
ON WEIERSTRASS POINTS AND OPTIMAL CURVES

RAINER FUHRMANN AND FERNANDO TORRES

Abstract. We show some properties of maximal curves and give a characterization

of the Suzuki curve by means of its genus and the number of its rational points only.

1. Introduction

Let X be a (non-singular, projective, geometrically irreducible, algebraic) curve of

genus g defined over the finite field Fℓ of order ℓ. The curve is called (ℓ, g)-optimal if

#X(Fℓ) = Nℓ(g) := max{#Y (Fℓ) : Y a curve of genus g defined over Fℓ} .

These curves are very important in several areas of mathematics such as Coding Theory

after Goppa’s work [10]. The Hasse-Weil bound gives Nℓ(g) ≤ ℓ+1+2g
√

ℓ. If #X(Fℓ) =

ℓ + 1 + 2g
√

ℓ, the curve is called maximal. Arithmetical and geometrical properties of

maximal curves have been pointed out in [7] and [8] by using the geometrical approach

of Stöhr-Voloch theory [26] to the Hasse-Weil bound. In Section 4 we compute the

Frobenius order sequence of a natural linear series associated to these curves as well as

some properties concerning Weierstrass semigroups. Ihara [17] showed that the genus

g of a maximal curve satisfies g ≤ g1 :=
√

ℓ(
√

ℓ − 1)/2 and Rück and Stichtenoth [23]

proved that the Hermitian curve: x
√

ℓ+1 + y
√

ℓ+1 + 1 = 0 is the unique maximal curve

of genus g1. In [20, Sect. 6] one can find another proof of this result.

Let ℓ0 = 2s > 2 be a power of two and set ℓ := 2ℓ2
0. In Section 5 we give a charac-

terization of the Deligne-Lusztig variaty associated to a connected reductive algebraic

group of type 2B2 over Fℓ; such a variaty is a curve of genus g̃ = ℓ0(ℓ − 1), number of

Fℓ-rational points equals Ñ = ℓ2+1 whose Fℓ-automorphism group is the Suzuki group,

cf. [4], [11], [12], [21]. This curve is the so-called Suzuki curve and it is (ℓ, g̃)-optimal,

loc. cit.. The main result of this section is to show that the Suzuki curve is the unique

curve defined over Fℓ with the parameters g̃ and Ñ above, see Theorem 5.1.

In Section 2 we recall some basic results from [26]. In Section 3 we notice an interplay

between Zeta functions and linear series on curves over finite fields.
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2. On the Stöhr-Voloch theory

In this section we recall some results of Stöhr-Voloch paper [26] concerning Weierstrass

points and Frobenius orders.

Let D ⊆ |E| be a base-point-free linear series of dimension N and degree d on a curve

X of genus g. For P ∈ X and i ≥ 0 an integer, we define sub-sets of D which will

provide with geometric information on X. Let Di(P ) := {D ∈ D : vP (D) ≥ i} (here

D =
∑

P vP (D)P ). We have Di(P ) = ∅ for i > d,

D ⊇ D0(P ) ⊇ D1(P ) ⊇ · · · ⊇ Dd−1(P ) ⊇ Dd(P ) ,

and each Di(P ) is a sub-linear series of D such that the codimension of Di+1(P ) in

Di(P ) is at most one. If Di(P ) % Di+1(P ), then the integer i is called a (D, P )-order;

thus by Linear Algebra we have a sequence of (N + 1) orders at P :

0 = j0(P ) < j1(P ) < · · · < jN (P ) ≤ d .

Notice that D = D0(P ) since D is base-point-free by hypothesis. It is a fundamental

result the fact that the sequence above is the same for all but finitely many points P

of X, see [26, Thm. 1.5]. This constant sequence is called the order sequence of D and

will be denoted by

0 = ǫ0 < ǫ1 < · · · < ǫN .

The finitely many points P , where exceptional (D, P )-orders occur, are called the D-

Weierstrass points of X. There exists a divisor R on X, the ramification divisor of D,

whose support is exactly the set of D-Weierstrass points:

R = div (det (Dǫi

t fj)) + (
N

∑

i=0

ǫi)div(dt) + (N + 1)E ,

where π = (f0 : f1 : · · · : fN ) is the morphism defined by D (up to equivalence),

t a separating element of F̄ℓ(X)|F̄ℓ and the operators Dǫi

t ’s are the Hasse derivaties

(properties of these operators can be found in Hefez’s paper [15]). Moreover, the

number of D-Weierstrass points of X (counted with multiplicity) is the degree of R.

Now to deal with rational points over Fℓ we require that both X and D be defined

over Fℓ. Choose the coordenates fi’s above in such a way that vP (fi)+ vP (E) = ji(P ),

where vP denotes the valuation at P . Set Li(P ) = 〈fi, · · · , fN〉. Thus

Di(P ) = {div(f) + E : f ∈ Li(P )} .

For i = 0, · · · , N − 1 set

Si(P ) := Dji+1
(P ) ∩ · · · ∩ DjN

(P ) and

Ti(P ) := ∩D∈Si
Supp(D) .

This is a subspaces of the dual of PN(F̄ℓ) whose projective dimension is i. Notice that

{P} = T0(P )  T1(P )  · · ·  TN−1(P ) .
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The spaces TN−1(P ) and T1(P ) are usually called the D-osculating hyperplane and the

D-tangent line at P respectively.

Let Φ : X → X be the Frobenius morphism on X. Suppose that for a generic P ,

Φ(P ) ∈ TN−1(P ). Then there exists an integer 1 ≤ I ≤ N − 1 such that φ(P ) ∈
TI(P ) \ TI−1(P ). Define νj := ǫj for 0 ≤ j ≤ I − 1 and νj = ǫj+1 for j = I, · · · , N − 1.

The sequence 0 = ν0 < ν1 < · · · < νN−1 is called the Frobenius order sequence of D
(with respect to Fℓ; cf. [26, Sect. 2]). The key property related with rational points

in [26] is the existence of a divisor S, the Frobenius divisor of X (over Fℓ) satisfying

Lemma 2.1(3)(4)(5)(6) below. This divisor is defined as follows. Let L̃ denote the

determinant of the matrix whose rows are:

(f ℓ
0 , f

ℓ
1, · · · , f ℓ

N) , (Dνi

t f0, D
νi

t f1, · · · , Dνi

t fN) , i = 0, 1, · · · , N − 1 .

Then

S := div(L̃) + (

N−1
∑

i=0

νi)div(dt) + (ℓ + N)E .

We notice that X(Fℓ) ⊆ Supp(S) and vP (S) ≥ N for P ∈ X(Fℓ) (Lemma below).

Thus

#X(Fℓ) ≤ deg(S)/N .

We subsume some properties of the ramification divisor and Frobenius divisor of D.

Lemma 2.1. Let P ∈ X and ℓ be a power of a prime p.

(1) For each i, ji(P ) ≥ ǫi;

(2) vP (R) ≥ ∑N
i=0(ji(P ) − ǫi); equality holds if and only if det

(

(

ji(P )
ǫj

)

)

6≡ 0

(mod p);

(3) If P ∈ X(Fℓ), then for each i, νi ≤ ji+1(P ) − j1(P );

(4) If P ∈ X(Fℓ), then vP (S) ≥ ∑N−1
i=0 (ji+1(P ) − νi); equality holds if and only if

det
(

(

ji+1(P )
νj

)

)

6≡ 0 (mod p);

(5) If P ∈ X(Fℓ), then vP (S) ≥ Nj1(P );

(6) If P 6∈ X(Fℓ), then vP (S) ≥ ∑N−1
i=0 (ji(P ) − νi).

3. Z-functions and Linear Series

Let X be a curve of genus g defined over Fℓ with #X(Fℓ) > 0. Let h(t) := t2gL(t−1),

where L(t) is the enumerator of the Zeta function of X. Then h(t) is monic, of degee 2g

whose independent term is non-zero, see e.g. [25]; moreover, h(t) is the characteristic

polynomial of the Frobenius morphism ΦJ on the Jacobian J of X (by considering

ΦJ as an endomorphism on a Tate module). Let h(t) =
∏

i h
ri

i (t) be the factorization
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of h(t) in Z[t]. Since ΦJ is semisimple and the representation of endomorphisms of J
on the Tate module is faithfully, see [27, Thm. 2], [19, VI§3], it follows that

(3.1)
∏

i

hi(ΦJ ) = 0 .

Let Φ denote the Frobenious morphism on X. Let π : X → J be the natural morphism

P 7→ [P − P0], where P0 ∈ X(Fℓ). We have π ◦Φ = ΦJ ◦ π and thus (3.1) implies the

following linear equivalence of divisors

(3.2)
∏

i

hi(Φ(P )) ∼ mP0 , where P ∈ X and m =
∏

i

hi(1) .

This suggests the study of the linear series

D := |mP0| .
Let us write

∏

i

hi(t) = tU + α1t
U−1 + α2t

U−2 + · · · + αU−1t + αU .

We assume:

(A) α1 ≥ 1

(B) αi+1 ≥ αi for i = 1, · · · , U − 1.

Remark 3.1. There are curves which do not satisfy conditions (A) and (B) above.

For example, if X is a minimal curve of genus g; i.e., #X(ℓ) = ℓ + 1 − 2
√

ℓg, then

h(t) = (t −
√

ℓ)2g. Further examples can be found in [2].

Next we compute some invariants of the linear series D above according to the results

in Section 2; we use the notation of that section. Let N be the dimention of D. For

P ∈ X(Fℓ) we have the following sequence of non-gaps at P :

0 = m0(P ) < m1(P ) < · · · < mN−1(P ) < mN (P ) = m .

Lemma 3.2. (1) If P ∈ X(Fℓ), then the (D, P )-orders are

0 = m − mN (P ) < m − mN−1(P ) < · · · < m − m1(P ) < m − m0(P ) ;

(2) If P 6∈ X(Fℓ), then j1(P ) = 1;

(3) The numbers 1, α1, · · · , αU are orders of D;

(4) If Φi(P ) 6= P for i = 1, 2, · · · , U + 1, then αU is a non-gap at P. In particular,

αU is a generic non-gap of X;

(5) If Φi(P ) 6= P for i = 1, 2, · · · , U and ΦU+1(P ) = P, then αU − 1 is also a

non-gap at P ;

(6) If g ≥ αU , then the curve is non-classical with respect to the canonical linear

series.
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Proof. The proof of (1), (2) or (3) is similar to [8, Thm. 1.4, Prop. 1.5]. To show the

other statements, let us apply Φ∗ in (3.2); thus

αUP ∼ ΦU+1(P ) + (α1 − 1)ΦU(P ) + (α2 − α1)Φ
U−1(P ) + · · · + (αU − αU−1)Φ(P ) .

Then (4) and (5) follow from hypothesis (A) and (B) above. Finally, a non-classical

curve of genus g is characterized for having a generic non-gap n ≤ g; hence (4) implies

(6). �

We finish this section with some properties involving the number of rational points.

Proposition 3.3. Suppose that char(Fℓ) does not divide m.

(1) If #X(Fℓ) ≥ 2g + 3, then there exists P ∈ X(Fℓ) such that (m − 1) and m are

non-gaps at P ;

(2) The linear series D is simple; i.e., the morphism π : X → π(X) ⊆ PN(F̄ℓ)

defined by D is birational.

Proof. (1) (Following [28]) Let P 6= P0 be a rational point. We have mP ∼ mP0 by

(3.2). Let x : X → P1(F̄ℓ) be a rational function with div(x) = mP − mP0. Let n be

the number of rational points wchich are unramified for x. Then by Riemann-Hurwitz

2g − 2 ≥ m(−2) + 2(m − 1) + (#X(Fℓ) − n − 2) so that n ≥ #X(Fℓ) − (2g + 2) ≥ 1.

Thus there exists Q ∈ X(Fℓ), Q 6= P, P0 such that div(x−a) = Q+D−mP0 with D ∈
Div(X), P0, Q 6∈ Supp(D). Let y be a rational function such that div(y) = mP0 −mQ.

Then div((x − a)y) = D − (m − 1)Q and the proof is complete.

(2) Let Q ∈ X(Fℓ) be the point in (1) and x, y ∈ Fℓ(X) such that div∞(x) = (m− 1)Q

and div∞(y) = mQ. Then Fℓ(X) = Fℓ(x, y) and we are done. �

Proposition 3.4. (1) ǫN = νN−1;

(2) Let P ∈ X(Fℓ) and suppose that #X(Fℓ) ≥ ℓ(m−αU)+2. Then jN−1(P ) < αU ;

in particular, ǫN = αU and P is a D-Wierstrass point;

(3) If #X(Fℓ) ≥ ℓαU + 1, then #X(Fℓ) = ℓαU + 1 and m1(P ) = αU for any

P ∈ X(Fℓ).

Proof. (1) Definition of D.

(2) We have that #X(Fℓ) ≤ ℓm1(P ) + 1 by Lewittes [18, Thm. 1(b)]. Then the result

follows from Lemma 3.2.

(3) Let P ∈ X(Fℓ). We have m1(P ) ≤ m1(Q) where Q is a generic point of X (apply

Section 2 to the canonical linear series on X). Therefore, m1(Q) ≤ αU by Lemma 3.2

and hence ℓαU + 1 ≤ #X(Fℓ) ≤ ℓm1(P ) + 1 ≤ ℓαU + 1. �
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4. Maximal Curves: Frobenius orders and Weierstrass semigroups

Notation as in Sections 2 and 3. Throughout X will denote a maximal curve of genus

g defined over Fq2. Let Φ : X → X denote the Frobenius morphism on X. The

characteristic polynomial of its Jacobian J is h(t) = (t + q)2g. Thus X is equipped

with the linear series D = |(q + 1)P0|, where P0 ∈ X(Fq2) and (q + 1)P0 ∼ qP + Φ(P )

for any P ∈ X. If N denotes the dimention of D, for P ∈ X we have the following

sequence of non-gaps at P :

0 = m0(P ) < m1(P ) < · · · < mN−1(P ) ≤ q < mN (P ) .

A. The Frobenius orders of a maximal curve. We are interested in computing

the Frobenius orders of the linear series D. Let us recall the following result from [8].

For the sake of completeness we give a proof. Let

0 = m̃0 < m̃1 < m̃2 < m̃3 < · · ·

be the sequence of generic non-gaps of X.

Proposition 4.1. If P 6∈ X(Fℓ), then the numbers 0, 1, q−mN−1(P ), · · · , q−m1(P ), q

are (D, P )-orders. In particular, the numbers 0, 1, q − m̃N−1, · · · , q − m̃1, q are orders

of D.

Proof. By Lemma 3.2, 1 is an (D, P )-order. Set mi = mi(P ). Let v and ui, i =

0, · · · , N − 1, be rational functions such that div(v) = qP + Φ(P ) − (q + 1)P0 and

div(ui) = Di − miP with P 6∈ Supp(Di). Thus div(vui) = Di + Φ(P ) + (q − mi)P −
(q + 1)P0 and the assertion follows. �

We recall that m̃N−1 = q and m̃N−2 = q − 2 for N ≥ 3 (see [8, Prop. 1.5(v)]). Thus if

N = 2, the orders of D are 0, 1, q. If N ≥ 3 we only get N − 1 orders, namely

(4.1) 0 = q − m̃N−1 < 1 = q − m̃N−2 < · · · < q − m̃1 < q − m̃0 .

Theorem 4.2. If N ≥ 3, then the Frobenius orders of D are precisely the orders of D
listed in (4.1).

Proof. (Notation as in the proof of Proposition 4.1) We have seen that div(vui) =

Di + Φ(P ) + (q − m̃i)P − (q + 1)P0. Let ǫI be the missing order of D in (4.1). We

put ǫI−1 = q − m̃J−1 < ǫI < ǫI+1 = q − m̃J . Thus Φ(P ) ∈ TI(P ). We claim that

Φ(P ) 6∈ TI−1, otherwise q − ǫI ∈ H(P ) which is a contradiction. �

B. Canonical Weierstrass semigroups on maximal curve. We know that

mN (P ) = q + 1 for any P ∈ X(Fq2). In particular, g ≥ q + 1 − N and

g = q + 1 − N ⇔ {q + 1, q + 2, · · · , } ⊆ H(P ) for any P ∈ X .
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Since q is a non-gap at a non-Weiersstrass point (Lemma 3.2) we also have

X classical ⇒ g = q + 1 − N .

The reciprocal assertion is not true (see e.g. [8, Prop. 1.8]); we remark that the term

“classical” is with respect to the canonical linear series of the curve. The following

results are contained in the proof of [6, Satz II.2.5].

Lemma 4.3. Let X be a maximal curve of genus g over Fq2 and P a non-Weierstrass

point of X. If q + 1 ∈ H(P ), then q + 1, · · · , 2q ∈ H(P ). In particular, as q ∈ H(P ),

{q + 1, q + 2, · · · } ⊆ H(P ) and g = q + 1 − N.

Proof. Let i ∈ {1, · · · , q} such that q + i 6∈ H(P ); then
(

q+i−1
q

)

6≡ 0 (mod char(Fq2)).

Hence, by the p-adic criterion [26, Cor. 1.9], q + 1 6∈ H(P ). �

Corollary 4.4. g = q + 1 − N if and only if q + 1 is a non-gap at a non-Weierstrass

point of X.

Corollary 4.5. If g > q + 1 − N, then each Fq2-rational point of X is a Weierstrass

point.

Remark 4.6. Corollary 4.5 is false if g = q + 1 − N ; see e.g. [8, Ex. 1.6].

5. The Suzuki curve

Througout this section we let ℓ0 = 2s > 2 be a power of two and set ℓ := 2ℓ2
0. As we

already mentioned in the introduction, the Suzuki curve is the Deligne-Lusztig curve

defined over Fℓ associated to a grupo of type 2B2. It is characterized by the following

data (see e.g. [12], [11]):

(I) genus: g̃ = ℓ0(ℓ − 1);

(II) number of Fℓ-rational points: Ñ = ℓ2 + 1;

(III) Fℓ-automorphism group equals the Suzuki group.

In this section we prove the following.

Theorem 5.1. The Suzuki curve is the unique curve that satisfies both properties (I)

and (II) above.

Let us fix a curve X of genus g̃ = ℓ0(ℓ − 1) over Fℓ having Ñ = ℓ2 + 1 number of

Fℓ-rational points. The starting point of the proof is the fact that the characteristic

polynomial of the Frobenius morphism of the Jacobian of X is given by [12]

h(t) = (t2 + 2ℓ0t + ℓ)g .
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Let Φ : X → X be the Frobenius morphism on X. From Section 3 we conclude that

X is equipped with the linear series D := |(1 + 2ℓ0 + ℓ)P0|, P0 ∈ X(Fℓ), where for any

P ∈ X

(5.1) Φ2(P ) + 2ℓ0Φ(P ) + ℓP ∼ (1 + 2ℓ0 + ℓ)P0 .

Let N denote the dimention of D. We already know that m = mN (P ) = 1+2ℓ0 + ℓ for

any P ∈ X(Fℓ). Lemma 3.2 and Propotition 3.4 imply the following properties of X:

(a) m1(P ) = ℓ and jN−1(P ) = 1 + 2ℓ0 for any P ∈ X(Fℓ);

(b) ǫ1 = 1 and ǫN = νN−1 = ℓ.

Lemma 5.2. N ≥ 3 and ǫN−1 = 2ℓ0.

Proof. By Lemma 3.2 the numbers 1, 2ℓ0 and ℓ are orders of D and thus N ≥ 3. Since

ǫN−1 ≤ jN−1(P ) = 1 + 2ℓ0 (Lemma 2.1) and ǫN = ℓ we have that

2ℓ0 ≤ ǫN−1 ≤ 1 + 2ℓ0 .

Suppose that ǫN−1 = 1 + 2ℓ0 (observe that 2ℓ0 is also an order of D). Let P ∈ X(Fℓ).

By Lemma 2.1

νN−2 ≤ jN−1(P ) − j1(P ) ≤ ǫN−2 = 2ℓ0 .

Thus the sequence of Frobenius order of D would be ǫ0, ǫ1, · · · , ǫN−2, ǫN . Now for any

P ∈ X(Fℓ) (Lemma 2.1)

vP (S) ≥
N−1
∑

i=0

(ji+1(P )−νi) =

N−2
∑

i=0

(ji+1(P )−νi)+(jN(P )−νN−1) ≥ (N−1)j1(P )+1+2ℓ0

so that

(5.2) deg(S) ≥ (N + 2ℓ0)Ñ .

From the following identities

• 2g̃ − 2 = (2ℓ0 − 2)(1 + 2ℓ0 + ℓ) = (2ℓ0 − 2)mN(P ) and

• Ñ = (1 − 2ℓ0 + ℓ)(1 + 2ℓ0 + ℓ) = (1 − 2ℓ0 + ℓ)mN(P ),

inequality (5.2) becomes

(2ℓ0 − 2)
N−1
∑

i=0

νi + (N + ℓ) ≥ (N + 2ℓ0)(1 − 2ℓ0 + ℓ) .

Since νN−1 = ℓ it follows that

N−2
∑

i=0

ǫi =

N−2
∑

i=0

νi ≥ (N − 1)ℓ0 .
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Next we use a property involving the orders of D (see [5]): ǫi + ǫj ≤ ǫi+j for i+ j ≤ N .

We apply this in the form ǫi + ǫj ≤ ǫN−2 with i + j = N − 2. Thus

2
N−2
∑

i=0

ǫi ≤ (N − 1)ǫN−2 = (N − 1)2ℓ0 .

From the last two inequalities we conclude that ǫi +ǫN−2−i = ǫN−2 for i = 0, 1, · · · , N−
2. In particular, ǫN−3 = 2ℓ0 − 1 and the p-adic criterion (cf. [26, Cor. 1.9]) would

imply ǫi = i for i = 0, 1, · · · , N − 3. These facts imply N = 2q0 + 2. Finally, we are

going to see that this is a contradiction according to Castelnuovo’s genus bound (see

e.g. [3], [1, p. 116], [22, Cor. 2.8]). Castelnuovo’s formula applied to D implies

2g̃ = 2ℓ0(ℓ − 1) ≤ (ℓ + 2ℓ0 − (N − 1)/2)2

N − 1
.

For N = 2ℓ0 +2 this gives 2ℓ0(ℓ−1) < (ℓ+ ℓ0)
2/2ℓ0 = ℓ0ℓ+ ℓ/2+ ℓ0/2, a contradiction.

�

Remark 5.3. Here we write a more simple proof of the previous lemma. We have

2ℓ0 ≤ ǫN−1 ≤ jN−1(P ) = 1 + 2ℓ0. Suppose ℓN−1 = 1 + 2ℓ0 and thus ℓN−2 = 2ℓ0.

For any P ∈ X(Fℓ) ℓN−2 ≤ jN−2(P ) < jN−1(P ) = 1 + 2ℓ0. Thus for any P ∈ X(Fℓ)

jN−2(P ) = 2ℓ0 and 1+ ℓ ∈ H(P ). If we take P̃ ∈ X(Fℓ) such that 1+2ℓ0 + ℓ, 2ℓ0 + ℓ ∈
H(P̃ ) (Proposition 3.3) we find that H(P̃ ) contains the semigroup

H := 〈ℓ, ℓ + 1, 2ℓ0 + ℓ, 1 + 2ℓ0 + ℓ〉

and hence g̃ ≤ g(H) := (N0 \ H). However one shows that g̃ > g(H), cf. Remark 5.6

below.

Lemma 5.4. There exists P ∈ X(Fℓ) such that the following properties hold true:

(1) j1(P ) = 1;

(2) ji(P ) = νi−1 + 1 for i = 2, · · · , N − 1.

Proof. Let P ∈ X(Fℓ). In the proof of Lemma 5.2 we obtained the following inequality

vP (S) ≥
N−2
∑

i=0

(ji+1(P ) − νi) + 1 + 2ℓ0 ≥ (N − 1)j1(P ) + 1 + 2ℓ0 ≥ N + 2ℓ0 .

Thus it is enough to show that vP (S) = N + 2ℓ0 for some point P ∈ X(Fℓ). Suppose

on the contrary that vP (S) ≥ N + 2q0 + 1 for any P ∈ X(Fℓ). Then arguing as in the

proof of Lemma 5.2 we would have

N−2
∑

i=0

νi ≥ Nℓ0 + 1 .
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As νi ≤ ǫi+1, then

1 +
N−2
∑

i=0

νi ≤
N−1
∑

i=0

ǫi ≤ NǫN−1/2;

thus

Nℓ0 + 2 ≤ NǫN−1/2

so that ǫN−1 > 2ℓ0 which is a contradiction according to Lemma 5.2. �

Lemma 5.5. (1) ǫ2 is a power of two;

(2) ν1 > ǫ1 = 1.

Proof. (1) It is a consequence of the p-adic criterion [26, Cor. 1.9].

(2) Suppose that ν1 = 1. Let P be a Fℓ-rational point satisfying Lemma 5.4. Then

j2(P ) = 2 and thus by Lemma 3.2 the Weierstrass semigroup H(P ) at P contains the

semigroup

H := 〈ℓ,−1 + 2ℓ0 + ℓ, 2ℓ0 + ℓ, 1 + 2ℓ0 + ℓ〉 .

Therefore g̃ ≤ g(H) := #(N0 \H). This is a contradiction as we will see in the remark

below. �

Remark 5.6. Let H be the semigroup defined above. We are going to show that

g(H) = g̃ − ℓ2
0/4. To begin with we notice that L := ∪2ℓ0−1

i=1 Li is a complete system of

residues module ℓ, where

Li = {iℓ + i(2ℓ0 − 1) + j : j = 0, · · · , 2i} if 1 ≤ i ≤ ℓ0 − 1,

Lℓ0 = {ℓ0ℓ + ℓ − ℓ0 + j : j = 0, · · · , ℓ0 − 1},
Lℓ0+1 = {(ℓ0 + 1)ℓ + 1 + j : j = 0, · · · , ℓ0 − 1},
Lℓ0+i = {(ℓ0 + i)ℓ + (2i − 3)ℓ0 + i − 1 + j : j = 0, · · · , ℓ0 − 2i + 1}∪

{(ℓ0 + i)ℓ + (2i − 2)ℓ0 + i + j : j = 0, · · · ℓ0 − 1} if 2 ≤ i ≤ ℓ0/2,

L3q0/2+i = {(3ℓ0/2 + i)ℓ + (ℓ0/2 + i − 1)(2ℓ0 − 1) + ℓ0 + 2i − 1 + j :

j = 0, · · · , ℓ0 − 2i − 1} if 1 ≤ i ≤ ℓ0/2 − 1.

Moreover, for each m ∈ L, m ∈ H and m − ℓ 6∈ H . Hence g(H) can be computed by

summing up the coefficients of ℓ from the above list (see e.g. [24, Thm. p.3]); i.e.

g(H) =
∑ℓ0−1

i=1 i(2i + 1) + ℓ2
0 + (ℓ0 + 1)ℓ0 +

∑ℓ0/2
i=2 (ℓ0 + i)(2ℓ0 − 2i + 2)+

∑ℓ0/2−1
i=1 (3ℓ0/2 + i)(ℓ0 − 2i) = ℓ0(ℓ − 1) − ℓ2

0/4 .

In the remaining part of this paper we let P0 be a point satisfying Lemma 5.4. We set

mi := mi(P0) and denote by v = vP0
the valuation at P0.

By Lemma 5.5 the Frobenius orders of D are ν0 = 0, ν1 = ǫ2, · · · , νN−1 = ǫN and thus

(5.3)







mi = 2ℓ0 + ℓ − ǫN−i if i = 1, · · · , N − 2,

mN−1 = 2ℓ0 + ℓ,

mN = 1 + 2ℓ0 + ℓ.
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Let x, y2, · · · , yN ∈ Fℓ(X) be rational functions such that div∞(x) = m1P0, and

div∞(yi) = miP0 for i = 2, · · · , N . The fact that ν1 > 1 means that the following

matrix




1 xℓ yℓ
2 · · · yℓ

N

1 x y2 · · · yN

0 1 D1
xy2 · · · D1

xyN



 .

has rank two (cf. [26, Sect. 2]). In particular,

(5.4) yℓ
i − yi = D1

xyi(x
ℓ − x) for i = 2, · · · , N .

Lemma 5.7. (1) For P ∈ X(Fℓ), the divisor (2g − 2)P is canonical; in particular,

the Weierstrass semigroup at P is symmetric;

(2) Let n ∈ H(P0). If n < 2ℓ0 + ℓ, then n ≤ ℓ0 + ℓ;

(3) For i = 2, · · · , N there exists gi ∈ Fℓ(X) such that D1
xyi = gǫ2

i . Furthermore,

div∞(gi) = ℓmi−ℓ2

ǫ2
Po.

Proof. (1) Let P ∈ X(Fℓ). We have mNP ∼ mNP0 by (5.1) and 2g̃− 2 = (2ℓ0 − 2)mN .

Thus we can assume P = P0. Let t be a local parameter at P0. We show that

v(dx
dt

) = 2g̃ − 2. The equation i = N in (5.4) by dx
dt

and the product rule give

dx

dt
(yℓ

N − yN) =
dyN

dt
(xℓ − x) ;

from properties of valuations: v(dx
dt

) − ℓmN = −mN − (ℓ2 + 1); i.e.,

v(
dx

dt
) = (ℓ − 1)mN − (1 − 2ℓ0 + ℓ)mN = (2ℓ0 − 2)mN = 2g̃ − 2 .

(2) We know that the elements ℓ, 2ℓ0 + ℓ and 1 + 2ℓ0 + ℓ belong to the Weierstrass

semigroup H(P0) at P0. Then the numbers

kℓ + j(2ℓ0 + ℓ) + i(1 + 2ℓ0 + ℓ) = (k + j + i)ℓ + (j + i)2ℓ0 + i

are also non-gaps at P0 where k, j, i ∈ N0. Let k = 2ℓ0 − 2, j + i = ℓ0 − 2. Thus the

numbers

(2ℓ0 − 2)ℓ + ℓ − 4ℓ0 + j j = 0, · · · , ℓ0 − 2

are also non-gaps at P0. Therefore, by the symmetry of H(P0), the elements below

1 + ℓ0 + ℓ + j j = 0, · · · , ℓ0 − 2

are gaps at P0; now the proof follows.

(3) Set fi := D1
xyi. We notice that D1

xfi = 0 and Dj
x(x

ℓ − x) = 0 for j ≥ 2. Now we

apply the product rule to (5.4),

0 = Dj
xyi = Dj

xfi(x
ℓ − x) for 2 ≤ j < ǫ2 .
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because the matrices




1 x y2 · · · yN

0 1 D1
xy2 · · · D1

xyN

0 0 Dj
xy2 · · · Dj

xyN



 , 2 ≤ j < ǫ2

have all rank two (cf. [26, Sect. 1]). Consequently Djfi = 0 for 1 ≤ j < ǫ2. By Hasse

and Schmidt [14, Satz 10],

fi = gǫ2
i for some gi ∈ Fℓ(X) .

From the computations v(gi) = v(fi)/ǫ2 and −ℓmi = v(fi) − ℓ2 by (5.4) we find

v(fi) = −ℓmi + ℓ0. If P 6= P0,
dfi
dt

= dyi

dt
where t = x − x(P ) is a local parameter at P

by Item (1). �

Lemma 5.8. ǫ2 = ℓ0 and N = 4.

Proof. By Lemma 5.2 N ≥ 3 We claim that N ≥ 4; otherwise let g2 be the rational

function in Lemma 5.7(3). We have v(g2) = −ℓ since m2 = 2ℓ0 + ℓ and ǫ2 = 2ℓ0.

Therefore there exists a 6= 0, b ∈ Fℓ such that x = ag2 + b (notice that v(x) = ℓ). The

case case i = 2 in (5.4) reads

(y2/a)ℓ − y2/a = g2ℓ0
2 (gℓ

2 − g2)

and we can assume that X is defined by vℓ − v = u2ℓ0(uℓ − u). Now the function

w := vℓ0 − uℓ0+1 satisfies wℓ − w = uℓ0(uℓ − u) and we find that ℓ0 + ℓ is a non-gap at

P0 (cf. [13, Lemma 1.8]). This contradiction eliminates the case N = 3.

Let N ≥ 4. The element (ℓmN−2 − ℓ2)/ǫ2 is a positive non-gap at P and hence at least

m1 = ℓ. Thus mN−2 − ℓ ≥ ǫ2 (∗) and 2ℓ0 − ǫ2 ≥ ǫ2 (5.3) so that ℓ0 ≥ ǫ2. Now by

Lemma 5.7(2) mN−2 ≤ ℓ0 + ℓ; since mN−2 = 2ℓ0 + ℓ − ǫ2 we find ℓ0 ≤ ǫ2.

Finally we show that N = 4. As in (∗) m2−ℓ ≥ ǫ2 and from (5.3) 2ℓ0−ǫN−2 ≥ ǫ2 = ℓ0.

Thus ℓ0 ≥ ǫN−2 ≥ ǫ2 = ℓ0. �

Proof of Theorem 5.1. Let P0 ∈ X(Fℓ) be as above. The case i = 2 in (5.4) and

Lemma 5.7 give

yℓ
2 − y2 = gℓ0

2 (xℓ − x) ,

Moreover m2 = ℓ0 + ℓ and so v(g2) = −ℓ. Thus x = ag2 + b with a, b ∈ Fℓ, a 6= 0 so

that (yℓ
2/a) − (y2/a) = gℓ0(gℓ

2 − g2). We see that X is defined by the plane equation

vℓ − v = uℓ0(uℓ − u) .

Henn [16] showed that the automorphism group of the curve X above is the Suzuki

group (The automorphisms of the curve are defined over Fℓ because the Suzuki group

is simple.) Thus the curve X is isomorphimc to the Suzuki curve by the statements

(I), (II) and (III) stated at the begining of this section.
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Recall that the D-invariantes and Frobenius orders of the Susuki curve are respectively

0, 1, ℓ0, 2ℓ0, ℓ and 0, ℓ0, 2ℓ0, ℓ. Let X be the Suzuki curve.

Remark 5.9. For any P ∈ X(Fℓ) the (D, P )-order sequence is

0, 1, 1 + ℓ0, 1 + 2ℓ0, 1 + 2ℓ0 + ℓ .

To see let us compute

deg(S) = (3ℓ0 + ℓ)(2g − 2) + (ℓ + 4)(1 + 2ℓ0 + ℓ) = (4 + 2ℓ0)#X(Fℓ) .

We conclude that vP (S) =
∑3

i=0(ji+1(P ) − νi) = 4 + 2ℓ0 and follows the assertion.

Remark 5.10. Let P ∈ X. By the previous remark, H(P ) contains the semigroup

H := 〈ℓ, ℓ0 + ℓ, 2ℓ0 + ℓ, 1 + 2ℓ0 + ℓ〉 .

We can prove that g̃ = g(H) as in Remark 5.6 or see [13, Appendix].

Remark 5.11. We claim that the set of D-Weierstrass points is precisaly the set of

Fℓ-rational points. It follows from the facts that vP (R) = 2ℓ0 + 3 for any ∈ X(Fℓ) and

deg(R) =

4
∑

i=0

ǫi(2g − 2) + 5(1 + 2ℓ0 + ℓ) = (2ℓ0 + 3)#X(Fℓ) .

In particular, the (D, P )-orders for P 6∈ X(Fℓ) are 0, 1, ℓ0, 2ℓ0 and ℓ.

Remark 5.12. We can use the previous remark to obtain orders for the canonical mor-

phism on the curve. By using the fact that (2ℓ0 − 2)D is the canonical linear series

(Lemma 5.7(1)) on X, we see that the eleements of the set

{a + ℓ0b + 2ℓ0c + ℓd : a + b + c + d ≤ 2ℓ0 − 2}
are canonical orders of X. By using first order differentials this remark was first noticed

in [9, Sect. 4].

Remark 5.13. The Suzuki curve X is non-classical for the canonical morphism: we

have two different proofs for this fact: Garcia-Stichtenoth [9] and Lemma 3.2(6) here.
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