
On Weighted Exponential Distribution and its Length

Biased Version

Suchismita Das1 and Debasis Kundu2

Abstract

In this paper we consider the weighted exponential distribution proposed by Gupta
and Kundu (2009) and discuss its various reliability properties. We further consider
the length biased version of the weighted exponential distribution, and discuss different
properties and inferential issues. The maximum likelihood estimators of the unknown
parameters of the proposed length biased weighted exponential distribution has been
addressed. One data set has been analyzed for illustrative purposes.
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1 Introduction

Azzalini (1985) proposed a novel approach to introduce an additional parameter to a normal

distribution. This additional parameter incorporates skewness to the symmetric normal

distribution. This distribution is well known in the statistical literature as the skew-normal

distribution, and it has received considerable attention in the last two decades. Kundu and

Gupta (2009) introduced a new class of weighted exponential distribution using the idea of

Azzalini (1985) and it can be defined as follows: A random variable X is said to have a

weighted exponential distribution with the shape parameter α and scale parameter λ if it

has the following probability density function (PDF)

fX(x, α, λ) =
α + 1

α
λe−λx

(
1− e−αλx

)
, if x > 0, (1)

and zero otherwise. From now on a random variable with the PDF (1) will be denoted by

WE(α, λ). The WE distribution of Gupta and Kundu (2009) has several desirable properties.

Although exponential distribution is not a member of this family of distributions, exponential

distribution can be obtained as limiting distribution from the WE class. Recently, this

model has received some attention in the statistical literature because of its flexibility and

simplicity, see for example Shakhatreh (2012), Roy and Adnan (2012), Al-Mutairi et al.

(2011), Farahani and Khorram (2014) and the references cited therein.

The main aim of this paper is two fold. First we consider the WE model and discuss

several reliability properties of the model. Further we consider the length biased version of

the WE model. Length biased model plays an important role in different area of statistical

applications. If Y is a positive random variable with the PDF fY (y) for y > 0, and with

finite mean µ, then length biased (LB) or size biased version of Y is a random variable T ,

with the PDF;

fT (t) =
tfY (t)

µ
; t > 0. (2)
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The distribution of T is the LB version of the distribution of Y . The mean of the original

distribution has been incorporated in the LB version of the PDF so that it becomes a valid

density function. Therefore, the LB distribution does not introduce any extra parameter

in the model. The LB distribution has been used quite extensively in different areas such

as biometry, ecology, environmental sciences, reliability and survival analysis. An extensive

review of the LB distributions and their applications can be found in Gupta and Kirmani

(1990). In this paper we develop the length biased weighted exponential (LBWE) distribution

and discuss several properties and related inferential issues. One data analysis has been

performed for illustrative purposes.

Rest of the paper is organized as follows. In Section 2, we briefly discuss the WE model

and develop several reliability properties. In Section 3 we introduce the LBWE distribution

and discuss several properties. The inferential issues and the data analysis are discussed in

Section 4. The three-parameter LBWE is proposed in Section 5, and finally we conclude the

paper in Section 6.

2 Weighted Exponential Model and its Properties

2.1 Weighted Exponential Model

A random variable X follows WE(α, λ) if it has the PDF (1). The PDF of WE distribution is

unimodal and it has increasing hazard function for all values of α. Since the hazard function

is always an increasing function this is suitable for modelling lifetime data when wear-out or

ageing is present. If λ = 1, the moment generating function (MGF) of X can be written for

−1 < t < 1 as

MX(t) =

(
1− t

1 + α

)−1

(1− t)−1 . (3)
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Using the MGF, the mean (µ), variance (σ2), coefficient of variation (CV) and skewness (β1)

can be obtained as

µ = 1 +
1

1 + α
, σ2 = 1 +

1

(1 + α)2
, CV =

√(
1− 2(1 + α)

(2 + α)2

)
, β1 =

√
4((1 + α)3 + 1)2

((1 + α)2 + 1)3
.

Both the CV and skewness are functions of α, and the CV increases from 1/
√
2 to 1, whereas

skewness increases from
√
2 to 2. The following representation can be very useful for gener-

ating WE random variable and also developing several other properties also. Suppose X ∼

WE(α, λ), then

X = U + V, (4)

here both U and V are exponential random variables with mean 1/λ and 1/λ(1+β), respec-

tively, and they are independently distributed. For various other properties and for different

physical interpretations, the readers are referred to the original paper of Gupta and Kundu

(2009).

2.2 Different Reliability Properties of WE Distribution

The following theorem shows that WE distribution has the ILR (increasing in likelihood

ratio) property. Let us recall that a positive random variable X with PDF f(x), is said to

be ILR if ln f(x) is concave in x.

Theorem 1: If X ∼ WE(α, λ), then X has the ILR property.

Proof: Note that X has ILR property, if and only if the probability density function of X

is log concave. Now, the log density function of X is given by

ln fX(x;α, λ) = ln

(
α + 1

α
λ

)
− λx+ ln

(
1− e−αλx

)
. (5)

Differentiating ln fX(x;α, λ) with respect to x, we get

d

dx
[ln fX(x;α, λ)] = −λ+

αλe−αλx

1− e−αλx
, (6)
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which is a decreasing function in x. Hence, X has ILR property.

The following theorem shows that WE distribution preserves the likelihood ratio ordering.

Let us recall that a random variable Y1 is said to be larger than another random variable

Y2 in likelihood ratio ordering (written as Y1 ≥LR Y2) if, for all x ≥ 0, fY1
(x)/fY2

(x) is an

increasing function in x.

Theorem 2: Let X1 ∼ WE(α1, λ1) and X2 ∼ WE(α2, λ2), then X1 ≥LR (≤LR)X2 provided

(i) λ2 ≥ (≤)λ1,

(ii)
eα2λ2x − 1

α2λ2

≥ (≤)
eα1λ1x − 1

α1λ1

, for all x > 0.

Proof: X1 ≥LR (≤LR)X2 if and only if fX1
(x, α1, λ1)/fX2

(x, α2, λ2) is an increasing (de-

creasing) function of x. Now,

fX1
(x;α1, λ1)

fX2
(x;α2, λ2)

=
α2(α1 + 1)λ1

(
1− e−α1λ1x

)

α1(α2 + 1)λ2 (1− e−α2λ2x)
e(λ2−λ1)x

= A(x), say.

A(x) is an increasing (decreasing) function of x, if λ2 ≥ (≤)λ1 and A1(x) =
1− e−α1λ1x

1− e−α2λ2x
is

an increasing (decreasing) function of x. Differentiating A1(x) with respect to x, we get

A′
1(x) =

α1λ1e
−α1λ1x(1− e−α2λ2x)− α2λ2e

−α2λ2x(1− e−α1λ1x)

(1− e−α2λ2x)2

sign
= α1λ1(e

α2λ2x − 1)− α2λ2(e
α1λ1x − 1)

≥ (≤) 0,

provided
eα2λ2x − 1

α2λ2

≥ (≤)
eα1λ1x − 1

α1λ1

, for all x > 0.

Note that α1 = α2, then X1 ≥LR (≤LR)X2 if λ2 ≥ (≤)λ1. The following example shows

that if condition (i) of Theorem 2 not satisfied then the theorem may not hold.
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Example 1: Let X1 ∼ WE(1,4) and X2 ∼ WE(3,2). The PDF of X1 is given by

fX1
(x; 1, 4)) = 8e−4x(1− e−4x), x > 0,

and the PDF of X2 is given by

fX2
(x; 3, 2) =

8

3
e−2x(1− e−6x), x > 0.

Clearly, condition (ii) of the Theorem 2 holds but not condition (i). Now, for all x > 0

fX1
(x; 1, 4)

fX2
(x; 3, 2)

=
3e−4x(1− e−4x)

e−2x(1− e−6x)

= p1(x)(say).

We see that p1(1) = 0.39954, p1(2) = 0.054927, which shows that
fX1

(x;1,4)

fX2
(x,3,2)

is not an increasing

function of x > 0. Hence, X ≥LR Y does not hold.

The following examples shows that if the condition (ii) of Theorem 2 does not satisfy,

then the theorem may or may not hold.

Example 2: Let X1 ∼ WE(3,3) and and X2 ∼ WE(2,4). The PDF of X1 is given by

fX1
(x; 3, 3) = 4e−3x(1− e−9x), x > 0,

and the PDF of X2 is

fX2
(x) = 6e−4x(1− e−8x), x > 0.

Clearly, condition (i) of the Theorem 2 holds, but not condition (ii). Now, for all x > 0

fX1
(x; 3, 3)

fX2
(x; 2, 4)

=
2e−3x(1− e−9x)

3e−4x(1− e−8x)

=
2(1− u9)

3u(1− u8)
= p2(u) (say),

where u = e−x. Observe that

d

du
p2(u) =

9u8 − 8u9 − 1

u2(1− u8)2
.
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Since 9u8 − 8u9 − 1 is an increasing function of u ∈ (0, 1), with maximum value less than

0, p2(u) is a decreasing function in u. Therefore,
fX1

(x; 3, 3)

fX2
(x; 2, 4)

is an increasing function of x.

Hence, X1 ≥LR X2.

Example 3: Let X1 ∼ WE(8, 1/4) and X2 ∼ WE(1/4,1/2). The PDF of X1 and X2 are

given by

fX1
(x; 8, 1/4) =

9

32
e−x/4(1− e−2x), x > 0,

and

fX2
(x) =

5

2
e−x/2(1− e−x/8), x > 0,

respectively. Clearly, condition (i) of the Theorem 2 holds but not condition (ii). Now, for

all x > 0

fX1
(x, 8, 1/4)

fX2
(x, 1/4, 1/2)

=
9e−x/4(1− e−2x)

80e−x/2(1− e−x/8)

= p3(x), (say).

We see that p3(1) = 1.0630, p3(3) = 0.75970, and p3(6) = 0.95558, which shows that p3(x)

is not a monotone function of x. Hence, X1 ≥LR X2 does not hold.

The following theorem shows that the WE distribution preserves the up likelihood ratio

ordering. Let us recall that a random variable Y1 is said to be smaller than another random

variable Y2 in up likelihood ratio ordering (written as Y1 ≤LR↑ Y2) if, for all x ≥ 0, fY1
(x +

t)/fY2
(x) is an increasing function in x.

Theorem 3: Let X1 ∼ WE(α1, λ1) and X2 ∼ WE(α2, λ2). Then X1 ≤LR↑ X2 provided

(i) λ1 ≥ λ2,

(ii)
eα1λ1x − 1

α1λ1

≥ eα2λ2x − 1

α2λ2

, for all x > 0,
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(iii) X1 has ILR property.

Proof: Note that X1 ≤LR↑ X2 if and only if fX1
(t+x;α1, λ1)/fX2

(x;α2, λ2) is a decreasing

function in x > 0 for all t > 0. Now,

fX1
(t+ x;α1, λ1)

fX2
(x;α2, λ2)

=
fX1

(x;α1, λ1)fX1
(t+ x;α1, λ1)

fX2
(x;α2, λ2)fX1

(x;α1, λ1)
.

Since, X is ILR, then fX1
(t + x;α1, λ1)/fX1

(x;α1, λ1) is a decreasing function in x > 0 for

all t > 0. Again, we see that

fX1
(x;α1, λ1)

fX2
(x;α2, λ2)

=
α2(α1 + 1)λ1

(
1− e−α1λ1x

)

α1(α2 + 1)λ2 (1− e−α2λ2x)
e(λ2−λ1)x.

fX1
(x;α1,λ1)

fX2
(x;α2,λ2)

is a decreasing function in x if λ1 ≥ λ2 and A2(x) =
1− e−α1λ1x

1− e−α2λ2x
is a decreasing

function in x. Differentiating A2(x) with respect to x, we get

A′
2(x) =

α1λ1e
−α1λ1x

(
1− e−α2λ2x

)
− α2λ2e

−α2λ2x
(
1− e−α1λ1x

)

(1− e−α2λ2x)2

sign
= α1λ1(e

−α1λ1x − 1)− α2λ2(e
−α2λ2x − 1) ≤ 0,

provided
eα1λ1x − 1

α1λ1

≥ eα2λ2x − 1

α2λ2

, for all x > 0.

Note that when α1 = α2, then X1 ≤LR↑ X2 if λ1 ≥ λ2 and X is ILR. The following

example shows that if condition (i) of Theorem 3 does not satisfy, then the theorem may not

hold.

Example 4: Let X1 ∼ WE(2,1) and X2 ∼ WE(1,3). Then the PDF of X1 and X2 are

fX1
(x; 2, 1) = 3e−2(x+t)(1− e−4(x+t)), x > 0,

and

fX2
(x; 1, 3) = 6e−3x(1− e−3x), x > 0,



9

respectively. Clearly, condition (ii) of the Theorem 3 holds, but not condition (i). Now, for

all x > 0 and t > 0,

fX1
(x+ t; 2, 2)

fX2
(x; 1, 3)

=
e−2(x+t)(1− e−4(x+t))

2e−3x(1− e−3x)
= p4(x, t), (say).

We see that p4(0.1, 1) = 0.569995, p4(0.4, 1) = 0.287848, p4(1.5, 1) = 0.613316, which shows

that p4(x, t) is not a monotone function of x for fixed t. Hence, X1 ≤LR↑ X2 does not hold.

The following examples shows that if condition (ii) of Theorem 3 does not satisfy, then

the theorem may or may not hold.

Example 5: Let X1 ∼ WE(1,3) and X2 ∼ WE(2,2). Then the PDF of X1 is given by

fX1
(x; 1, 3) = 6e−3x(1− e−3x), x > 0,

and the PDF of X2 is given by

fX2
(x; 2, 2) = 3e−2x(1− e−4x), x > 0.

Clearly, condition (i) of the Theorem 3 holds, but not condition (ii). Now, for all x > 0 and

t > 0

fX1
(x+ t; 1, 3)

fX2
(x, 2, 2)

=
2e−3(x+t)(1− e−3(x+t))

e−2x(1− e−4x)

=
2u3v3(1− u3v3)

1− u4

= p5(u, v), (say),

where u = e−x and v = e−t. It easily follows that for fixed 0 ≤ v ≤ 1, p5(u, v) is an increasing

function of 0 ≤ u ≤ 1. Hence, X1 ≤LR↑ X2.

Example 6: Let X1 ∼ WE(1/4, 1/2) and X2 ∼ WE(6, 1/3). Then the PDF of X1 is given

by

fX1
(x; 1/4, 1/2) =

5

2
e−x/2(1− e−x/8), x > 0,
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and the PDF of X2 is given by

fX2
(x; 6, 1/3) =

7

18
e−x/3(1− e−2x), x > 0,

Clearly, condition (i) of the Theorem 3 holds, but not condition (ii). Now, for all x > 0 t > 0

fX1
(x+ t, 1

4
, 1
2
)

fX2
(x, 6, 1

3
)

=
45e−(x+t)/2(1− e−(x+t)/8)

7e−x/3(1− e−2x)

= p6(x, t), (say).

We see that p6(0.5, 1) = 0.97028, p6(1, 1) = 0.84440, p6(3, 1) = 0.93285, which shows that

p6(x, t) is not a monotone function of x for fixed t, hence X1 ≤LR↑ X2 does not hold.

The following theorem shows that the WE distribution preserves the down likelihood ratio

ordering. Note that a random variable Y1 is said to be larger than another random variable

Y2 in down likelihood ratio ordering (written as Y1 ≥LR↓ Y2) if, for all t ≥ 0, fY1
(x)/fY2

(x+t)

is an increasing function in x.

Theorem 4: Let X1 ∼ WE(α1, λ1) and X2 ∼ WE(α2, λ2). Then X1 ≥LR↓ X2 provided

(i) λ1 ≤ λ2,

(ii)
eα1λ1x − 1

α1λ1

≤ eα2λ2x − 1

α2λ2

, for all x > 0,,

(iii) X is ILR.

Proof: The proof can be obtained along the same line as the proof of Theorem 3, hence it

is omitted.

When α1 = α2, then X1 ≥LR↓ X2 if λ1 ≤ λ2 and X is ILR. The following example shows

that if condition (i) of Theorem 4 does not satisfy, then the theorem may not hold.

Example 7: Let us consider Example 1. Clearly, condition (ii) of the Theorem 4 holds, but
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not condition (i). Now, for all x > 0, t > 0

fX(x, 1, 4)

fY (x+ t, 3, 2)
=

3e−4x(1− e−4x)

e−2(x+t)(1− e−6(x+t))

= p7(x, t), say.

We see that p7(0.1, 1) = 5.99149, p7(0.5, 1) = 7.05208, p7(1, 1) = 2.9451, which shows that

p7(x, t) is not a monotone function of x for a fixed t. Thus, X1 ≥LR↓ X2 does not hold.

Hence, condition (i) of Theorem 4 cannot be dropped.

The following example shows that if condition (ii) of Theorem 4 does not satisfy, then

the theorem may or may not hold.

Example 8: Let us consider Example 2. Clearly, condition (i) of the Theorem 4 satisfies,

but not condition (ii). Now, for all x > 0, t > 0

fX(x, 3, 3)

fY (x+ t, 4, 2)
=

2e−3x(1− e−9x)

3e−4(x+t)(1− e−8(x+t))
=

2(1− u9)

uv4(1− u8v8)
= p8(u, v), (say), (7)

where u = e−x and v = e−t. Since for fixed 0 ≤ v ≤ 1, p5(u, v) is a decreasing function in

0 ≤ u ≤ 1, X1 ≥LR↓ X2.

Example 9: Let us consider Example 3. Clearly, condition (i) of the Theorem 4 satisfies,

but not condition (ii). Now, for all x > 0, t > 0

fX(x, 8,
1
4
)

fY (x+ t, 1
4
, 1
2
)

=
9e−x/4(1− e−2x)

80e−(x+t)/2(1− e−(x+t)/8)

= p9(x), say.

We see that p9(1, 0.5) = 0.93805, p9(2.5, 0.5) = 0.857198, and p9(4, 0.5) = 0.91239, which

shows that p9(x, 0.5) is not a monotone function in x for a fixed t, hence, X1 ≥LR↓ X2 does

not hold.

The following theorem shows that the WE distribution preserves the up hazard rate

ordering. A random variable X1 is said to be smaller than another random variable X2 in up
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hazard rate order (written as X1 ≤HR↑ X2) if, X1−x ≤HR X2, for all x ≥ 0, or equivalently,

if F̄X1
(x+ t)/F̄X2

(x) is a decreasing function in x.

Theorem 5: Let X1 ∼ WE(α1, λ1) and X2 ∼ WE(α2, λ2). Then X1 ≤HR↑ X2 provided

(i) λ1 ≥ λ2,

(ii) (α1+1)eα1λ1x−1
α1λ1

≥ (α2+1)eα2λ2x−1
α2λ2

, for all x > 0,

(iii) X is IFR.

Proof: Let us recall that X1 ≤HR↑ X2 if and only if F̄X(t + x)/F̄Y (x) is a decreasing

function in x > 0 for all t > 0. Now,

F̄X1
(t+ x)

F̄X2
(x)

=
F̄X1

(x)F̄X1
(t+ x)

F̄X2
(x)F̄X1

(x)
.

Since, X1 is IFR, then F̄X1
(t + x)/F̄X1

(x) is a decreasing function in x > 0 for all t > 0.

Again, we see that

F̄X1
(x)

F̄X2
(x)

=
α2

(
α1 + 1− e−α1λ1x

)

α1 (α2 + 1− e−α2λ2x)
e(λ2−λ1)x.

F̄X1
(x)

F̄X2
(x)

is a decreasing function in x if λ1 ≥ λ2 and A3(x) =
α1 + 1− e−α1λ1x

α2 + 1− e−α2λ2x
is a decreasing

function in x. Differentiating A3(x) with respect to x, we get

A′
3(x) =

α1λ1e
−α1λ1x

(
α2 + 1− e−α2λ2x

)
− α2λ2e

−α2λ2x
(
α1 + 1− e−α1λ1x

)

(α2 + 1− e−α2λ2x)2

sign
= α1λ1[(α2 + 1)eα2λ2x − 1]− α2λ2[(α1 + 1)eα1λ1x − 1]

≤ 0,

provided (α1+1)eα1λ1x−1
α1λ1

≥ (α2+1)eα2λ2x−1
α2λ2

, for all x > 0.

When α1 = α2, then X1 ≤HR↑ X2 if λ1 ≥ λ2 and X is IFR. The following example shows

that if condition (i) of Theorem 5 does not hold, then the theorem may not hold.
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Example 10: Let X1 ∼ WE(1,2) and X2 ∼ WE(2,3). Then the survival function of X1 is

given by

F̄X1
(x) = 2e−2x(1− 1

2
e−2x), x > 0,

and the survival function of X2 is given by

F̄Y (x) =
3

2
e−3x(1− 1

3
e−6x), x > 0,

Clearly, condition (ii) of the Theorem 5 holds, but not condition (i). Now, for all x, t > 0

F̄X1
(x+ t; 1, 2)

F̄X2
(x; 2, 3)

=
4e−2(x+t)(1− 1

2
e−2(x+t))

3e−3x(1− 1
3
e−6x)

= p10(x, t), (say).

Observe p10(0, 1) = 0.23404, p10(0.1, 1) = 0.21703, p10(1.5, 1) = 0.48191, which shows that

p10(x, 1) is not a monotone function in x, hence, X1 ≤HR↑ X2 does not hold.

The following examples shows that if condition (ii) of Theorem 5 does not satisfy then

the theorem may or may not hold.

Example 11: Let us consider Example 4. Then the survival function of X1 is given by

F̄X1
(x) = 2e−3x(1− 1

2
e−3x), x > 0,

and the survival function of X2 is given by

F̄X2
(x) =

3

2
e−2x(1− 1

3
e−4x), x > 0.

Clearly, condition (i) of the Theorem 5 holds true, but not condition (ii). Now, for all x, t > 0

F̄X1
(x+ t, 1, 3)

F̄X2
(x, 2, 2)

=
4e−3(x+t)(1− 1

2
e−3(x+t))

3e−2x(1− 1
3
e−4x)

=
4uv3(1− u3v3

2
)

3(1− u4

3
)

= p11(u, v), (say),
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where u = e−x and v = e−t. Differentiating p11(u, v) with respect to u for all v > 0, we have

p′11(u, v)
sign
=

[
4v3

(
1− u3v3

2
− 6u3v6

)]
(3− u4) + 16u4v3 − 8u7v6

≥ 0.

Thus, p11(u, v) is an increasing function in u for all v > 0. Hence, X1 ≤HR↑ X2.

Example 12: Let us consider Example 6. Then the survival function of X1 is given by

F̄X1
(x) = 5e−x/2(1− 4

5
e−x/8), x > 0,

and the survival function of X2 is given by

F̄X2
(x) =

7

6
e−x/3(1− 1

7
e−2x), x > 0.

Clearly, condition (i) of the Theorem 5 holds true, but not condition (ii). Now, for all x, t > 0

F̄X1
(x+ t, 1/4, 1/2)

F̄X2
(x, 6, 1/3)

=
30e−(x+t)/2(1− 4

5
e−(x+t)/8)

7e−x/3(1− 1
7
e−2x)

= p12(x, t), say.

We see that p12(1, 1) = 0.84583, p12(1.3, 1) = 0.845966, p12(3, 1) = 0.81193, which shows

that p12(x, t) is not a monotone function in x for fixed t. Hence, X1 ≤HR↑ X2 does not hold.

The following theorem shows that the univariate weighted exponential distribution pre-

serves the down hazard rate ordering. A random variable X1 is said to be larger than another

random variable X2 in down hazard rate order (written as X1 ≥HR↓ X2) if,

X1 ≥HR [X2 − x|X2 > x], for all x ≥ 0, or equivalently, if F̄X1
(x)/F̄X2

(x + t) is an in-

creasing function in x, for all t ≥ 0.

Theorem 6: Let X1 ∼ WE(α1, λ1) and X2 ∼ WE(α2, λ2). Then X1 ≥HR↓ X2 provided

(i) λ1 ≤ λ2,
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(ii)
(α1 + 1)eα1λ1x − 1

α1λ1

≤ (α2 + 1)eα2λ2x − 1

α2λ2

, for all x > 0,

(iii) X1 is IFR.

Proof: It has been omitted

When α1 = α2, then X1 ≥HR↓ X2 if λ1 ≤ λ2 and X1 is IFR. The following example shows

that if condition (i) of Theorem 6 does not satisfy, then the theorem may not hold.

Example 13: Let X1 ∼ WE(1,4) and X2 ∼ WE(3,2). Then the survival function of X1 is

given by

F̄X1
(x) = 2e−4x(1− 1

2
e−4x), x > 0,

and the survival function of X2 is given by

F̄X2
(x) =

4

3
e−2x(1− 1

4
e−6x), x > 0,

Clearly, condition (ii) of the Theorem 6 has satisfied but not condition (i). Now, for all

x, t > 0

F̄X1
(x; 1, 4)

F̄X2
(x+ t; 3, 2)

=
6e−4x(1− 1

2
e−4x)

4e−2(x+t)(1− 1
4
e−6(x+t))

= p13(x, t), (say)

We see that p13(0, 1) = 5.5450, p13(0.1, 1) = 6.03512, p13(0.5, 1) = 3.80163, which shows that

p13(x, 1) is not a monotone function of x for a given t. Hence, X1 ≥HR↓ X2 does not hold.

The following examples show that if condition (ii) of Theorem 6 does not satisfy, then

the theorem may or may not hold.

Example 14: Let us consider Example 2. Then the survival function of X1 is given by

F̄X1
(x) =

4

3
e−3x(1− 1

4
e−9x), x > 0,
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and the survival function of X2 is given by

F̄X2
(x) =

3

2
e−4x(1− 1

3
e−8x), x > 0.

Clearly, condition (i) of the Theorem 5 does not satisfy, but not condition (ii). Now, for all

x, t > 0

F̄X1
(x, 3, 3)

F̄X2
(x+ t, 2, 4)

=
8e−3x(1− 1

4
e−9x)

9e−4(x+t)(1− 1
3
e−8(x+t))

=
8(1− u9

4
)

9uv4(1− u8v8

3
)

= p14(u, v), (say),

where u = e−x and v = e−t. Differentiating p14(u, v) with respect to u for all v > 0, we have

p′14(u, v)
sign
= −9

4
u9v4

(
1− u8v8

3

)
− v4

(
1− u8v8

3

)(
1− u9

4

)

+
8

3
u8v12

(
1− u9

4

)

≤ 0.

Thus, p14(u, v) is a decreasing function in u for all v > 0. Hence, X1 ≥HR↓ X2.

Example 15: Let X1 ∼ WE(1/3,1/4) and X2 ∼ WE(1/5,4). Then the survival function of

X1 is given by

F̄X1
(x) = 4e−x/4(1− 3

4
e−x/12), x > 0,

and the survival function of X2 is given by

F̄X2
(x) = 6e−4x(1− 5

6
e−4x/5), x > 0,

Clearly, condition (i) of the Theorem 6 has satisfied but not condition (ii). Now, for all

x, t > 0

F̄X1
(x; 1/3, 1/4)

F̄X2
(x+ t; 1/5, 4)

=
2e−x/4(1− 3

4
e−x/12)

3e−4(x+t)(1− 5
6
e−4(x+t)/5)

= p15(x, t), (say).
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We see that p15(0, 1) = 0.34211, p15(1, 1) = 0.31901, p15(2, 1) = 0.33813, which shows that

p15(x, 1) is not a monotone function of x for a given t. Hence, X1 ≥HR↓ X2 does not hold.

3 Length Biased Weighted Exponential Distribution

Suppose X ∼ WE(α, λ), then the length biased version of the random variable X will be

denoted by the random variable T which has the PDF for t > 0 as

fT (t;α, λ) =
(λ(α + 1))2

α(α + 2)
te−λt(1− e−λαt), (8)

and it will be denoted LBWE(α, λ). In this section, we discuss different properties of T , and

for that without loss of generality, it is assumed that λ = 1. We will denote fT (t;α, 1) =

fT (t;α) only. It easily follows that the PDF of T is always log-concave and fT (t, α) → 0 as

t → 0 or t → ∞. Hence fT (t, α) is always unimodal. Again, as α → ∞, then the PDF of T

converges to the PDF of a gamma distribution with shape parameter 2, and as α → 0 then

it converges to gamma distribution with shape parameter 3. The distribution function of T

is given by

G(t, α) = P (T ≤ t) = 1− (1 + α)2

α(2 + α)
(1 + t)e−t +

1

α(2 + α)
(1 + (1 + α)t)e−(1+α)t, t > 0.

The corresponding hazard rate and mean residual life functions are given by, respectively,

rT (t, α) =
(1 + α)2t(1− e−αt)

(1 + α)2(1 + t)− (1 + (1 + α)t)e−αt
,

and

mT (t, α) =
2 + t− 1

(1+α)3
(2 + (1 + α)t) e−αt

1 + t− 1
(1+α)2

(1 + (1 + α)t) e−αt
.

Since the PDF of T is always log-concave, thus hazard rate function is increasing function

in x for all α > 0. Again, the mean residual life function is decreasing in t for all α > 0.
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The moment generating function (MGF) of T for −1 < t < 1 is

MT (t) = E(etT ) =
(1 + α)2

α(2 + α)

[
1

(1− t)2
− 1

(1 + α− t)2

]

=

(
1− 2t

2 + α

)
(1− t)−2

(
1− t

1 + α

)−2

.

The above MT (t) can be written as follows:

MT (t) =
2

2 + α
(1− t)−1

(
1− t

1 + α

)−2

+
α

2 + α
(1− t)−2

(
1− t

1 + α

)−2

.

Hence T has the following representation:

T =

{
U0 +W with probability α

2+α

U1 +W with probability 2
2+α

,

here U0 follows a gamma distribution with the shape parameter 2 and scale parameter 1,

U1 follows an exponential distribution with the parameter 1 and W follows also a gamma

distribution with the scale parameter 1 + α and shape parameter 2. Further, Ui and W are

independently distributed for i = 0 and 1. This representation can be used quite conveniently

to generate samples from a LBWE distribution. Further, if T1, T2, . . . , Tn are independent

identically distributed random variables from LBWE(α, 1), then the distribution of S =

T1 + . . .+ Tn can be written as follows:

S = Ui +W with probability pk; for k = 0, . . . , n,

where pk =

(
n

k

)(
2

2 + α

)k (
α

2 + α

)n−k

, and Uk follows a gamma distribution with the

shape parameter 2n − k and scale parameter 1, and W is same as before. Further Uk and

W are independently distributed for k = 0, . . . , n.

The LBWE model can be obtained as a hidden truncation model similarly as the Az-

zalini’s skew-normal model as it was observed by Arnold and Beaver (2000). Suppose the

random variables Z and Y have the following joint PDF

fZ,Y (z, y) = λ3z2e−λz(1+y); z > 0, y > 0. (9)
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Consider a new random variable T = Z, given that Y ≤ α. It easily follows that the PDF of

T is (8). Therefore, T can be interpreted as a hidden truncation model as follows. Suppose

Z and Y are two random variables with the joint PDF (9). We do not observe Y , but we

observe Z only, provided Y ≤ α. Then the observed sample has the PDF (8).

From the MGF of T , using lnMT (t) = ln

(
1− 2t

2 + α

)
− 2 ln(1− t)− 2 ln

(
1− t

1 + α

)
,

we obtain

µT = E(T ) = 2

(
1 +

1

1 + α
− 1

2 + α

)
,

σ2
T = V ar(T ) = 2

(
1 +

1

(1 + α)2
− 2

(2 + α)2

)
,

E(T − µT )
3 = 4

(
1 +

1

(1 + α)3
− 22

(2 + α)3

)
,

E(T − µT )
k = 2(k − 1)!

[
1 +

1

(1 + α)k
− 2k−1

(2 + α)k

]
, for k = 3, 4, . . . .

The coefficient of variation (CV) and skewness of T can be obtained as

CVT =

√
1

2

[
1− 3(1 + α)2

(1 + (1 + α)(2 + α))2

]

and

γT =

√
2[4− 3α2(2 + α) + (1 + α)3(2 + α)3]2

[2− α2 + (1 + α)2(2 + α)2]3
,

respectively. Both the mean and variance are decreasing functions of α and they decrease

from 3 to 2. The coefficient of variation is increasing in α, and it increases from 1/
√
3 to

1/
√
2 but the skewness is not a monotone function of α.

Now we consider the stress-strength parameter of length biased weighted exponential

distribution. Suppose that T1 ∼ LBWE(α1, λ1) and T2 ∼ LBWE(α2, λ2) and they are

independently distributed, then

P (T1 < T2) =
λ2(1 + α2)

2

λ1α2(2 + α1)

[
1

λ2
2

− 1

(α2 + λ2)2

]
− (1 + α1)

2(1 + α2)
2

α1α2λ2(2 + α1)(2 + α2)

[
3λ1 + λ2

(λ1 + λ2)3

− 3λ1 + λ2 + α2λ2

(λ1 + λ2 + α2λ2)3

]
+

λ2(1 + α2)
2

α1α2λ1(2 + α1)(2 + α2)

[
1

((1 + α1)λ1 + λ2)2
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+
2λ1(1 + α1)

((1 + α1)λ1 + λ2)3
+

1

((1 + α1)λ1 + λ2 + α2λ2)2

]

4 Maximum Likelihood Estimators & Data Analysis

4.1 Maximum Likelihood Estimators

In this subsection we discuss the maximum likelihood estimators (MLEs) of the unknown pa-

rameters, and derive their asymptotic properties. Just for brevity, we make a re-parameterization

β = αλ. We mainly discuss the MLEs of β and λ here, which are equivalent to α and

λ. Suppose {x1, . . . , xn} is a random sample from a LBWE(α, λ), then based on the re-

parameterization αλ = β, the log-likelihood function becomes

L(β, λ) = 2n ln(β + λ)− n ln β − n ln(β + 2λ) + 2n lnλ+
n∑

i=1

ln xi − λ

n∑

i=1

xi

+
n∑

i=1

ln
(
1− e−βxi

)
. (10)

Therefore, the maximum likelihood estimators (MLEs) of the unknown parameters can be

obtained by maximizing (10) with respect β and λ. The two normal equations take the

following forms:

∂l(β, λ)

∂λ
=

2n

β + λ
− 2n

β + 2λ
+

n

λ
−

n∑

i=1

xi = 0, (11)

∂l(β, λ)

∂β
=

2n

β + λ
− n

λ
+

n∑

i=1

xie
−βxi

1− e−βxi
= 0. (12)

Clearly, (12) and (11) cannot be solved explicitly, some numerical technique, like Newton-

Raphson method can be used to solve the two non-linear equations simultaneously. Alterna-

tively, any two-dimensional optimization technique may be used to maximize (10) directly

to compute the MLEs of λ and β. The Fisher information matrix Σ = ((σij)) of λ and β

can be obtained as follows:

σ11 =
2

(β + λ)2
− 4

(β + 2λ)2
+

1

λ2
(13)
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σ12 = σ21 =
2

(β + λ)2
− 2

(β + 2λ)2
(14)

σ22 =
2

(β + λ)2
− 1

β2
− 1

(β + 2λ)2
+

λ(β + λ)

β4
u

(
λ

β

)
, (15)

where

u

(
λ

β

)
=

∫ 1

0

(ln(1− z))2 (1− z)
λ
β z−1dz.

Since LBWE is a regular family, we have the following result:

√
n
(
(λ̂− λ), (β̂ − β)

)
→ N2(0,Σ

−1),

4.2 Data Analysis

We analyze one real data mainly for illustrative purpose, to show how the propose LBWE

model behaves in practice. The data set is obtained from Lawless (1982, pp 228), and it

represents the number of million revolution before failure for each of the 23 ball bearings.

It is as follows: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56,

67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. Before

progressing further we have subtracted 10.25 from each data point.

Preliminary data analysis suggests that it is coming from a skewed distribution, and the

scaled TTT plot suggests that the empirical hazard function is an increasing function. The

histogram and the scaled TTT plots are provided in Figure 1 and Figure 2, respectively.

The preliminary data analysis suggests that the two-parameter LBWE distribution may be

used to analyze this data set.

To get an idea about the initial estimates of β and λ, we use the grid search method

with a grid length 0.01, and we obtain the initial estimates as 0.02 and 0.04, respectively.

We use these initial estimates in the Newton-Raphson algorithm, and we obtain the final

estimates of β and λ as 0.0257 and 0.0411, respectively. The associated 95% confidence
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Figure 1: Relative histogram of the ball-bearing data set and the estimated PDF of the fitted
LBWE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
Figure 2: Scaled TTT plot of the ball-bearing data set.

intervals become 0.0257∓0.0071 and 0.0411∓0.0098, respectively. Now the natural question

is how good is the model? The Kolmogorov-Smirnov (KS) statistic and the associated p

value become 0.0854 and 0.9960 respectively. Therefore, it provides an excellent fit. We

have provided the empirical survival function and the fitted survival function in Figure 3.

5 Three-Parameter LBWE Distribution

In this section we introduce the location parameter to the two-parameter LBWE distribu-

tion mainly for data analysis purpose. We call this new distribution as the three-parameter
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Figure 3: Scaled TTT plot of the ball-bearing data set.

LBWE distribution. A random variable T is said to have a three-parameter LBWE distri-

bution if it has the following PDF:

fT (t;α, λ, µ) =
(λ(α + 1))2

α(α + 2)
(t− µ)e−λ(t−µ)(1− e−λα(t−µ)); t > µ, (16)

for α > 0, λ > 0 and −∞ < µ < ∞. It will be denoted by LBWE(α, λ, µ). Clearly, the

properties of the three-parameter LBWE distribution are similar to the properties of the

two-parameter LBWE distribution. Now we will discuss the maximum likelihood estimators

of the unknown parameters based on a random sample {x1, . . . , xn} from LBWE(α, λ, µ).

Similarly as before, we make the re-parameterization β = αλ, and we will be discussing the

MLEs of β, λ and µ only. The log-likelihood function becomes:

L(β, λ, µ) = 2n ln(β + λ)− n ln β − n ln(β + 2λ) + 2n lnλ+
n∑

i=1

ln(xi − µ)− λ

n∑

i=1

(xi − µ)

+
n∑

i=1

ln
(
1− e−β(xi−µ)

)
. (17)

The three normal equations take the following forms:

∂L(β, λ, µ)

∂λ
=

2n

β + λ
− 2n

β + 2λ
+

n

λ
−

n∑

i=1

(xi − µ) = 0, (18)

∂L(β, λ, µ)

∂β
=

2n

β + λ
− n

λ
+

n∑

i=1

(xi − µ)e−β(xi−µ)

1− e−β(xi−µ)
= 0, (19)
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∂L(β, λ, µ)

∂µ
= −

n∑

i=1

1

xi − µ
+ nλ− βe−β(xi−µ)

1− e−β(xi−µ)
= 0. (20)

To compute the MLEs we need to solve (18), (19) and (20), simultaneously. We have used

the same data set, and computed the MLEs as β̂ = 0.0317, λ̂ = 0.0404 and µ̂ = 10.9998.

The associated log-likelihood value becomes -113.0198. In this case the KS statistic and the

associated p value become 0.0849 and 0.9964, respectively. Gupta and Kundu (1999) fitted

three-parameter Weibull, gamma and generalized exponential distributions to this same data

set. For comparison purposes, we have presented below the associated log-likelihood values

and KS statistics for each case. It is clear that the three-parameter LBWE distribution

provides a very good fit to the given data set.

Table 1: Log-likelihood values and the KS statistics for different three parameter distribu-
tions.

Distribution log-likelihood KS

Gamma -112.8501 0.107
Weibull -112.9767 0.118
GE -112.7666 0.103
LBWE -113.0198 0.085

6 Conclusions

In this paper first we consider the weighted exponential distribution originally proposed by

Gupta and Kundu (2009) and discussed its different reliability properties. We then consider

two-parameter length biased weighted exponential distribution. We discussed different prop-

erties of the proposed LBWE distribution and provided some inferential results. We further

consider three-parameter LBWE model mainly for data analysis purposes. We analyze one

data set using the three-parameter LBWE model, and it is observed that it provides a better

fit than some of the existing three-parameter models based on KS statistics. Therefore, the

proposed model may be used for data analysis purposes for some situation in practice.
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