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ON WEITZENBÖCK'S THEOREM IN POSITIVE

CHARACTERISTIC

A. FAUNTLEROY

Abstract. Let k be an algebraically closed field and let/: Ga -» GL(K) be a

finite-dimensional /c-rational representation of the additive group Ga. If the

subspace of G„-fixed points in V is a hyperplane, then the ring of G0-in-

variant polynomial functions on V is finitely generated over k. This result is

an analog of a classical theorem of Weitzenböck, a modern proof of which

has been given by C. S. Seshadri.

Introduction. Let k be an algebraically closed field and Ga the one-dimen-

sional vector group over k. Let Ga act linearly on the finite-dimensional

k-vector space V so that the subspace of fixed points on V has codimension

one. The purpose of this note is to show that, in this case, the ring of

Ga-invariant polynomial functions on V is finitely generated over k. This

result is an analog of a classical result of Weitzenböck, a modern proof of

which is due to C. S. Seshadri [6].

If a rational representation of Ga on V factors through an SL(2, k)

representation, then the representation is called fundamental. Seshadri [6]

gives a proof of Weizenböck's theorem for fundamental representations and

shows that every representation of Ga in characteristic zero is fundamental.

An example is given here which shows that this is not the case in positive

characteristics. In particular, there exist representations of Ga having fixed

point loci of codimension one which are not fundamental.

Notations and conventions. Throughout, k denotes a fixed algebraically

closed field of arbitrary characteristic. All algebraic groups are affine k-

groups, all varieties and morphisms are defined over k, and representations of

algebraic groups are assumed /c-rational. A point of a variety is always a

/V-rational point.

Let p: Ga-»GL(F) be a given representation; i.e., a homomorphism of

algebraic groups. Give V the structure of an affine space with ring of

functions S(F*)-the symmetric algebra on the /t-dual of V. The set V0 of

Ga-fixed points of F is a linear subspace of V. Suppose that V0 has codimen-

sion one in V. Let {ex, . . . , e„) be a basis of V such that <e,, . . ., e„_i> =

V0.  Let  {xx,. . ., xn}  be the corresponding dual basis. Then S(V*) ss
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k[xx, . . . , xn] and, since Ga must act trivially on V/V0, the canonical action

of Ga on k[xx, . . . , xn] is as follows:

t • x,; = x + a¡(t)x„,       1 < i < n — 1,
(1)

r • x„ = x„,   ail í G Ga.

Here a,-(r) G &[Ga] = k[T] is an additive function on Ga, so it is a/»-poly-

nomial in k[T] if /> = char A; > 0. The following lemma is well known, but we

give a proof for lack of a precise reference.

Lemma 1. Let A Q B be integral domains with A normal and B integral over

A. Let E be a set of ring endomorphisms of B. Denote by AE and BE the

subring of E-invariant elements of A and B, respectively. Then BE is integral

over A E.

Proof. Let b G BE and let P(T) • Tm + aiTm~x + • • ■ + am be the

minimal monic polynomial of b over the quotient field of A. Since A is

normal, all the a¡ belong to A. Now, if e G E, then

0 = e(P(b)) = bm + e(a2)bm-x + ■■■ + e(am)

and hence, ¿z, = e(ax),.. ., am - e(am).

Suppose char k = /» > 0. Let D be the noncommutative ring of /»-poly-

nomials over k (i.e., composition of functions as the law of multiplication). It

is well known (cf. [4] or [5, Theorem 1]) that D is a right (and left) Euclidean

domain. Consequently, every nonzero left ideal is principal and of finite

codimension as a Â>module. It follows that if a and b are nonzero elements of

D, then Da n Db =£ {0} and, hence, a and b have a nonzero left least

common multiple.

We are now prepared to prove our main result.

Theorem. Let V be a finite-dimensional rational Ga-module and suppose the

et of fixed points in V has codimension one in V. Then the ring of Ga-invariant

polynomial functions on V is finitely generated over k.

Proof. We need only consider the case char k = p > 0. We may assume

k[V] = k[xx, . . ., xn] where the coordinate functions xx, .. ., xn satisfy (1).

Note that, by a simple change of basis of V0, we may assume that the degrees

of all the a¡(T) in (1) are equal. By the preceding remarks, we know that for

each / there exist a pair of nonzero /»-polynomials (b¡, d¡) such that bi ° ax =

d¡ ° a¡. For 2 < i < n - 1 set

(2) z,. = ¿/,.(V^)-¿,(^An)-

It is easy to verify that z, G k(xx, . . ., xn)G\ Since the degree of ax equals the

degree of a¡, the degrees of b¡ and di must be the same for any given /. If this

degree is/»'", then multiplying (2) by xp'' gives the invariant polynomial
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(3) y, = xf + 2 ry(xx, xn)xf,       2 < / < « - 1,

where r0(xx, x„) E k[xx, xn].

It follows from (3) that k[xx, . . ., x„] is integral over

5= *[>2, ...,;/„_„ *„*„]•

Moreover, 5 is a polynomial ring over k, hence, S is normal. Now

k[xx, . . . , xn]G° is integrally closed and by Lemma 1, integral over SG°. But

S = k[yx, . . . ,yn-ix„][xx] and, sincey2, . . . ,y„_x and xn are invariants and

k is infinite, it follows that

SG'=k[yx,...,y^x,xn}.

By [7, p. 267, Theorem 9], k[xx, .. ., xnf" is finitely generated over k.

Q.E.D.
We show now that the theorem does in fact give an extension of Seshadri's

result. Assume that/» = char k > 2. Let x,y and z be coordinates on V0 = A:3

and let Ga act on V0 via the assignments:

t- x = x + tpz,    t-y=y + tz,    t-z = z    all t E Ga.

Note that z = 0 defines the fixed point locus on VQ. Moreover, if ax + by +

cz = 0 is a Ga-stable hyperplane, then atp + bt + c = c, all t E Ga. Hence,

a = b = 0 and so z = 0 is the unique Ga-stable hyperplane in V0.

We claim that V0 is not a fundamental Ga-module. We need the following

lemma.

Lemma 2. Suppose char k = p > 2. Then every 3-dimensional rational

SL(2, k)-module is completely reducible.

Proof. Let V be a 3-dimensional rational SL(2, &)-module. If V is simple

or trivial there is nothing to prove. Since V is completely reducible if and only

if V* is, we may assume that V contains a 2-dimensional nontrivial submod-

ule W. Then W is necessarily irreducible and the action of SL(2, k) on W is

given by an z'th iterate of the Frobenius map composed with the identity

representation (cf. [1]). Let o = -Id G SL(2, k). Then o is represented by the

matrix

M. =

-1

0
0

0       a
- 1     ß

0       1

with respect to some basis of V. Since the minimal polynomial for Ma is

T2 - l, M is diagonalizable, so it is represented by

M' =
1

0
0

0      0
- 1     0

0       1

in a suitable basis of V. But a lies in the centre of SL(2, k) and the centralizer

o/M'inGL(3, it) is
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, A  G GL(2, k)

Thus V — W © k and the lemma is proved.

Now if F is a 3-dimensional fundamental Ga-module, then either V is

irreducible as an SL(2, &)-module, or V s¡ w © k as an SL(2, A:)-module,

where W is a nontrivial SL(2, /c)-module of dimension 2. In the first case, we

see, by [1], that V is isomorphic to an interate of the Frobenius composed

with the irreducible representation of SL(2, k) on the space of forms of degree

two in two variables. For this module the action of Ga is given by the matrix

representation

t

ip'1     2tp'

0     1

.0    0

It follows that the fixed point locus is a line, not a plane. In the second case,

the action of Ga is given by a matrix representation of the form

t->
1 /"' 0
0 1 0
0    0       1

The fixed point locus for this action is, indeed, a hyperplane. However, there

are infinitely many Ga-stable hyperplanes. It follows that, in any case, V0 is

not a fundamental Ga-module.

Remarks. 1. Suppose that char k = 0 and Ga acts linearly on V so that VG°

has codimension one in V. Then, using arguments entirely analogous to those

given above, one can show that k[V]G" is a polynomial algebra over k. This

seems unlikely in positive characteristic, but at present we know of no

counterexamples. In general, k[ V]G° is not a polynomial algebra [2].

2. It is known (cf. [2, Remark 7]) that, for fundamental Ga-actions, k[ V]G° is

the coordinate ring of a rational variety; i.e. the quotient field of &[K]G" is

purely transcendental over k. Moreover, if char k = 0, it follows from

Seshadri's proof of Weitzenböck's theorem that k[V]G° is actually the ring of

invariants of an SL(2, k) action on a larger polynomial algebra; hence, the

recent results of Höchster and Roberts [3] imply that, in this case, k[V]G- is a

Cohen-Macaulay ring. It would be interesting to know if either or both of

these results hold in positive characteristic for the 'codimension one' actions

discussed in this paper.
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