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Abstract—Recent papers and patents in iterative unsupervised learning have emphasized a new trend in clustering. It basically

consists of penalizing solutions via weights on the instance points, somehow making clustering move toward the hardest points to

cluster. The motivations come principally from an analogy with powerful supervised classification methods known as boosting

algorithms. However, interest in this analogy has so far been mainly borne out from experimental studies only. This paper is, to the best

of our knowledge, the first attempt at its formalization. More precisely, we handle clustering as a constrained minimization of a

Bregman divergence. Weight modifications rely on the local variations of the expected complete log-likelihoods. Theoretical results

show benefits resembling those of boosting algorithms and bring modified (weighted) versions of clustering algorithms such as

k-means, fuzzy c-means, Expectation Maximization (EM), and k-harmonic means. Experiments are provided for all these algorithms,

with a readily available code. They display the advantages that subtle data reweighting may bring to clustering.

Index Terms—Clustering, Bregman divergences, k-means, fuzzy k-means, expectation maximization, harmonic means clustering.
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1 INTRODUCTION

RECENTLY, a newmethodology in the design of supervised
learning algorithms has allowed us to obtain dramatic

improvementsofclassificationperformances: theconstrained
minimization of Bregman divergences [1]. A Bregman
divergence is, informally speaking, the tail of the Taylor
expansion of a differentiable convex function. A famous
problemincomputational learning theorywasaddressedand
solved by this technique [2], [3], [4]: boosting, that is, the
problem of combining the outputs of moderately accurate
classifiers to get, with high probability, a highly accurate
ensemble [5]. Online learning has also benefited from this
framework, as well as relevant applications in portfolio
prediction, text categorization, andcalendarmanagement [1].

On theotherhand,unsupervised learningalgorithmshave
so far remained remarkably cut off from this line of work. A
notable exception is thework of [6], [7], whose objective is the
use of Bregman divergences to extend current clustering
algorithms such as k-means and Expectation Maximization
(EM) to densities, members of the exponential family.
However, this work does not consider the modification of
clustering algorithms by leveraging data, which is the crux of
boosting. This is all the more interesting as is it well-known
that Bregman divergence minimization brings weighted
iterative solutions for learning [1] and there has recently
been a growing attention around weighted iterative cluster-
ing algorithms in unsupervised learning, such as, harmonic
means clustering [8], [9]. Recent approaches have even
emphasized the benefits of weighting the instances in
clustering [8], [10] and make first attempts to explain the
quality of the experimental results by boosting analogies [8],

[11], [12]; unfortunately, the analogy has so far remained
quite loose, supported mainly by experimental results and
the notice that weighting functions tend to give greater
weights to points less efficiently clustered, thereby “attract-
ing” the cluster centers.

It is the aim of this paper to formulate clustering as an
abstract problem of constrained Bregman divergence mini-
mization. The solutionyieldsoriginal extensionsof clustering
algorithms, whose application is given for four members:

1. k-means [13],
2. fuzzy c-means [14] (called, in thispaper, fuzzyk-means

for notational convenience),
3. Gaussian EM [15], and
4. harmonic means clustering [9].

This solution has attractive boosting related theoretical
features [4]. It completes the previous ad hoc analogies on
the behavior of weighted clustering [8], [9], [11]. Further-
more, its implementation does not require a significant
implementation effort as it boils down to plugging a local
module for weight modification in the abstract clustering
scheme of [8]. Also, weighting does not exhibit a significant
complexity increase. In fact, compared to clustering algo-
rithms such as EM and harmonic means clustering, there is
no additional complexity penalty. We have implemented
and tested our applications. Numerous experiments assess
the influence of various parameters on clustering, such as the
cluster types, the balance between clusters, and the
initialization of clustering. Among other comments emerges
the fact that weighting is a worthwhile companion for
clustering and, in particular, a convenient alternative to
previous clustering with soft membership (fuzzy k-means,
EM, harmonic means clustering), which seems to work
better as the problems contain highly imbalanced clusters,
i.e., as they become harder.

Section 2 presents some preliminaries on clustering.
Section 3 details the theoretical aspects of clustering with
Bregman divergences. Section 4 presents and discusses
some experiments with a readily available implementation
of our algorithms. Section 5 and the Acknowledgments
conclude the paper and detail the code availability.
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Lab., Université Antilles-Guyane, B.P. 7209, 97278 Schoelcher, Martini-
que, France. E-mail: rnock@martinique.univ-ag.fr.

. F. Nielsen is with Sony Computer Science Laboratories Inc., 3-14-13
Higashi Gotanda, Shinagawa-Ku, Tokyo 141-0022, Japan.
E-mail: Frank.Nielsen@acm.org.

Manuscript received 6 Sept. 2005; revised 22 Nov. 2005; accepted 29 Dec.
2005; published online 13 June 2006.
Recommended for acceptance by L. Kuncheva.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0482-0905.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 1, 2009 at 05:30 from IEEE Xplore.  Restrictions apply. 



2 DEFINITIONS AND PRELIMINARIES

Our notations closely follow [6]. Bold-faced variables, such
as p;x, denote (column) vectors. Sets are represented by
calligraphic upper-case alphabets such as X . The elements
of X are enumerated xi, for i ¼ 1; 2; . . . ; jXj (xi if they are
vectors), where j:j denotes the cardinal. Blackboard faces
denote subsets of IR, the set of real numbers. h:; :i defines
the inner product for real valued vectors, i.e., the dot
product, and k z k¼ hz; zi12 for some real-valued vector z. A
distribution w over X is some unit mass discrete measure
and the uniform distribution over X , u, is such that ui ¼ 1=n
(81 � i � n). In the context of clustering, this set, X , is a
point set of n elements in a d-dimensional metric space.

Clustering aims at recovering a structure in data. We are
given an integer k > 0 and wish to recover k component
models that best fit sampling X . Prominent approaches,
including k-means [13] and EM [15], can be cast in a
probabilistic framework. Each model is a density, pð:; �jÞ,
for 1 � j � k, where �j denotes its parameters. We note, for
short, pðxi; �jÞ ¼ pji . For any distribution w over X , define:

‘ðwÞ ¼
X

n

i¼1

wi‘i; ð1Þ

‘i ¼
X

k

j¼1

�mðj; iÞ logðpji�jÞ; 81 � i � n: ð2Þ

Here, �� is a distribution over the set of models, the mixing
proportions: �j is the proportion ofX that comes frommodel j.
mðj; iÞ is called theposterior responsibility (or probability), or
membership function, as it generally defines a distribution over
the models for each 1 � i � n. mðj; iÞ defines the proportion
of element xi that belongs to cluster j. Equation (1) is
formulated in a general way for future purposes, but, if w
were uniform, ðw ¼ uÞ;�‘tðuÞ would equal the expected
complete log-likelihood, which is approximately locally
maximized by k-means and EM in their respective frame-
works. The main difference between k-means and EM comes
from a longstanding debate on the assignments of points to
the clusters. k-means chooses hard membership assignment
since each point belongs to exactly one cluster (for each i,
mðj; iÞ is 1 for a single j and 0 for all others). On the other side,
EM chooses softmembership of each point to all clusters.

More recently, some authors have begun to question the
transfer to clustering of a well-known supervised learning
principle. Boosting [2] has shown from both the theoretical
and experimental standpoints that improvements in the
performances of iterative supervised learning algorithms can
be obtained when one makes subtle reweighting of the
(labeled) points in X . It seems natural to try to transfer this
property to clustering: Whenever the loss function is
essentially decreasing as a function to a cluster center (such
as for Gaussian priors or, more generally, members of the
exponential family [6]), points with higher weights should
attract the cluster centers [8]. The iterative nature of popular
clustering algorithms [13], [15], [11] is certainly another
motivation for this transfer as the adaptive nature of boosting
algorithms comes, in part, from the fact that they are iterative.
Weighting a clustering algorithm boils down to defining a
distribution w over X . So far, however, exploiting this
analogy has been mainly the subject of empirical studies

only. A first example is Topchy et al. [10], who tailor
resampling to make clustering adaptive, by favoring points
that have been less efficiently clustered so far. A second
example is Zhang [9], who replaces the k-means loss by a soft,
differentiable losswhich introduces the distance to all centers
instead of just the distance to the closest of them: the
harmonic mean.

Algorithm 1. General Iterative Clustering X ; k

Input: point set X , integer k > 0

Initialize the models p
j
0; 81 � j � k (plus eventual related

parameters)

for t ¼ 0; 1; . . . do

[1.] Compute/update the memberships:

mtðj; iÞ; 81 � i � n; 81 � j � k;

[2.] Compute/update the weights: wt;i; 81 � i � n;
[3.] Update the models: pj

tþ1; 81 � j � k (plus eventual

related parameters);

Algorithm 1, which is inspired by [8], gives a useful
abstract view of clustering from which we may derive all
algorithms we consider in this paper. Remark that the
algorithm’s parameters (memberships, weights, models,
and related parameters) are indexed first by an iteration
number (e.g., t). With the help of Algorithm 1, Table 1 gives a
synthesis of the four categories of algorithms we consider in
this paper, including the loss that each algorithm strives to
minimize.Here are someadditional comments: There are two
popular initializations for the centers ��0;:: Forgy and random
[8]. Forgy initializes the cluster centers by picking at random
k points over the n. In random initialization, centers are
computed by first assigning each point to a random cluster
and then computing the cluster centers from the sets
obtained. In EM, ��0 is initialized to the uniform distribution
(it remains uniform in k-means). We have modeled k-means

with Gaussians having covariance matrices proportional to
identity. Under the constraint of hard membership, it is easy
to check that �‘tðuÞ ((3)) is indeed maximized for the
membership choices in Table 1. Furthermore, the update of
the centers in Step 3 of Algorithm 1 boils down to a
conventional least square minimization problem equivalent
to the quantization error minimization [13]. In our context of
clustering and after Kearns et al. [16], we define the current
KMN loss on some point xi as minj k xi � ��t;j k2 . Since
clustering algorithms do not always minimize the same loss
(seeTable 1), theKMNloss is sometimesusedas thepreferred
comparison measure [8]. Finally, in EM, Step 1 would be the
E-step and Step 3 would be the M-step.

3 AN ABSTRACT WEIGHTING SCHEME FOR

CLUSTERING ALGORITHMS

Definition 1. We call the advantage over distribution wt at
iteration t the quantity �t 2 IR that satisfies ‘tþ1ðwtÞ �
‘tðwtÞ ¼ ��t, 8t � 0. We also define vector dt such that
dt;i ¼ ‘tþ1;i � ‘t;i, 81 � i � n.

We thus have hwt;dti ¼ ��t. EM and k-means are algo-
rithms that work by a repetitive minimization of ‘tðuÞ. They
guarantee that, if wt were uniform, then we would have
�t � 0 so that the clustering would indeed get better with
the iterations (hence, the name of �t).
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The problem is: What if we demand that the advantage be

measured on other distributions? Is there something to gain

over the initial uniform distribution u? These questions may

appear surprising at first glance because u is the natural

distribution of data. Thereby, it is certainly the most direct

way to minimize the loss ‘tð:Þ. But, it appears not to be the

only way to achieve this goal. Surprisingly, sometimes, it is

also not the best.
The remainder of this section is now the investigation of a

particular weighting scheme and its possible theoretical

benefits on clustering. For this objective, we make two

assumptions on Algorithm 1: First, w0 ¼ u. Second, in

Step 3, we pick p
j
tþ1ð1 � j � kÞ such that:

hwt;dti ¼ ��t: ð11Þ
This is equivalent to having:

P

i:dt;i<0 wt;ijdt;ij ¼ �t þ
P

i:dt;i>0

wt;ijdt;ij. Bymeans of words, when �t > 0, the total amount of

loss decrease exceeds the total amount of loss increase by

quantity �t (with respect to wt) and the next clustering

models are chosen so as to make the new clustering have at

least a small gain on wt. In Boosting, there is a similar

assumption of biased weak loss reduction, called the weak

learning assumption, which turns out to be sufficient for

significant unbiased global loss reductions too (i.e., over the

initial distribution) [2], [4].We now show that it is alsowithin

reach for clustering, provided the sole satisfaction of ourweak

clustering assumption ((11) with �t > 0). For this objective, we

return to Step 2 ofAlgorithm1.wtþ1 is foundbyminimizing a

convex functional under some particular constraints. This

functional is a Bregman divergence: The information diver-

gence [1], h1; iti, with it the vector whose coordinate for some

xi 2 X is it;i ¼ wtþ1;i lnðwtþ1;i=wt;iÞ � wtþ1;i þ wt;i. The pro-

blem we would like to solve for wtþ1 is the following one:
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minimize h1; iti; ð12Þ
s:t: h1;wtþ1i ¼ 1; ð13Þ
s:t: hwtþ1;dti ¼ 0: ð14Þ

With the fact that w0 ¼ u, constraint (13) is a sufficient

condition to express the fact that wtþ1 is a distribution (see

below, (15), for an analytical expression). Constraint (14)

states thatwtþ1 is decorrelatedwith respect to loss variations:

‘tþ1ðwtþ1Þ ¼ ‘tðwtþ1Þ. This has a consequence on the follow-

ing step of the algorithm: Constraint (11) will force the

models in p�
tþ2 to be different from those in p�

tþ1, thereby

trying to learn something “new” out of the current clustering.

3.1 Dichotomic Approximations to (12)

The convexity of the information divergence makes that (12)

is solved via the Lagrangian: LðX ; bt; ctÞ ¼ h1; iti � btð1�
h1;wtþ1iÞ � ctð0� hwtþ1;dtiÞ with bt and ct Lagrange multi-

pliers for constraints (13) and (14), respectively. wtþ1 is

obtained after solving @LðX ; bt; ctÞ=@wtþ1;i ¼ lnðwtþ1;i=wt;iÞ �
bt � ctdt;i ¼ 0 (81 � i � n). Though it does not admit closed-

form solutions, it can be simplified to yield:

wtþ1;i ¼
wt;i expð�ctdt;iÞ

expðbtðctÞÞ
; 81 � i � n: ð15Þ

In (15), btð:Þ is called the cumulant function, whose expres-
sion is obtained with constraint (13): btðcÞ ¼ ln

Pn
i¼1

wt;i expð�cdt;iÞ (with c 2 IR). The term inside the “ln ” is the
normalization coefficient for wtþ1: ZtðcÞ ¼

Pn
i¼1 wt;i exp

ð�cdt;iÞ. Finally, ct is obtained using constraint (14), as the
solution to:

X

n

i¼1

wt;idt;i expð�ctdt;iÞ ¼ 0: ð16Þ

This equation does not admit a closed-form solution in the
general case. However, we need to compute at least an
approximation with desirable properties for the weighted
algorithm. The following lemma, whose proof is straightfor-
ward, states under which conditions (16) admits a unique
solution.

Lemma 1. Suppose 91 � i � n : dt;i > 0 and 91 � i � n :

dt;i < 0. Then, (16) has a single solution.

Lemma 1 does not state where ct lies in IR. Without
more information, even searching for approximations
might represent a considerable complexity burden. For-
tunately, we show that ct lies on an interval of reduced
measure. Define dt ¼ min1�i�n:dt;i>0 jdt;ij, dt ¼ max1�i�n jdt;ij,
dþt ¼P1�i�n:dt;i>0 wt;ijdt;ij, and d�t ¼P1�i�n:dt;i<0 wt;ijdt;ij.
Lemma 2. The solution to (16) satisfies

jctj 2
1

dt
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi

d�t =d
þ
t

q

�

�

�

�

�

�

�

�

;
1

dt
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi

d�t =d
þ
t

q

�

�

�

�

�

�

�

�

� �

:

Proof. Define gðcÞ as the sigma of (16) in which ct is replaced

by variable c 2 IR. We consider three cases, depending

on the value of �t. We have gð0Þ ¼ hwt;dti ¼ ��t from

constraint (11). When �t ¼ 0, gð0Þ ¼ 0 and, thus, ct ¼ 0. In

this case, since hwt;dti ¼ dþt � d�t ¼ 0, the left and right

bounds in Lemma 2 are both zero and the lemma is

satisfied. Suppose now that �t > 0. gð0Þ < 0 easily yields

ct < 0 and we have:

X

1�i�n:dt;i>0

wt;idt;i expð�ctdt;iÞ � expð�ctdtÞdþt ; ð17Þ

X

1�i�n:dt;i<0

wt;ijdt;ij expð�ctdt;iÞ � expðctdtÞd�t : ð18Þ

Furthermore,

gðctÞ ¼
X

1�i�n:dt;i>0

wt;idt;i expð�ctdt;iÞ

�
X

1�i�n:dt;i<0

wt;ijdt;ij expð�ctdt;iÞ ¼ 0;

which yields the identity of the two sigmas in (17) and (18)

and, finally, yields expð�ctdtÞdþt � expðctdtÞd�t , from

which we obtain ct � �ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi

d�t =d
þ
t

p

. Because

d�t > dþt , this upper bound is also strictly negative. Now,

we also have the following:
P

1�i�n:dt;i>0 wt;idt;i expð�ctdt;iÞ
�expð�ctdtÞdþt and

P

1�i�n:dt;i<0 wt;ijdt;ij expð�ctdt;iÞ � exp

ðctdtÞd�t , from which we get expðctdtÞd�t � exp ð�ctdtÞdþt
and ct ��ð1=dtÞ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi

d�t =d
þ
t

p

. The case for�t < 0 is obtained

in the sameway. tu
Lemma 2 shows that ct may be approximated through a

simple dichotomic search, with reduced complexity. Fix

ct ¼ min �ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð�t=dþt Þ
q

;�ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð�t=dþt Þ
q

� �

and

ct ¼ max �ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð�t=dþt Þ
q

;�ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð�t=dþt Þ
q

� �

:

Then, Lemma 2 also shows that:

ct 2 ½ct; ct�: ð19Þ
Let ĉct denote our approximation to ct. Suppose we wish

jct � ĉctj=jctj � ". Then, the number of dichotomic steps to beat

this relative error " is only Oðlnðdt=dtÞ þ lnð1=�ÞÞ: For this to
hold, observe that a sufficient condition is to have

ððb� aÞ=ð2�aÞÞ � ", with ½a; b� the interval in Lemma 2 and �

the number of dichotomic steps. Solving for � yields the

bound. Before going on further, it is worthwhile noticing that

the weighting behavior respects the boosting analogy of [8]

when the clustering gets better, i.e., when ct < 0. In this case,

points that “attract” centers on the next models have their

weight decreasing. Thus, they somehow“leave space” for the

next clustering rounds, for the points whose clustering

degrades. Our weighting scheme displays, however, an

original pattern previously not reported: Whenever the

clustering gets worse, greater weights are given to the points

more efficiently clustered. This tends to penalize the current

clustering, making it somehow “attracted” toward the

previous, better solutions. Finally, Lemma 2 also shows that

the sign of ct and ĉct is the same. Lemma 2 does not say,

however, why we should carry out such computations for

weight modification.
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3.2 Closed-Form Approximations to (12) and
Conditions of Improvement of Clustering

This section is split into two. We first show that there are
different ways to compute ĉct that bring a convenient result
on the normalization coefficient, namely, ZtðĉctÞ is smaller
than one by a significant amount. In a second part, we show
that the normalization coefficient is the key to the
improvement of clustering, i.e., the decrease of the losses
used in Table 1.

3.2.1 An Upper Bound on ZtðĉctÞ
First, since @ZtðcÞ=@c ¼ �gðcÞ, we see that ZtðcÞ is strictly
decreasing on ½�1; ct� and strictly increasing on ½ct;þ1�.
We also have Ztð0Þ ¼ h1;wti ¼ 1. Thus, without any more
derivation, if we pick for ĉct the bound of (19) which is the
closest to zero, then we would already have Ztð:Þ < 1. The
amount by which Ztð:Þ is < 1 still remains to be given. For
this objective, we make use of the following simple Lemma.

Lemma 3.

expð�xzÞ � ðð1þ xÞ=2Þ expð�zÞ þ ðð1� xÞ=2Þ expðzÞ;
8x 2 ½�1; 1�; 8z 2 IR:

Proof. Left is a convex curve crossing points ð�1; expðzÞÞ
and ð1; expð�zÞÞ and right is the equation of the line
crossing these two points. tu

The following lemma states the upper bound on the

normalization coefficient.

Lemma 4. Suppose j�tj < dt. Then, ZtðcÞ � exp ��2t =ð2d
2

t Þ
� 	

whenever �t � 0 and c 2 ½ct; ct� and whenever �t � 0 and
c 2 ½ct; ct�.

Proof. 81 � i � n, if we fix x ¼ dt;i=dt and z ¼ cdt (8c 2 IR),

then we obtain from Lemma 3:

expð�cdt;iÞ � ððdt þ dt;iÞ=ð2dtÞÞ expð�cdtÞ
þ ððdt � dt;iÞ=ð2dtÞÞ expðcdtÞ:

Plugging this into ZtðcÞ and using (11), we obtain:

ZtðcÞ ¼
X

n

i¼1

wt;i expð�cdt;iÞ

� ððdt þ hwt;dtiÞ=ð2dtÞÞ expð�cdtÞ
þ ððdt � hwt;dtiÞ=ð2dtÞÞ expðcdtÞ

¼ ððdt � �tÞ=ð2dtÞÞ expð�cdtÞ
þ ððdt þ �tÞ=ð2dtÞÞ expðcdtÞ:

Fix hðcÞ as this last function for short. We have ZtðcÞ �
hðcÞ; 8c 2 IR and, therefore, ZtðctÞ � infc2IR hðcÞ. We have
j�tj � dt, and provided this inequality is strict, hðcÞ is
strictly convex with þ1 limits when jcj ! þ1. Its
minimizing c is easily obtained as:

~cct ¼ � 1

dt
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2�t

dt � �t

s

; ð20Þ

which yields

hð~cctÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�t=dtÞ2
q

� expð��2t =ð2d
2

t ÞÞ:

To finish the proof of the lemma, it is sufficient to prove
that ~cct is in between 0 and the interval ½ct; ct�. First, notice
that the lemma holds trivially when �t ¼ 0 (since
ct ¼ ct ¼ ~cct ¼ 0). Suppose that �t > 0. In this case, we have

ct ¼ �ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð�t=dþt Þ
q

< 0;

furthermore, since �t < dt and �t ¼ d�t � dþt , we easily

obtain that ct < ~cct and, so, the statement of the lemma

holds. Suppose now that �t < 0. In this case,

ct ¼ ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�t=d�t Þ
p

> 0

and we can also rewrite ~cct as

~cct ¼ ð1=dtÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�t=ðdt þ �tÞ
q

> 0:

Using again �t < dt and �t ¼ d�t � dþt , we easily obtain
~cct < ct and, so, the statement of the lemma holds. tu

Lemma 4 says that, if we want a normalization coefficient

ZtðĉctÞ explicitly smaller than one up to the bound stated,

then we have three strategies, in decreasing order of the

upperbound on ZtðĉctÞ:

. The simplest: We fix ĉct ¼ ~cct. This brings ZtðĉctÞ the
closest to the bounds.

. A more efficient: We use for ĉct the bound of the
interval (19) which is the closest to zero.

. The most efficient: We run the dichotomic search
inside (19).

3.2.2 Improvement of the Clustering

From now on, we write, for short, ẐZt ¼ ZtðĉctÞ. We suppose

we have run Algorithm 1 for T þ 1 clustering rounds. The

next lemma is immediate from the proof of Lemma 4, but it

is useful to emphasize the results to follow.

Lemma 5. �tĉct � 0, 8t � 0, with inequality iff �t ¼ ĉct ¼ 0.

We now let A0 ¼ ĉc0 and AT ¼ ĉc0‘0ðuÞ þ
PT

t¼1ðĉct � ĉct�1Þ‘tðuÞ,
8T > 0. We also let BT ¼PT

t¼0 lnð1=ẐZtÞ, 8T � 0, and DT ¼
ðmaxi wT;i �mini wT;iÞ2=ð4maxi wT;i mini wT;iÞ, 8T > 0. Re-

mark that provided each ĉct is picked according to one of the

threemethods above, each summand inBT is positive, so that

BT > 0. Furthermore, DT is positive; it quantifies a discre-

pancy between the maximal and the minimal weight in wT .

Weneed the following result, a reverse of theAGH inequality

due to [17]:

Lemma 6. Consider n reals 0 < x1 � x2 � . . . � xn and a
distributionw over these reals. Then, we have

X

i

wixi �
Y

i

xwi
i expððxn � x1Þ2=ð4x1xnÞÞ:

The following lemma bounds loss ‘Tþ1ðuÞ as a function of
the three parameters AT , BT and DT .

Lemma 7. AT þBT � ĉcT ‘Tþ1ðuÞ � AT þBT þDTþ1, 8T � 0.

Proof. Consider some iteration T > 0.We unravel the update

rule in (15) and obtain wTþ1;i ¼ ð1=ðnQT
t¼0 ẐZtÞÞ exp

ð�PT
t¼0 ĉctdt;iÞ, 81 � i � n. Summing over all 1 � i � n
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and rearranging, we obtain ð1=nÞPn
i¼1 expð�

PT
t¼0 ĉctdt;iÞ ¼

QT
t¼0 ẐZt. Now, we lower bound the exponential average

using Jensen’s inequality, and upper bound the same

average via Lemma 6.We can simplify the term appearing

in the exponential penalty of (6) and we finally get the

following inequalities:

exp �
X

T

t¼0

ĉcthu;dti
 !

� 1

n

X

n

i¼1

exp �
X

T

t¼0

ĉctdt;i

 !

� exp �
X

T

t¼0

ĉcthu;dti
 !

� expðDTþ1Þ:

There remains to use the unraveled update rule to replace

the central exponential and solve using the relationship

hu;dti ¼ ‘tþ1ðuÞ � ‘tðuÞ. This yields the statement of

Lemma 7. tu
Lemma 7 brings immediate upper bounds on ‘Tþ1ðuÞ,
depending on the sign of ĉcT . For example, when ĉcT � 0 (i.e.,

�T � 0), we obtain:

‘Tþ1ðuÞ � ðAT=ĉcT Þ þ ðBT=ĉcT Þ: ð21Þ
Note that ĉc0=ĉcT þPT

t¼1 ðĉct � ĉct�1Þ=ĉcT ¼ 1 so that AT=ĉcT
describes a weighted sum of losses, each loss computed

over the initial distribution u (and not on the skewed

distributions wt). We get that ‘Tþ1ðuÞ is no more than this

weighted sum plus an additional term. Provided the

leveraging coefficients ĉct are picked according to whichever

of the three methods above is used, this additional term,

BT=ĉcT , is < 0, also tends to decrease with T . Under some

particular circumstances, we can obtain an upper bound on

‘Tþ1ðuÞ much more explicit, as shown by the following

Lemma 8:

Lemma 8. Let T > 0. Suppose that ĉct � ĉct�1 � 0; 80 < t � T .

Then, ðAT þBT Þ=ĉcT � ‘0ðuÞ þ
PT

t¼0ð1=ĉctÞ lnð1=ẐZtÞ.
Proof. The proof is obtained by induction on T . Case T ¼ 0

is immediate as both sides coincide. To prove case T ¼ 1,

remark that we can write:

A1 þB1

ĉc1
¼ ‘0ðuÞ þ

ĉc1 � ĉc0
ĉc1


 �

‘1ðuÞ � ‘0 �
1

ĉc0
ln

1

ẐZ0

� �

þ 1

ĉc0
ln

1

ẐZ0

þ 1

ĉc1
ln

1

ẐZ1

:

ð22Þ

Lemma 7 yields ‘1ðuÞ � ðA0 þB0Þ=ĉc0, which, after the

induction hypothesis, brings ‘1ðuÞ � ‘0ðuÞ � ð1=ĉc0Þ ln
ð1=ẐZ0Þ. Thus, the expression inside brackets is � 0.

Furthermore, factor ðĉc1 � ĉc0Þ=ĉc0 � 0, which yields that the

right-hand side of (22) is � ‘0 þ ð1=ĉc0Þ lnð1=ẐZ0Þ þ ð1=ĉc1Þ
lnð1=ẐZ1Þ, as claimed. Case T > 1 is obtained by writing

again:

AT þBT

ĉcT
¼ 1� ĉcT�1

ĉcT


 �

‘T ðuÞ þ
1

ĉcT
ln

1

ẐZT

þ ĉcT�1

ĉcT

AT�1 þBT�1

ĉcT�1

� �

:

ð23Þ

Since ĉcT�1=ĉcT > 0, we may use the induction’s hypoth-

esis inside the brackets of (23) and get:

AT þBT

ĉcT
� 1� ĉcT�1

ĉcT


 �

‘T ðuÞ þ
ĉcT�1

ĉcT
‘0ðuÞ

þ ĉcT�1

ĉcT

X

T�1

t¼0

1

ĉct
ln

1

ẐZt

þ 1

ĉcT
ln

1

ẐZT

:

ð24Þ

Equation (24) can be written as follows:

AT þBT

ĉcT
� ‘0ðuÞ þ

ĉcT � ĉcT�1

ĉcT


 �

‘T ðuÞ � ‘0 �
X

T�1

t¼0

1

ĉct
ln

1

ẐZt

" #

þ
X

T

t¼0

1

ĉct
ln

1

ẐZt

:

ð25Þ
To finish up, Lemma 7 yields ‘T � ðAT�1 þBT�1Þ=ĉcT�1,
which, after the induction hypothesis, brings ‘T ðuÞ �
‘0ðuÞ �

PT�1
t¼0 ð1=ĉctÞ lnð1=ẐZtÞ. Thus, the term inside brack-

ets in (25) is � 0 and, since its factor is � 0, we obtain the
proof of the induction’s general case and that of the lemma
as well. tu
What is interesting about Lemma 8 is that, under its

assumptions (that also imply �t � 0), AT=ĉcT becomes a
(weighted) average of losses as all factors of the ‘ts are � 0 in
AT . Under the conditions of Lemma 8, if we pick ĉct as in
(20), then we easily obtain the following bound (with the
fact that lnð1þ xÞ � x):

‘Tþ1ðuÞ � ‘0ðuÞ �
X

T

t¼0

�2t

dt ln
dtþ�t
dt��t

� 	 � ‘0ðuÞ �
X

T

t¼0

�t
2

1� �t

dt


 �

:

ð26Þ
Since �t � 0 (Lemma 5) and dt � �t, we see that even when
Algorithm 1 relies on a distribution repeatedly skewed with
our weighting scheme, it can also bring a decrease of the
loss on the initial distribution too.

So far, we have seen the ways we can tackle a direct, global

minimization of ‘:ðuÞ, which is basically distribution depen-

dent as it takes into accountwt (t � 0) andu. There is a second

way to cope with the reduction which does not take into

account the distribution since it focuses locally on the

reduction of the pointwise losses, as defined in (4), (5), and

(6). Its principle is that a pointwise decrease of this loss on a

sufficiently largenumberofpointsmayalsobring a reduction

of ‘:ðuÞ as well, regardless of distributionswt. The following

lemma is the key to show that it is indeed possible.

Lemma 9. 8T > 0, suppose that �T > 0. Then,

1

n
xi 2 X : exp�‘Tþ1;i � exp�‘0;i

� 

ĉc0
ĉcT

Y

T

t¼1

exp�‘t;i
� 

ĉct�ĉct�1
ĉcT

( )�

�

�

�

�

�

�

�

�

�

�
Y

T

t¼0

ẐZt:

ð27Þ

Proof. Define ½½���, the function which returns the truth value

2 f0; 1g of predicate �; clearly, ½½q � 0�� � expð�qÞ; 8q 2 IR.
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Thus, we have ½½PT
t¼0 ĉctdt;i � 0�� � expð�PT

t¼0 ĉctdt;iÞ; 81 �
i � n. Since �T > 0, we have ĉcT < 0 (Lemma 5) and the

predicate can be reformulated as �‘Tþ1;i �
PT

t¼1ðĉct�ĉct�1

ĉcT
Þ

ð�‘t;iÞ þ ĉc0
ĉcT
ð�‘0;iÞ. Taking the exponential, the expectation

of the predicate value and using ð1=nÞPn
i¼1 expð�

PT
t¼0

ĉctdt;iÞ ¼
QT

t¼0 ẐZt (proof of Lemma 7), we obtain the

statement of the lemma. tu
Note that exp�‘t;i is the local likelihood of point xi at
iteration t. The right-hand side of the inequality in the
cardinal is a geometric combination of the preceeding
likelihoods (the sum of exponents is 1). Lemma 9 may be
read as follows: The proportion of “bad” points for which
the last (ðT þ 1Þth) likelihood is no more than this geometric
combination of the preceeding, is vanishing at least as fast
as the product of the normalization coefficients. Consider
the setting of Lemma 8. In this case, since each exponent is
also nonnegative, the upper bound for pTþ1;i is exactly a
weighted geometric average of the preceeding ones and it
resembles a likelihood as well. If we pick ĉcT following one
of the three methods, the upper bound on ẐZt of Lemma 4
yields that the set of these bad points is vanishing
exponentially fast. Furthermore, since the geometric average
is highly concave, points that are not bad may enjoy a fast
local increase of their likelihood. Outside the setting of
Lemma 8, the situation may be even more dramatic as
multiplicands with negative exponents are equivalent to
multiplications by potentially very large numbers. From the
global standpoint, these phenomena may help to bring a
convenient decrease of ‘�ðuÞ. Furthermore, if we use
densities for pj (1 � j � k) like the members of the
exponential family that are parameterized by centers (e.g.,
Gaussians), we may also expect a very fast spreading of
these centers. To finish, Lemma 9 is much simplified when
all ĉct are identical and picked according to whichever of the
three available methods. In this case, we obtain indeed:

jfxi 2 X : exp�‘Tþ1;i � exp�‘0;igj
n

�
Y

T

t¼0

ẐZt � exp �
X

T

t¼0

�2t

2d
2

t

 !

:

ð28Þ

To conclude this section, it tends to show that there are at

least two basic strategies for weighted clustering, one rather

local and one rather global:

. We pick ĉct according to whichever of the three
available methods. We are guaranteed that each ẐZt <
1 by a sufficient amount, so that Lemma 9 brings a fast
local improvement of likelihoods. Lemma 7 also
brings a direct decrease of ‘Tþ1ðuÞ, unless too many
of the ĉct arepositive, inwhich case theupper boundon
‘Tþ1ðuÞ becomes more difficult to read.

. We force a sequence of ĉct following, e.g., Lemma 8.
This boils down to using one of the three methods
above and accept a new value for ĉct if it is not higher
than the last one. In this case, thebound forLemma8 is
easy to read and, unless the skewed ẐZt are too large,
we may expect a convenient decrease of ‘Tþ1ðuÞ. On
theotherhand,Lemma9 is this timenot as easy to read
since some ẐZt may be > 1.

3.3 Finishing Up: Step 3 of Algorithm 1 and
Synthesis

So far, we have seen the way we solve Step 2 of Algorithm 1.

While Step 1 does not change, Step 3 is crucial since we have

to find ptþ1 out of pt so as to ensure, whenever possible, a

positive advantage �t in constraint (11).
For algorithms that can be cast into an approximate

maximization of some expected complete log-likelihood

(k-means, EM), for algorithms whose parameter update fits

into conventional least squareminimization (Fuzzy k-means),

there is no great change in Step 3. Table 2 gives these updates
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without proofs. The case of harmonic means clustering is a
little bit more involved to find the new centers out of the
minimization of the harmonic mean (6). Table 1 displays the
updates we have obtained by following [9].

4 EXPERIMENTS

We report experiments comparing our weighted versions of
clustering algorithms to the original algorithms. Notice that
original algorithms may also be weighted (such as for
k-harmonicmeans), but we keep the term “original” for these
algorithms in order to avoid confusion with our modified
weighted versions. There are various data sets used for our
experimental comparisons, but, in order to make fair
comparisons, the weighted and original versions we run are
initialized with the same parameters (empirical centers,
covariance matrices, etc.). Thus, any difference in the results
stems from the differences in the weighting strategies. We
have compared the original andweighted versions of all four
algorithms of Table 1. We have fixed a ¼ 2 for fuzzy k-means
and harmonic means clustering. We have tested both Forgy
and random initialization for the clusters centers and
considered synthetic data sets with numerous possible
characteristics, as detailed below.

4.1 Data Sets

The data sets differ according to the following parameters:

4.1.1 Types of Theoretical Clusters

We have implemented five different types of data set. In the
first, we generate multidimensional spherical Gaussians, i.e.,
with covariance matrix � �2I, with � picked at random for
each cluster. In the second, we do the same, but for clusters
with less overlap (i.e., larger distance between cluster centers
and smaller �s). In the third, we generate multidimensional
ring Gaussians: A point for the jth cluster is generated by
��j þ ðrj þNð0; �jÞÞu, where rj is the ring radius of cluster j
and u is a unit norm vector picked uniformly at random. The
fourth case is considered only when d ¼ 2; it was previously
used to compare various clustering algorithms [8]. This data
set, called BIRCH, consists of a set of 2D clusters whose
centers are located on a d

ffiffiffiffiffi

K
p

e � d
ffiffiffiffiffi

K
p

e grid. Here,K denotes
the number of theoretical clusters. The distance between two
adjacent cluster means on the grid is 4

ffiffiffi

2
p

, with cluster radius
of

ffiffiffi

2
p

(i.e., the variance in each direction is 1). Finally, in the
fifth case, we generate multidimensional cubic uniform
clusters with various degrees of overlap. Fig. 1 presents
examples for each of the five types of data sets.

4.1.2 Theoretical Balance of Clusters

The experimental data sets are generated from theoretical
clusters specified by models, but also by mixing proportions

(�j; 1 � j � n, with
Pk

j¼1 �j ¼ 1, see Section 2). According to
the balance between theoretical clusters, some of them may
have very few points with respect to others and this may
influence the result of clustering. In order to test the influence
of the balance, we have tested three ways of fixing ��. In the
first, �� ¼ u, i.e., the cluster proportions are theoretically
uniform. In the second, �� is a random distribution vector. In
the third, the clusters have exponentially decreasing mixing
proportions, i.e., �jþ1 ¼ �j=2 (and the two last clusters have
the same mixing proportion, to ensure that �� yields unit
mass). Fig. 2 presents examples of the three types of mixing
proportions.

4.2 Weighted Clustering: An Example

To catch a glimpse into the way weighted clustering is
weighting points and influencing clustering, Fig. 3 displays
an example of run for weighted k-means on an “8”-like shape
describedby two ringGaussians. t is the iterationnumber and
the configuration shown is that immediately preceeding the
run for t in Algorithm 1. Thus, the configuration for t ¼ 0 is
the initialization (first) configuration. The colors of points for
t > 0 indicate their membership in a cluster. This explains
why t ¼ 0 does not have different colors for clusters as the
membership has not yet been computed for the configuration
displayed. Recall also that modifying weights can only occur
when at least two configurations have been computed, hence
the weights that remain constant for t ¼ 0 and t ¼ 1 in Fig. 3.
Fig. 3 shows that points far from the initial centers tend to
attract them at the beginning of the iterations; hence, their
weights rapidly become smaller. On the other hand, the
points at the intersection of rings, near the initial centers, see
these center spreading around the rings and, thus, have their
weights increasing. Everything isas if they were trying to
“keep” some centers in their vicinity.

4.3 Overall Results

The experimental setting is as follows: We have crossed all
initialization and data set parameters, for each possible value
of k 2 f2; 4; 8; 16; 32g experimental clusters, K 2 f2; 4; 8;
16; 32g theoretical clusters, d 2 f2; 5; 25; 50g dimensions, and
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Fig. 1. The five types of data sets, with d ¼ 2 and K ¼ 4 theoretical clusters (from the left to the right: Gaussians, Gaussians with less overlaps, ring

Gaussians, BIRCH, and cubic; see text for details).

Fig. 2. The three types of mixing proportions, illustrated with d ¼ 2 and

K ¼ 9 theoretical clusters on a BIRCH data set (from the left to the right:

uniform, random, and exponentially decreasing; see text for details).
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n 2 f1; 000; 2; 000; 3; 000; 6; 000; 9; 000; 12; 000g points. Basi-
cally, thisrepresentsmorethan15,000runsforeachalgorithm,
weighted or not. There is an exception for EM, for which
additional computational complexities (such as for matrix
computations)made it convenient to reduce the set of sizes for
X to n 2 f500; 1; 000; 1; 500; 2; 000g. Furthermore, even when
we have implemented arbitrary Gaussian EM, the results
presented here use diagonal covariance matrices, i.e., whose
principal axes are parallel to the canonical axes. This reduces
the numerical instabilities when computing inverses and
yields more reliable comparisons. Finally, to still reduce the
risk of numerical instabilities, we have chosen (for weighted
EM only) to approximate ‘t;i in (4) by ‘t;i ¼

Pk
j¼1 �ð1=kÞ

logðpjt;iÞ, which boils down to locally approximating the
memberships by the uniform distribution and has the benefit
of canceling themixing proportions in dt;i (Definition 1). Each
algorithm was run for T ¼ 20 clustering rounds and the last
configuration was kept; while, in most cases, this was
sufficient for the original algorithm to converge, this also
gives an indication on the rapidity of the loss decrease. The
weighted algorithm is runwith the simplest computation for
ĉct: ĉct ¼ ~cct (Section 3.2).

The comparison of the algorithm’s performances is based
on three parameters:

. Following [8], ‘T ðuÞ is the k-means KMN loss (see the
k-means column in Table 1).

. missT is the proportion of theoretical clusters that are
missed, i.e., that do not have an empirical cluster in
their Voronoi cell. Such a criterion helps to estimate
the rapidity in spreading the empirical centers [8].

. propT is the proportion of points whose final KMN
loss is not smaller than their initial KMN loss. This is
like comparing the final and initial likelihoods in
Lemma 9 and in (28) and yields insights into the way
the algorithms “share” the centers, i.e., spread the
centers so as to make the greatest number of points
benefit from this spreading.

Each of these parameters can be used as a loss measure to
compare the algorithms. Due to the very large number of
runs, the results have been synthesized to fit in the paper as

follows: For each dimension and each K, we compute the
proportion of wins and losses for the weighted algorithm. 	
estimates the proportion of random win/ties/losses se-
quences that present a ratio win/lose more favorable than
that of the weighted algorithm against the original. For
example, if	 is small enough (say, 1percent),wecan reject the
hypothesis that the advantage of weighted against original is
to random:Theweightedalgorithm is significantly better. For
computational and numerical reasons, we have chosen to
compute an estimation of 	 instead of its true value. This
estimation is computed via a standard concentration inequal-
ity ([18, p. 123]), with which we compute the minimum
number of random sequences yielding an estimator 	̂	 no
different from	 bymore than 
, with probability� 1� �.We
have fixed 
 ¼ 10�4 and � ¼ 1%.

Clearly, our weighting scheme may be fit to many
clustering algorithms: We have experienced this fact for four
of them. We do not intend to demonstrate in this paper that
there exists a clustering algorithm whose weighting scheme
outperforms all clustering algorithms. Such a “free lunch”
result is far beyond its scope. Rather, it is well known that
clustering algorithms are very often highly sensitive to the
fluctuations of someparameters (such as the initialization). In
this context, any method that can be plugged into virtually
many suchalgorithms,without significant computation load,
without significant complexity load, while guaranteeing
relevant theoretical results on the output’s loss, is clearly of
interest to try to improve, from the experimental standpoint,
the algorithm’s results. This is whywe compare each original
algorithm to its weighted version and not to the other
(un)weighted clustering algorithms. Provided an improve-
ment can be observed (and the experiments display this), our
objective is much more to observe under which conditions
does the best improvement occur.

Tables 3 and 4 present the results obtained for the four
algorithms. Fig. 4 displays examples of configurations for
which the weighted algorithm beats the original, for the
four types of algorithms.

The following patterns emerge from the comparison of
weighted versus original algorithms. First, weighted tends to
perform better (‘tðuÞ) as the dimension increases. This is true
for the three classes of clustering algorithms except for fuzzy
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Fig. 3. Running weighted k-means on a set of K ¼ 2 theoretical ring Gaussian clusters (upper left), with k ¼ 16 experimental clusters and random

initialization. Light-blue circles indicate the weights of the points (smaller radius means smaller weight). Big black dots are the empirical clusters

centers. See text for details.
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k-means, whoseweighting scheme already significantly beats

the original on low dimensions. On the contrary, there does

not seem to be any difference as significant when the number

of theoretical clusters increases. Second, the advantage for

weighted against original algorithms seems to be more

dominant for soft membership functions. This is clear from

the results of k-means (hard membership) and fuzzy k-means

(softmembership). Finally, there isa clearadvantageonpropT
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Synthesis of the Results of Two Algorithms (Unweighted versus Weighted)

Top table: k-means; bottom table: fuzzy k-means. See text for details.

TABLE 4
Synthesis of the Results of Two Algorithms (Unweighted versus Weighted)

Top table: EM; bottom table: harmonic means clustering. See text for details.
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for the weighted algorithms on k harmonic means clustering
andk-means, butnot forGaussianEMand fuzzyk-means (and
thisphenomenonisnotasevident formissT ).Overall, thismay
display an improved facility for spreading the centers for the
two first algorithms. To conclude these overall results, while
there are sometimes only sparse improvements among runs,
suchas fork-means, the fact that theweightedschemesrequire
only reduced implementation/computational efforts makes
these modifications worth trying to “escape” the locality of
search for the original algorithms. Some dramatic improve-
ment can also be obtained for fuzzy k-means using our
weighting scheme.

4.4 Drilling Down into Controlled Parameters

Since the homoscedasticity assumption is not satisfied for
our experimental results, instead of carrying out variance
analyses, we have drilled down the controlled parameters
using either the same technique as in the preceeding section
or multiple statistical proportion comparisons with con-
fidence intervals built using the same concentration

inequality as above ([18, p. 123]). For the confidence
intervals, we have used � ¼ 1%.

As a first set of experiments, we have merged the
dimension-dependent results, and crossed them as a
function of the three basic controlled parameters: type of
clusters, balance between theoretical clusters, and initializa-
tion type for the clustering algorithms. Table 5 presents the
results for the weighted versions of clustering algorithms
and ‘tðuÞ. This is basically aimed at displaying for which
types of parameters the weighted versions perform the best.
In the table, the statistical rank (s) is computed as follows:
First, we compute we confidence interval for each win
proportion. Then, we put win proportions in decreasing
order. Starting from the highest, we add each following
proportion that fits into its confidence interval into the
current cluster. As soon as the current proportion does not
fit in, we start a new cluster with the same procedure until
all values are processed. This procedure was chosen to
avoid multiple overlapping clusters that would have
followed from standard statistical analyses and that would
have impaired the readability of the results.
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Fig. 4. Examples of configurations that are better for the weighted algorithms. Upper-left: The loss for weighted k-means is smaller by more than
10 percent than that of the original (clusters are Gaussians, mixing proportions are uniform, and initialization is random). Upper-right: The loss for fuzzy
k-means is smaller by more than 13 percent than that of the original (clusters are Gaussians, mixing proportions are uniform, and initialization is
random). Lower-left: The loss for weighted EM is smaller by more than 10 percent of that of the original (clusters are Gaussians, mixing proportions are
exponentially decreasing and initialization is random). Lower-right: The loss for weighted harmonic means is smaller by more than 5 percent of that of
the original and the fraction of theoretical centers missed is also smaller (configurations are BIRCH, mixing proportions are exponentially decreasing
and initialization is random). In the right tables, white dots are the empirical clusters centers and colors show the soft membership function.

TABLE 5
Synthesis of the Percentages of Wins for Weighted Algorithms against Their Original Version

as a Function of the Type of Cluster (for ‘tðuÞ, See Text for Details)

KM = k-means, FKM = fuzzy k-means, EM = (Gaussian) Expectation Maximization, and HM = harmonic clustering. Here, r is the rank and s is the
statistical rank (see text for details).
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From Table 5, we can say that cubic and Gaussian

clusters are those for which our weighting scheme performs

the best, followed by Gaussians with less overlaps and ring

Gaussians. BIRCH are those for which weighting performs

the worst. These last types of clusters have the reduced

degree of overlap between clusters in common. Somehow,

we can thus say that weighting does not significantly

reduce the tendency of iterative clustering algorithms to be

sensitive to the overlapping degree between theoretical

clusters [8], even when a close look at the results of the

original versions tends to display the fact that this tendency

is reduced for weighting.

Furthermore, from the balance type of theoretical cluster,

we can say that there is a clear tendency for weighting to

perform better as the theoretical clusters are highly

imbalanced. This are good news as data sets with such

highly imbalanced clusters are frequently hard data sets. In

Fig. 4, the weighted version of harmonic clustering clearly

displays this ability to retrieve clusters among minorities.

Fig. 4 is almost as clear for weighted EM.

Finally, there is also a clear tendency for weighting to

perform better for Forgy initialization. This is not really

surprising, as it is well-known that the original algorithms

tend to perform better for random initialization [8], thus

leaving room space for winning for the weighting algo-

rithms on Forgy initialization. Comparatively, the results

we have observed tend to display that the dependence of

the performances for our weighting scheme is reduced with

respect to the initialization type.
We have also drilled down these results to explore the

influence of the dimension. First, for harmonic means

clustering, the rankings observed for the types of clusters

tend to become more dramatic as d increases. This is exactly

the same observation that follows when changing the

balance or the type of initialization. In that last case, for

example, wins for weighting represent approximatively

60 percent for d ¼ 50. On the other hand, there seems to be

an inverse pattern for Gaussian EM: The wins tend to be

more uniform as d increases for the type of cluster. This

uniformization is also visible for the balance and initializa-

tion types. The case of k-means is more interesting. As d

increases, the type of clusters which clearly makes weight-

ing perform much worse is Gaussians with fewer overlaps.

While weighted k-means wins on roughly 10 percent for

them, it wins on more than 20 percent of the runs for each

other type of cluster. Comparatively, there are no differ-

ences among balance and initialization types.

4.5 Alternative Choices for ĉct
In this section, we test the second alternative to compute the

coefficients ĉct outlined at the end of Section 3.2. Here, we

compute a nonincreasing sequence of ĉct following the same

choice for new coefficients as in the preceeding section.

Table 6 presents the results obtained. For EM, we have not

upper bounded the sequence, which thus starts with ĉc0
being computed as usual. From the tables, it seems that

taking into account the sequences does not really bring a

decrease in the loss functions with respect to Table 3 and

Table 4. However, there seems to be a slight positive effect

of the decreasing sequence for EM as the results for d ¼ 25

are better than those of Table 4.
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TABLE 6
Synthesis of the Results of Two Algorithms for an Alternative Choice of ĉct (ĉctþ1 � ĉct)

Top table: k-means; bottom table: EM. See text, Table 3, and Table 4 for conventions and details.
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5 CONCLUSION

Recent papers in unsupervised learning have put a great
emphasis on trying to bring to clustering the recent
breakthrough of a supervised learning technique, boosting,
that has allowed us to obtain dramatic improvements in
performances. In the context of unsupervised learning, this
represents the ability to make subtle reweighting of the
points of a data set, with the hope of getting better final
solutions and getting them faster than without reweighting.
In fact, some of the essential reasons for this motivation are
purely conceptual but quite appealing as it indeed seems
natural that points less efficiently clustered so far may
“attract” the clusters on the next rounds and, thus, receive
greater weights [8], [9], [11], [12].

The main contribution of this paper is to adopt an insight
from classification to improve the performance of unsuper-
vised learning algorithms by making more precise this
analogy to boosting algorithms. We have proposed a generic
iterative clustering scheme that, coupled with some parti-
cular reweighting scheme, may indeed bring improvements
over “classical” clustering from the theoretical standpoint.
This iterative clustering scheme can be specialized to bring
weighted variants of k-means, fuzzy k-means, Expectation
Maximization, and harmonic means clustering [14], [8], [11],
among others. The experimental results clearly display
differences in the benefits of the weighting scheme depend-
ing on the original clustering algorithms.While the improve-
ments seem to bemuchmore significant for soft membership
clustering (such as for fuzzy k-means), we think that our
weighting scheme is worth trying for hard membership
clustering algorithms as well because it may yield better
solutions, at little implementation/computational expenses.
In the near future, we plan to test our weighting scheme on
more complex soft membership clustering algorithms, in-
cluding variational Bayesian extensions of EM [19], [20].
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