does not scale to
annotating arbitrary web content.

In customized protocol systems like HyperNews
[LaLib] and CritLink[Yee98], the request for annotate
content is syntactically different from a request for th
unannotated document. HyperNews system is prima
a discussion group tool, but has supported annotatio
conjunction with the use of modified browsers (Mosa
and HotJava) in the past. The HyperNews user type
accesses CGI scripts to create annotations and to
retrieve annotated documents. CritLink, developed a
the Foresight institute, uses a specialized server cal
the mediator. Users first visit the CritLink home page
(served by the Mediator) and enter the URL of a pag
they wish to visit and read or write annotations for. T
Mediator retrieves that page, prefixes all references
it with its Internet domain, finds any relevant
annotations, and returns the page to the user. Thus
further navigation from links within the returned page
are forced to be processed by the Mediator. This
approach works with all browsers, but requires users
navigate from within the CritLink-processed page
instead of by using the browser's bookmarks or URL
entry field. Support for Java applets which expect to
access resources on their home server is unspecifie
CritLink composes annotations by placing links to
singular text comments (stored on the CritLink serve
at the end of each page.

Both NCSA's Mosaic project [NCSA] and ComMento
[Rosc96] modify web browsers to augment them wit
annotation capabilities, and are therefore examples
customized infrastructure approach to building
annotation systems. ComMentor supports embedde
annotations, and added browser menu functions for
creating annotations and a popup viewer for examin
annotation text. A merge library was developed for
finding annotation anchors, placement, and handling
anchor degradation. Both basic AReS capability and
some annotation graph server capability are include
The NCSA Mosaic browser supports private
annotations and group shared annotations in severa
releases. The annotations in NCSA Mosiac are
composed as links placed at the end of the page.
Modified browsers allow complete control over
annotation function, but are unlikely to be widely use
unless the modifications are included in widely
distributed releases of popular browsers.

Strand/GrAnT [Schi96] and Net Notions [Netn98]
provide two examples of systems that introduce web
annotation function without modifying web content,
browsers or servers. They are similar in philosophy
systems that we have built. Strand uses a client
intermediary for page interception. The Strand (Stre
Transducer Daemon) intermediary was conceived a
0-7695-0001-3/99 $1
ily
 in

c

d

e

ll

to

.

)

f a

g

.

m
a

general-purpose service, extendible by adding
application-specific modules such as GrAnT (Group
Annotation Transducer). By using an intermediary,
GrAnT was able to support all browsers. GrAnT
inserted annotation function buttons at the end of a
page and processed inputs from them directly instead
of forwarding directives. GrAnT used some of the
ComMentor components - a merge library for placing
annotations in HTML pages, and its metaserver. The
authors noted some problems with changing page
layout when inserting annotation indicators and
functions, and envisioned that much of the GrAnT
functionality might be moved into a Java applet, an
approach that JotBot explores. Net Notions is a
commercial product from Sideware Systems, Inc. that
allows users to affix text annotations "over" arbitrary
web pages. Net Notions runs a client process that
apparently performs event interception, interfacing to
the browser to record current URL and position
information when annotations are created. The client
presents annotations as text squares positioned at th
coordinates where the annotation was created; the te
squares iconify to push-pin symbols. Annotations are
stored on a workgroup server and can be grouped
hierarchically by topic. Keyword search for annotation
is provided, as well as an online messaging facility fo
communication, but only to those users who are
currently connected to the server. Net Notions suppor
the most popular browsers, which implement support
for event interception on the PC platform.

4.3. Future Work
The architecture outlined in the beginning of this pape
implicitly assumes that interceptors, composers and
AReS'es know about each other. While a single group
might have a well known AReS, it is likely that groups
around the internet would independently create
thousands of such repositories that differ in the
annotations they contain and the access capabilities
they provide. A desirable way to scale an annotation
system, is to dynamically discover and bind to AReS'e
that contain annotations pertinent to the document
being retrieved so that groups can leverage annotatio
created by other groups without having to access a
common giant public annotation repository. Supportin
such dynamic federation of AReS'es requires a
resource discovery infrastructure that lets services fin
other suitable services on the Internet. Work on trade
in the distributed object and AI communities
[Venu98a] provides the beginnings of a resource
discovery framework, but has not yet been applied to
internet services. One line of work we are currently
pursuing is to build Internet traders [Venu98b] that ca
support service discovery on the internet, which can
then be used for AReS discovery. If composers are
downloadable components such as applets, then the
same ideas can also be used for the discovery and
0.00 (c) 1999 IEEE 7

e

f

o

m

e

8

t

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
downloading of remote composers and viewers that
support a particular composition algorithm.

The move from HTML to XML is likely to
significantly affect the annotatability of documents,
and the annotation capabilities one can unobtrusively
introduce into the web. Our near term focus on this
front is to use XML as a repository format for AReS'e
An XML repository provides a lighter weight
alternative to either persistent stores or full-function
databases. Annotate! [Gins98] for instance, stores th
annotation set for each document as an XML file. A
number of other XML concepts such as semantic
tagging and the ability to assert hyperlinks between
documents outside either document, are likely to
significantly change the architecture of browsers, and
therefore the architecture of annotation systems. As
WEBDAV [WEBDAV98] and other standards efforts
settle on approaches to modeling and storing docum
metadata (including annotations), it will become
possible for annotation systems to exploit these as
standard AReS mechanisms.

5. Conclusions
The ability to annotate web documents provides a
mechanism that can be the basis of a number of use
document management applications. We have
presented an architecture to non-intrusively annotate
web content, and two concrete implementations of th
architecture. Our experience shows that useful
annotation capabilities can be non-intrusively
introduced into today's Intranets and Internets withou
resorting to specialized infrastructure. However,
current web infrastructure restricts the flexibility and
the implementation mechanisms by which annotation
systems can be built. Future work will build useful
vertical applications on top the core annotation
function, address scalability issues associated with
large scale annotation systems, and evolve the
capabilities of the systems we have built to exploit
evolving web infrastructure.

6. References
[Barr98] Barrett,R., and Maglio, P., "Intermediaries: New
Places for Producing and Manipulating Web Content", in
Proceedings of the Seventh International World Wide Web
Conference, 1998, http://www7.conf.au

[Brav] Braverman. et al., "Annotations Protocol",
http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/Annotati
ns/protocol.html

[Davi] Davis,J. and Huttenlocher,D., "CoNote - Shared
Annotations for Cooperative Learning", http://www-
cscl95.indiana.edu/cscl95/davis.html

[DOM98] "W3C Document Object Model Specification",
http://www.w3.org/TR/WD-DOM
0-7695-0001-3/99 $
s.

e

nt

ul

is

t

[Elo95] Elo,S., "Augmenting Text: Good News on
Disasters", DAGS95: Electronic Publishing and the
Information Superhighway, 1995. URL:
http://www.cs.dartmouth.edu/~samr/DAGS95/Papers/elo.ht
l#haa95

[Gins98] Ginsburg, M., "Annotate! A Tool for Collaborative
Information Retrieval", in Proceedings of WETICE'98, also
at http://raven.stern.nyu.edu/papers/.

[Hard96] Hardy,D., "W3C Distributed Indexing Workshop:
RDM/SOIF", Position paper in the Distributed
Indexing/Searching Workshop, 1996.

[LaLib] LaLiberte,D. and Braverman,A., "A Protocol for
Scalable Group and Public Annotations",
http://www.hypernews.org/~liberte/www/scalable-
annotations.html

[Luke96] Luke,S. et al., "Ontology-Based Knowledge
Discovery on the World-Wide Web", Proceedings of the
AAAI-96 workshop on Internet-Based Information Systems

[Luot] Luotonen A. and Altiz,K., “World-Wide Web
Proxies”, http://www.w3.org/hypertext/WWW/Proxies/

[Mars97] Marshall,P., "Annotations: From Paper Books to
the Digital Library", in Proceedings of the ACM Digital
Libraries '97 Conference, Philadelphia, PA (July 23-26,
1997)

[NCSA] “NCSA Mosaic Group Annotations”,
http://ncsa.uiuc.edu/SDG/Software/Xmosaic/Annotations/ov
rview.html

[Netn98] "NetNotions Product Details",
http://www.sideware.com

[Resn96] Resnick,P and Miller,J., "PICS: Internet Access
Controls Without Censorship", Communications of the ACM,
1996, vol. 39(10), pp. 87-93

[Rosc96] Roscheisen,M. et al., "Content Ratings and Other
Third-Party Value-Added Information Defining an Enabling
Platform", D-Lib Magazine, August 1995, also at
http://www.cnri.reston.va.us/home/dlib/august95/stanford/0
roscheisen.html

[Schi96] Schickler,M. et al., "Pan-Browser Support for
Annotations and Other Meta-Information on the World Wide
Web", in Proceedings of the Fifth International World Wide
Web Conference, 1996

[Sumn96] Sumner, T. et al., "Open Peer Review &
Argumentation: Loosening the Paper Chains on Journals",
Ariadne, Issue 5, Sept., 1996. URL:
http://www.ukoln.ac.uk/ariadne/issue5/jime/ or
http://kmi.open.ac.uk/~simonb/csca/jime-arg

[Thom98] Thompson,C. et al., "Intermediary Architecture:
Interposing middleware services and ilities between web
client and server", OMG-DARPA Workshop on
Compositional Archiectures, 1998, URL:
http://www.objs.com/workshops/ws9801/papers/paper103.h
ml

[Venu98a] Vasudevan,V., "A Reference Model for Trader-
Based Distributed Systems Architectures", OBJS Technical
Report, URL: http://www.objs.com/staging/trader-rm.html
10.00 (c) 1999 IEEE 8

t

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
[Venu98b] Vasudevan,V., "Trading-Based Composition for
Component-Based Systems", OMG-DARPA Workshop on
Compositional Architectures, 1998, URL:
http://www.objs.com/workshops/ws9801/papers/paper041.h
ml

[WEBDAV98] "Extensions for Distributed Authoring and
Versioning on the World Wide Web -- WEBDAV",
WEBDAV Working Group IETF Draft Proposal,
http://www.ics.uci.edu/~ejw/authoring/protocol/draft-ietf-
webdav-protocol-03.html

[Yee98] Yee,K.P., "The CritLink Mediator",
http://www.crit.org/critlink.html
0-7695-0001-3/99 $10.00 (c) 1999 IEEE 9

