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Abstract. A system of transmission of Euler-Bernoulli plate equation with variable
coefficients under Neumann control and collocated observation is studied. Using the mul-
tiplier method on a Riemannian manifold, it is shown that the system is well-posed in the
sense of D. Salamon. This establishes the equivalence between the exact controllability
of an open-loop system and the exponential stability of a closed-loop system under the
proportional output feedback. The regularity of the system in the sense of G. Weiss is
also proved, and the feedthrough operator is found to be zero. These properties make
this PDE system parallel in many ways to the finite-dimensional ones. Finally, the exact
controllability of an open-loop system is developed under a uniqueness assumption by
establishing the observability inequality for the dual system.

1. Introduction and main results. In distributed parameter control systems,
many properties are closely related to each other. In the early 1970’s, Russell found
that for some time-invertible PDEs, the exponential stability of a closed-loop system can
deduce the exact controllability of an open-loop system ([24, 25]). Conversely, it was
also found that the exact controllability of an open-loop system implies the exponential
stability of a closed-loop system provided that the open-loop system is well-posed in the
sense of D. Salamon ([2, 11]). Lagnese [17] studied some LQ-optimal control problems
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706 BAO-ZHU GUO AND ZHI-CHAO SHAO

for beam equations to obtain the stability of the system. For the general result from
optimizability to exponential stability, we refer to [30].

In the past two decades, it has been discovered that the well-posed and regular systems
are a quite general class of linear infinite-dimensional systems, and that they cover many
control systems described by partial differential equations with actuators and sensors
supported on isolated points, sub-domains, or on parts of the boundary of the spatial
region ([8]). This class of infinite-dimensional systems, although the input and output
operators are allowed to be unbounded, may possess many properties that are parallel
in many ways to finite-dimensional systems ([9]).

Although the abstract theory of well-posed and regular linear systems has been quite
fruitful, only a few multi-dimensional PDEs have been verified to be well-posed and
regular. For the systems with constant coefficients, the well-posedness and regularity
of a multi-dimensional heat equation with both Dirichlet and Neumann type boundary
controls were established in [4] and that for a wave equation with boundary Dirichlet
input and collocated output was proved in [1] and [12]. The well-posedness and regu-
larity for the multi-dimensional Schrödinger equation and the Euler-Bernoulli equation
were reported in [19, 13, 14]. Very recently, these results were generalized to multi-
dimensional wave and plate equations with variable coefficients under boundary controls
and observations ([15, 16]).

In this paper, we study the following system of transmission of the Euler-Bernoulli
plate equation with variable coefficients under Neumann control and collocated observa-
tion:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẅ(x, t) + a(x)A2w(x, t) = 0, (x, t) ∈ Q,

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), x ∈ Ω,

w2(x, t) = 0,
∂w2

∂νA
(x, t) = u(x, t), (x, t) ∈ Σ,

w1(x, t) = w2(x, t),
∂w1

∂νA
(x, t) =

∂w2

∂νA
(x, t), (x, t) ∈ Σ1,

a1Aw1(x, t) = a2Aw2(x, t), a1
∂Aw1

∂νA
(x, t) = a2

∂Aw2

∂νA
(x, t), (x, t) ∈ Σ1,

y(x, t) = −A(A −1ẇ(x, t)), (x, t) ∈ Σ,

(1.1)

where Ω ⊂ Rn(n ≥ 2) is an open bounded region with boundary ∂Ω = Γ of C4-class,
Ω1 is a bounded region contained inside of Ω: Ω1 ⊂ Ω and Γ1 = ∂Ω1 is of C4-class.
Ω2 = Ω \ Ω1, Q = Ω × (0, T ), Q1 = Ω1 × (0, T ), Q2 = Ω2 × (0, T ), Σ = Γ × (0, T ), and
Σ1 = Γ1 × (0, T ), T > 0 is a time moment. u is the input function (or control) and y is
the output function (or observation).

Aw(x, t) :=
n∑

i,j=1

∂

∂xi

(
aij(x)

∂w(x, t)
∂xj

)
, D(A) = H2(Ω) ∩ H1

0 (Ω), (1.2)
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WELL-POSEDNESS, REGULARITY AND CONTROLLABILITY 707

with aij = aji ∈ C∞(Rn) and for some constant α > 0,

n∑
i,j=1

aij(x)ξiξj ≥ α

n∑
i=1

|ξi|2 , ∀ x ∈ Ω, ξ = (ξ1, ξ2, · · · , ξn) ∈ C
n, (1.3)

A w = A2w, D(A ) = H4(Ω) ∩ H2
0 (Ω), (1.4)

νA :=

(
n∑

k=1

νkak1,

n∑
k=1

νkak2, · · · ,

n∑
k=1

νkakn

)
,

∂

∂νA
:=

n∑
i,j=1

νiaij
∂

∂xj
, (1.5)

with ν = (ν1, ν2, · · · , νn) the unit normal vector on Γ or Γ1 pointing toward the exterior
of Ω2. w1 = w|Ω1 , w2 = w|Ω2 , ẇ = wt, and a(x) is given by

a(x) =

{
a1, x ∈ Ω1,

a2, x ∈ Ω2,
(1.6)

where a1, a2 are positive constants.
When a1 = a2 the system (1.1) is reduced to the ordinary plate equation with variable

coefficients studied in [16, 34]. When a1 �= a2, the exact controllability for the system
(1.1) with constant spatial coefficients and additional lower-order terms on the right hand
side of the governing equation (1.1) was established in [21] (see also [3]). [23] studied
the uniform stability for the solutions of a transmission problem in non-homogeneous
anisotropic elasticity. The stabilization of a thermoelastic plate with variable coefficients
can be found in [6]. For the exact controllability and uniform stabilization of problems
of transmission for wave and shell equations, we refer to [5, 7, 18, 22].

One of the aims of this paper is to establish the equivalence between the exact con-
trollability of open-loop system (1.1) and the exponential stability of its closed-loop form
under the proportional feedback u = −ky, k > 0. This is a consequence of the well-
posedness for the system (1.1). The well-posedness together with the regularity prop-
erty will put the system (1.1) into a general framework of well-posed and regular linear
infinite-dimensional systems that has been studied extensively in the past two decades
([8]).

Let H = L2(Ω) × H−2(Ω) and U = L2(Γ).

Theorem 1.1. Let T > 0, (w0, w1) ∈ H and u ∈ L2(0, T ; U). Then there exists a unique
solution (w, ẇ) ∈ C([0, T ];H) to Equation (1.1). Moreover, if a2 ≤ a1, then there exists
a constant CT > 0, independent of (w0, w1, u), such that

‖(w(·, T ), ẇ(·, T ))‖2
H + ‖y‖2

L2(0,T ;U) ≤ CT

[
‖(w0, w1)‖2

H + ‖u‖2
L2(0,T ;U)

]
.

Theorem 1.1 implies that the open-loop system (1.1) is well-posed provided that a2 ≤
a1 in the sense of D. Salamon with the state space H, input and output space U ([27]).
From this result and [2, 11], we immediately have the following Corollary 1.1.

Corollary 1.1. Assume that a2 ≤ a1. Then the system (1.1) is exactly controllable in
H on [0, T ] for some T > 0 if and only if its closed-loop system under the proportional
output feedback u = −ky (k > 0) is exponentially stable.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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Theorem 1.2. Assume that a2 ≤ a1. Then the system (1.1) is regular in the sense
of G. Weiss with zero feedthrough operator. Precisely, if w(·, 0) = ẇ(·, 0) = 0 and
u(·, t) ≡ u(·) ∈ U is a step input, then the corresponding output y satisfies

lim
σ→0

∫
Γ0

∣∣∣∣ 1σ
∫ σ

0

y(x, t)dt

∣∣∣∣
2

dx = 0. (1.7)

Theorems 1.1 and 1.2 ensure that the system (1.1) is a well-posed regular linear system.
This makes the system (1.1) parallel in many ways to a linear finite-dimensional system.

It should be pointed out that due to variable coefficients, the classical multiplier
method in Euclidean space seems inadequate to prove Theorems 1.1 and 1.2. Some
computations on the Riemannian manifold are needed as in [34].

Because of the well-posedness claimed by Theorem 1.1, the exact controllability of
system (1.1) can be obtained by establishing the observability inequality for the dual
system (5.1). To do this, we need some additional assumptions (H1)-(H3) stated below.

Notice the condition (1.3) and let A(x) and G(x) be, respectively, the coefficient matrix
and its inverse:

A(x) := (aij(x)), G(x) := (gij(x)) = A(x)−1, G(x) := det(gij(x)).

For each x = (x1, x2, · · · , xn) ∈ Rn, define the inner product and norm over the tangent
space Rn

x of Rn by

g(X, Y ) := 〈X, Y 〉g =
n∑

i,j=1

gijαiβj ,

|X|g := 〈X, X〉1/2
g , ∀ X =

n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ R

n
x .

Then (Rn, g) is a Riemannian manifold with Riemannian metric g ([34]). Denote by D

the Levi-Civita connection with respect to g. Let N be a vector field on (Rn, g). Then
for each x ∈ Rn, the covariant differential DN of N determines a bilinear form on Rn

x :

DN(X, Y ) = 〈DXN, Y 〉g, ∀ X, Y ∈ R
n
x ,

where DXN stands for the covariant derivative of the vector field N with respect to X.
Assumption (H1). There exists a vector field N on (Rn, g) such that

DN(X, X) = b(x)|X|2g, ∀ X ∈ R
n
x , x ∈ Ω, (1.8)

where b(x) is a function defined on Ω so that

b0 = inf
x∈Ω

b(x) > 0. (1.9)

Assumption (H2). There exists a vector field N on (Rn, g) such that

N(x) · ν ≤ 0, x ∈ Γ1. (1.10)
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Assumption (H3) [the uniqueness assumption]. The following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x)A2u = ζu in Ω,

u2 =
∂u2

∂νA
= 0 on Γ,

u1 = u2,
∂u1

∂νA
=

∂u2

∂νA
on Γ1,

a1Au1 = a2Au2, a1
∂Au1

∂νA
= a2

∂Au2

∂νA
on Γ1,

Au2 = 0 on Γ0,

(1.11)

possesses a unique zero solution, where ζ is an arbitrary complex number and Γ0 is
relatively open in Γ defined by

Γ0 = {x ∈ Γ| N(x) · ν > 0}. (1.12)

When aij(x) = δij , then for some fixed x0, the radial field N = x−x0 meets Assump-
tion (H1) with b(x) ≡ 1 and Assumption (H3) is a valid fact (Theorem 4.2 of [21]). For
the variable coefficients case, several corollaries were presented in [35] to show how to ver-
ify Assumption (H1) by means of the Riemannian geometry method, but for Assumption
(H3), it is not verified even for Euler-Bernoulli plate equations without transmission. As
was indicated in [34], the problem is not a Cauchy problem, and hence many uniqueness
theorems cannot be applied. We propose it as an unsolved problem here.

Theorem 1.3. Under Assumptions (H1)–(H3) and a2 ≤ a1, the system (1.1) is exactly
controllable on some [0, T ], T > 0. That is, for any initial data (w0, w1) ∈ H, there
exists a control u ∈ L2(Σ) with u = 0 on Σ \ Σ0 such that the solution of (1.1) satisfies
w(·, T ) = wt(·, T ) = 0.

The remainder of the paper is organized as follows. In Section 2, the system (1.1) is
cast into an abstract setting studied in [2, 11] and some basic background on Riemannian
geometry is introduced. The proof of Theorem 1.1 is given in Section 3. Section 4 is de-
voted to the proof of Theorem 1.2. Finally, in Section 5, we show the exact controllability
under Assumptions (H1)–(H3).

2. Abstract formulation and preliminaries. Let H = H−2(Ω). Let A be the
positive self-adjoint operator in H induced by the bilinear form β(·, ·) defined by

〈Af, g〉H−2(Ω)×H2
0 (Ω) = β(f, g) =

∫
Ω

a(x)Af(x) · Ag(x)dx, ∀f, g ∈ H2
0 (Ω).

By means of the Lax-Milgram theorem, A is a canonical isomorphism from D(A) =
H2

0 (Ω) onto H. Set

H4(Ω, Γ1) = {w ∈ H2
0 (Ω), wi ∈ H4(Ωi), i = 1, 2|

a1Aw1 = a2Aw2 and a1
∂Aw1

∂νA
= a2

∂Aw2

∂νA
on Γ1}

(2.1)
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710 BAO-ZHU GUO AND ZHI-CHAO SHAO

with the norm

‖w‖H4(Ω,Γ1) =
(
‖w1‖2

H4(Ω1)
+ ‖w2‖2

H4(Ω2)

) 1
2

.

Similar to Lemmas 1.1, 1.2 and 1.3 of [21], it can be shown that(
‖w1‖2

H4(Ω1)
+ ‖w2‖2

H4(Ω2)

) 1
2 ∼

(
‖A2w1‖2

L2(Ω1)
+ ‖A2w2‖2

L2(Ω2)

) 1
2

,

and H4(Ω, Γ1) is dense in H2
0 (Ω). Moreover, Af = a(x)A f whenever f ∈ H4(Ω, Γ1) and

that A−1g = (a(x)A )−1g for any g ∈ L2(Ω). Hence A is an extension of a(x)A to the
space H2

0 (Ω).
Just as in [15], it can be shown that D(A1/2) = L2(Ω) and A1/2 is an isomorphism

from L2(Ω) onto H. Taking s = 3
2 in (4.3) of Lemma 4.1 in Section 4, we can define the

map Υ ∈ L(L2(Γ), H3/2(Ω)) such that Υu = v if and only if⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a(x)A2v = 0 in Ω,

v1 = v2,
∂v1

∂νA
=

∂v2

∂νA
, a1Av1 = a2Av2, a1

∂Av1

∂νA
= a2

∂Av2

∂νA
on Γ1,

v2 = 0,
∂v2

∂νA
= u on Γ.

(2.2)

Since D(A) is dense in H, so is D(A1/2). We identify H with its dual H ′. Then the
following relations hold:

D(A1/2) ↪→ H = H ′ ↪→ (D(A1/2))′.

An extension Ã ∈ L(D(A)1/2, (D(A1/2))′) of A is defined by

〈Ãf, g〉(D(A1/2))′×D(A1/2) = 〈A1/2f, A1/2g〉H , ∀ f, g ∈ D(A1/2). (2.3)

So (1.1) can be written in (D(A1/2))′ as

ẅ + Ãw = Bu,

where B ∈ L(U, (D(A1/2))′) is given by

Bu = ÃΥu, ∀ u ∈ U. (2.4)

Define B∗ ∈ L(D(A1/2), U) by

〈B∗f, u〉U = 〈f, Bu〉D(A1/2)×(D(A1/2))′ , ∀ f ∈ D(A1/2), u ∈ U.

Then for any f ∈ D(A1/2) and u ∈ C∞
0 (Γ0), we have

〈f, Bu〉D(A1/2)×(D(A1/2))′ = 〈f, ÃÃ−1Bu〉D(A1/2)×(D(A1/2))′ = 〈A1/2f, A1/2Ã−1Bu〉H
= 〈A1/2f, A1/2Υu〉H = 〈f, Υu〉L2(Ω)

= 〈AA−1f, Υu〉L2(Ω) =
〈
−A(A −1f), u

〉
U

.

In the last step, we used Green’s second formula twice and the connection boundary
conditions on Γ1. Since C∞

0 (Γ) is dense in L2(Γ), we finally obtain

B∗f = −A(A −1f)
∣∣
Γ

, ∀f ∈ D(A1/2) = L2(Ω). (2.5)
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Now we have formulated the open-loop system (1.1) into an abstract form of a second-
order collocated system in H:{

ẅ(·, t) + Ãw(·, t) = Bu(·, t),
y(·, t) = B∗ẇ(·, t), (2.6)

where Ã, B and B∗ are defined by (2.3), (2.4) and (2.5), respectively. The system (2.6)
was well studied in [2, 11].

To end this section, we list some basic facts in Riemannian geometry that we need in
subsequent sections (see also [16]).

Let (Rn, g) be the Riemannian manifold defined in Section 1. For any ϕ ∈ C2(Rn)

and N =
n∑

i=1

γi(x) ∂
∂xi

, denote

div0(N) :=
n∑

i=1

∂γi(x)
∂xi

, Dϕ := ∇gϕ =
n∑

i,j=1

∂ϕ

∂xi
aij

∂

∂xj
,

divg(N) :=
n∑

i=1

1√
G(x)

∂

∂xi
(
√
G(x)γi(x)),

∆gϕ :=
n∑

i,j=1

1√
G

∂

∂xi
(
√
Gaij

∂ϕ

∂xj
) = Aϕ − (Df)ϕ, f(x) =

1
2

log det(aij(x)),

where div0 is the divergence operator on Euclidean space Rn and ∇g, divg and ∆g are the
gradient operator, the divergence operator and the Beltrami-Laplace operator on (Rn, g)
respectively.

Let µ = νA
|νA|g . µ is the unit outward-pointing normal to ∂Ω in terms of the Riemannian

metric g. The following Lemma 2.1 provides some useful identities ([28], pp. 128, 138).

Lemma 2.1. Let ϕ, ψ ∈ C1(Ω) and let N be a vector field on (Rn, g). Then we have
(1) divergence formula and theorem:

div0(ϕN) = ϕdiv0(N) + N(ϕ), divg(ϕN) = ϕdivg(N) + N(ϕ),∫
Ω

div0(N)dx =
∫

∂Ω

N · νdΓ,

∫
Ω

divg(N)dx =
∫

∂Ω

〈N, µ〉gdΓ,

(2) Green’s identities:∫
Ω

ψAϕdx =
∫

∂Ω

ψ
∂ϕ

∂νA
dΓ −

∫
Ω

〈∇gϕ,∇gψ〉gdx,∫
Ω

ψ∆gϕdΩ =
∫

∂Ω

ψ
∂ϕ

∂µ
dS −

∫
Ω

〈∇gϕ,∇gψ〉gdΩ,

where dΩ and dS are the volume elements of Ω and ∂Ω, respectively.

Denote by T 2(Rn
x) the set of all covariant tensors of order 2 on Rn

x . Then T 2(Rn
x) is

an inner product space of dimension n2 with inner product of the following:

〈F, G〉T 2(Rn
x ) =

n∑
i,j=1

F (ei, ej)G(ei, ej), ∀ F, G ∈ T 2(Rn
x),
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where {ei}n
i=1 is an arbitrarily chosen orthonormal basis of (Rn

x , g).
Let X(Rn) be the set of all tangential vector fields on R

n. Denote by � : X(Rn) →
X(Rn) the Hodge-Laplace operator acting on the tangential fields; then for any orthonor-
mal basis {ei}n

i=1 and its dual basis {wi}n
i=1 at (Rn

x , g), we have the following Weitzenböck
formula (see [32]):

� = −
n∑

k=1

D2
ekek

+
n∑

j,k=1

ek ∧ i(wj)R(ek, ej), (2.7)

where for any X, Y ∈ X(Rn) and η ∈ A(Rn), the set of all the differential forms on Rn,
D2

XY := DXDY − DDXY is a second order covariant differential operator, R(X, Y ) =
−DXDY + DY DX + D[X,Y ] is the curvature operator with regard to the metric g, and
i(η)X := η(X) is the interior product operator. Furthermore, it has ([34]):

∆g(N(ϕ)) = (−�N)(ϕ) + 2〈DN, D2ϕ〉T 2(Rn
x) + N(∆gϕ) + Ric(N, Dϕ), (2.8)

N(∆gϕ) = N(Aϕ) − D2f(N, Dϕ) − D2ϕ(N, Df), ∀ ϕ ∈ C2(Rn), (2.9)

where f(x) =
1
2

log det(aij(x)) and Ric(·, ·) is the Ricci curvature tensor with respect

to the Riemannian metric g, D2f and D2ϕ are the Hessians of f and ϕ in terms of g,
respectively. The identity (2.9) is actually proved by (5.10) in Lemma 5.1 of Section 5,
while the proof of (2.8) is presented in the Appendix.

The following Lemma 2.2 is straightforward.

Lemma 2.2. Let ϕ ∈ C2(Ω). Then there is a constant C depending on g, N and Ω only
such that

(1)

sup
x∈Ω

|A(divg(N))| ≤ C, sup
x∈Ω

|Df(divg(N))| ≤ C, sup
x∈Ω

|div0(Df)| ≤ C,

sup
x∈Ω

|div0(N)| ≤ C, sup
x∈Ω

|divg(N)| ≤ C, sup
x∈∂Ω

∣∣∣∣ 1
|νA|g

∣∣∣∣ ≤ C, sup
x∈∂Ω

|Df · ν| ≤ C.

(2)

|〈Dϕ, D(divg(N))〉g| ≤ |Dϕ|g |D(divg(N))|g ≤ C |Dϕ|g ,

|(�N)ϕ|g ≤ C |�N |g |Dϕ|g ≤ C |Dϕ|g ,∣∣〈DN, D2ϕ〉T 2(Rn
x )

∣∣ ≤ C |DN |g
∣∣D2ϕ

∣∣
g
≤ C

∣∣D2ϕ
∣∣
g
,∣∣D2f(N, Dϕ)

∣∣ ≤ ∣∣D2f
∣∣
g
|N |g |Dϕ|g ≤ C |Dϕ|g ,∣∣D2ϕ(N, Df)

∣∣ ≤ ∣∣D2ϕ
∣∣
g
|N |g |Df |g ≤ C

∣∣D2ϕ
∣∣
g
,

|Ric(N, Dϕ)| ≤ |Ric|g |N |g |Dϕ|g ≤ C |Dϕ|g , |Df(ϕ)| ≤ C |Dϕ|g ,

|N(ϕ)| ≤ C |Dϕ|g , |Df(N(ϕ))| ≤ C
∣∣D2ϕ

∣∣
g
, |Aϕ| ≤ C

∣∣D2ϕ
∣∣
g
.

(3)∫
Ω

|ϕ|2 dx ≤ C‖ϕ‖2
H2(Ω),

∫
Ω

|Dϕ|2g dx ≤ C‖ϕ‖2
H2(Ω),

∫
Ω

∣∣D2ϕ
∣∣2
g
dx ≤ C‖ϕ‖2

H2(Ω).
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3. The proof of Theorem 1.1. In this section, we use CT to denote some positive
constant that is independent of (y, u) although it may change values in different contexts.
We rewrite (1.1) with zero initial values as the following equation (3.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẅ(x, t) + a(x)A2w(x, t) = 0, (x, t) ∈ Q,

w(x, 0) = 0, ẇ(x, 0) = 0, x ∈ Ω,

w2(x, t) = 0,
∂w2

∂νA
(x, t) = u(x, t), (x, t) ∈ Σ,

w1(x, t) = w2(x, t),
∂w1

∂νA
(x, t) =

∂w2

∂νA
(x, t), (x, t) ∈ Σ1,

a1Aw1(x, t) = a2Aw2(x, t), a1
∂Aw1

∂νA
(x, t) = a2

∂Aw2

∂νA
(x, t), (x, t) ∈ Σ1,

y(x, t) = −A(A −1ẇ(x, t)), (x, t) ∈ Σ.

(3.1)

By [31] (see also Proposition A1 of [19]), Theorem 1.1 is equivalent to saying that the
solution of (3.1) satisfies

‖y‖2
L2(0,T ;U) ≤ CT ‖u‖2

L2(0,T ;U), ∀ u ∈ L2(0, T ; U).

We return to the smoother space H2
0 (Ω) by the following transformation:

z = A−1ẇ.

Then z satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z̈(x, t) + a(x)A2z(x, t) = Υut(x, t), (x, t) ∈ Q,

z(x, 0) = z0(x), ż(x, 0) = z1(x), x ∈ Ω,

z2(x, t) = 0,
∂z2

∂νA
(x, t) = 0, (x, t) ∈ Σ,

z1(x, t) = z2(x, t),
∂z1

∂νA
(x, t) =

∂z2

∂νA
(x, t), (x, t) ∈ Σ1,

a1Az1(x, t) = a2Az2(x, t), a1
∂Az1

∂νA
(x, t) = a2

∂Az2

∂νA
(x, t), (x, t) ∈ Σ1.

(3.2)

By (2.5), the output becomes

y(x, t) = −Az2(x, t)|Σ .

Therefore, Theorem 1.1 is valid if and only if for some (and hence for all) T > 0, there
exists a CT > 0 such that the solution of (3.2) satisfies∫

Σ

|Az(x, t)|2dΣ ≤ CT

∫
Σ

|u(x, t)|2dΣ. (3.3)

Proof. We split the proof into eight steps.
Step 1. Let N be a vector field of class C2 on Ω such that (Lemma 4.1, [15])

N(x) = µ(x), x ∈ Γ; |N |g ≤ 1, x ∈ Ω. (3.4)
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Multiply both sides of the first equation of (3.2) by N(z) and integrate over [0, T ]×Ω,
to give

∫ T

0

∫
Ω

z̈N(z)dxdt +
∫ T

0

∫
Ω

a(x)A2zN(z)dxdt −
∫ T

0

∫
Ω

ΥutN(z)dxdt = 0. (3.5)

Compute the first term on the left hand side of (3.5) to yield

∫ T

0

∫
Ω

z̈N(z)dxdt =
∫

Ω

żN(z)dx

∣∣∣∣
T

0

−
∫ T

0

∫
Ω

żN(ż)dxdt

=
∫

Ω

żN(z)dx

∣∣∣∣
T

0

−
∫

Ω

zN(ż)dx

∣∣∣∣
T

0

+
∫ T

0

∫
Ω

zN(z̈)dxdt

=
∫

Ω

żN(z)dx

∣∣∣∣
T

0

−
∫

Ω

[divg(zżN) − żzdivg(N) − żN(z)]dx

∣∣∣∣
T

0

+
∫ T

0

∫
Ω

[divg(zz̈N) − z̈zdivg(N) − z̈N(z)]dxdt

= 2Re
∫

Ω

żN(z)dx

∣∣∣∣
T

0

+
∫

Ω

żzdivg(N)dx

∣∣∣∣
T

0

+
∫ T

0

∫
Ω

[za(x)A2zdivg(N) − Υutzdivg(N) − z̈N(z)]dxdt.

Hence

Re
∫ T

0

∫
Ω

z̈N(z)dxdt = Re
∫

Ω

żN(z)dx

∣∣∣∣
T

0

+
1
2

∫
Ω

żzdivg(N)dx

∣∣∣∣
T

0

−1
2

∫ T

0

∫
Ω

Υutzdivg(N)dxdt +
1
2

∫ T

0

∫
Ω

za(x)A2zdivg(N)dxdt.

(3.6)

By Green’s second formula in the Riemannian manifold and the fact that

∂z

∂µ
= 〈∇gz, µ〉g,

∂

∂µ
= µ =

1
|νA|g

∂

∂νA
on Γ and Γ1, (3.7)
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the last term of (3.6), by taking the boundary conditions into account, is further expressed
as

1
2

∫ T

0

∫
Ω

za(x)A2zdivg(N)dxdt =
1
2

∫ T

0

∫
Ω

za(x)[(∆g + Df)(Az)]divg(N)dxdt

=
1
2

∫ T

0

∫
Ω

za(x)∆g(Az)divg(N)dxdt +
1
2

∫ T

0

∫
Ω

za(x)Df(Az)divg(N)dxdt

=
1
2

∫ T

0

∫
Ω

a(x)Az∆g(zdivg(N))dxdt +
1
2

∫ T

0

∫
Γ

a2z2divg(N)
∂(Az2)

∂µ
dΓdt

+
1
2

∫ T

0

∫
Γ1

a2z2divg(N)
∂(Az2)

∂µ
dΓdt − 1

2

∫ T

0

∫
Γ1

a1z1divg(N)
∂(Az1)

∂µ
dΓdt

−1
2

∫ T

0

∫
Γ

a2Az2
∂(z2divg(N))

∂µ
dΓdt − 1

2

∫ T

0

∫
Γ1

a2Az2
∂(z2divg(N))

∂µ
dΓdt

+
1
2

∫ T

0

∫
Γ1

a1Az1
∂(z1divg(N))

∂µ
dΓdt +

1
2

∫ T

0

∫
Ω

za(x)Df(Az)divg(N)dxdt

=
1
2

∫ T

0

∫
Ω

a(x)Az[Azdivg(N) + 2〈Dz, D(divg(N))〉g + zA(divg(N))]dxdt

−1
2

∫ T

0

∫
Ω

a(x)AzDf(zdivg(N))dxdt +
1
2

∫ T

0

∫
Ω

za(x)Df(Az)divg(N)dxdt.

(3.8)

Substitute (3.8) into (3.6) to obtain

Re
∫ T

0

∫
Ω

z̈N(z)dxdt = Re
∫

Ω

żN(ż)dx

∣∣∣∣
T

0

+
1
2

∫
Ω

żzdivg(N)dx

∣∣∣∣
T

0

−1
2

∫ T

0

∫
Ω

Υutzdivg(N)dxdt +
1
2

∫ T

0

∫
Ω

a(x) |Az|2 divg(N)dxdt

+
∫ T

0

∫
Ω

a(x)Az〈Dz, D(divg(N))〉gdxdt +
1
2

∫ T

0

∫
Ω

a(x)zAzA(divg(N))dxdt

−1
2

∫ T

0

∫
Ω

a(x)AzDf(zdivg(N))dxdt +
1
2

∫ T

0

∫
Ω

za(x)Df(Az)divg(N)dxdt.

(3.9)

Next, by Lemma 2.1 of [34] and (3.7),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1 − z2 =
∂(z1 − z2)

∂νA
= 0 ⇒ H(z1 − z2) = 0 for any vector field H on Γ1,

∂2(z1 − z2)
∂µ2

=
1

|νA|2g
∂2(z1 − z2)

∂ν2
A

=
1

|νA|2g
(νA · ν)A(z1 − z2) = ∆g(z1 − z2).

(3.10)

Applying Green’s second formula in the Riemannian manifold again, and taking (2.8),
(2.9), (3.7), (3.10) and boundary conditions into account, the second term on the left
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hand side of (3.5) is computed as

∫ T

0

∫
Ω

a(x)A2zN(z)dxdt =
∫ T

0

∫
Ω

a(x)[(∆g + Df)(Az)]N(z)dxdt

=
∫ T

0

∫
Ω

a(x)∆g(Az)N(z)dxdt +
∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt

=
∫ T

0

∫
Ω

a(x)Az∆g(N(z))dxdt +
∫ T

0

∫
Γ

N(z2)a2
∂(Az2)

∂µ
dΓdt

+
∫ T

0

∫
Γ1

N(z2)a2
∂(Az2)

∂µ
dΓdt −

∫ T

0

∫
Γ1

N(z1)a1
∂(Az1)

∂µ
dΓdt

−
∫ T

0

∫
Γ

a2Az2
∂(N(z2))

∂µ
dΓdt −

∫ T

0

∫
Γ1

a2Az2
∂(N(z2))

∂µ
dΓdt

+
∫ T

0

∫
Γ1

a1Az1
∂(N(z1))

∂µ
dΓdt +

∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt

=
∫ T

0

∫
Ω

a(x)Az∆g(N(z))dxdt −
∫ T

0

∫
Γ

a2Az2
∂2z2

∂µ2
dΓdt −

∫ T

0

∫
Γ1

a2Az2
∂2z2

∂µ2
dΓdt

+
∫ T

0

∫
Γ1

a1Az1
∂2z1

∂µ2
dΓdt +

∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt

=
∫ T

0

∫
Ω

a(x)Az[(−�N)(z) + 2〈DN, D2z〉T 2(Rn
x) + N(∆gz)

+Ric(N, Dz)]dxdt −
∫ T

0

∫
Γ

a2|Az2|2dΓdt

+
∫ T

0

∫
Γ1

(a1|Az1|2 − a2|Az2|2)dΓdt +
∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt

=
∫ T

0

∫
Ω

a(x)Az[(−�N)(z) + 2〈DN, D2z〉T 2(Rn
x) + N(Az) − D2f(N, Dz)

−D2z(N, Df) + Ric(N, Dz)]dxdt +
∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt

−
∫ T

0

∫
Γ

a2|Az2|2dΓdt +
∫ T

0

∫
Γ1

(a2 − a1)
a1a2

|a1Az1|2dΓdt.

(3.11)

In the last step of (3.11), the identity
∂2z2

∂µ2
= ∆gz2 = Az2 on Γ that is similar to (3.10)

was used.
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Furthermore, by the divergence formula, one has

Re
∫ T

0

∫
Ω

a(x)AzN(Az)dxdt =
1
2

∫ T

0

∫
Ω

N(a(x) |Az|2)dxdt

=
1
2

∫ T

0

∫
Γ

a2 |Az2|2 dΓdt +
1
2

∫ T

0

∫
Γ1

a2 |Az2|2 dΓdt − 1
2

∫ T

0

∫
Γ1

a1 |Az1|2 dΓdt

−1
2

∫ T

0

∫
Ω

a(x) |Az|2 divg(N)dxdt

=
1
2

∫ T

0

∫
Γ

a2 |Az2|2 dΓdt − 1
2

∫ T

0

∫
Γ1

(a2 − a1)
a1a2

|a1Az1|2 dΓdt

−1
2

∫ T

0

∫
Ω

a(x) |Az|2 divg(N)dxdt.

So (3.11) can be further expressed as

Re
∫ T

0

∫
Ω

a(x)A2zN(z)dxdt

= −1
2

∫ T

0

∫
Ω

a(x) |Az|2 divg(N)dxdt + Re
∫ T

0

∫
Ω

a(x)Az[(−�N)(z)

+2〈DN, D2z〉T 2(Rn
x) − D2f(N, Dz) − D2z(N, Df) + Ric(N, Dz)]dxdt

−1
2

∫ T

0

∫
Γ

a2 |Az2|2 dΓdt +
1
2

∫ T

0

∫
Γ1

(a2 − a1)
a1a2

|a1Az1|2 dΓdt

+Re
∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt.

(3.12)

Finally, substitute (3.9) and (3.12) into (3.5) to obtain

1
2

∫ T

0

∫
Γ

a2 |Az|2 dΓdt +
1
2

∫ T

0

∫
Γ1

(a1 − a2)
a1a2

|a1Az1|2 dΓdt

= RHS1 + RHS2 + RHS3 + b0,T,

(3.13)
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where

RHS1 =
∫ T

0

∫
Ω

a(x)Az〈Dz, D(divg(N)〉gdxdt +
1
2

∫ T

0

∫
Ω

za(x)AzA(divg(N))dxdt

+Re
∫ T

0

∫
Ω

a(x)Az[(−�N)(z) + 2〈DN, D2z〉T 2(Rn
x) − D2f(N, Dz)

−D2z(N, Df) + Ric(N, Dz)]dxdt,

RHS2 = −1
2

∫ T

0

∫
Ω

a(x)AzDf(zdivg(N))dxdt +
1
2

∫ T

0

∫
Ω

za(x)divg(N)Df(Az)dxdt

+Re
∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt,

RHS3 = −1
2

∫ T

0

∫
Ω

Υutzdivg(N)dxdt − Re
∫ T

0

∫
Ω

ΥutN(z)dxdt,

b0,T = Re
∫

Ω

żN(z)dx

∣∣∣∣
T

0

+
1
2
Re

∫
Ω

żzdivg(N)dx

∣∣∣∣
T

0

.

By the assumption on a(x), we have

1
2

∫ T

0

∫
Γ1

(a1 − a2)
a1a2

|a1Az1|2 dΓdt ≥ 0.

Therefore, we only need to estimate term by term for the right hand side of (3.13).
Step 2 (estimate for RHS1). Let Υut = 0 in (3.13). We note that the trans-

formation z = A−1ẇ ∈ H2
0 (Ω) implies ż = A−1ẅ = −w ∈ L2(Ω). Then Equa-

tion (3.2) associates with a C0-group solution in the space H2
0 (Ω) × L2(Ω); that is

to say, for any (z0, z1) ∈ H2
0 (Ω) × L2(Ω), the corresponding solution to (3.2) satisfies

(z, ż) ∈ H2
0 (Ω) × L2(Ω) and depends continuously on (z0, z1):

1
2

∫ T

0

∫
Γ

a(x) |Az2|2 dΓdt ≤ CT

∥∥(z0, z1)
∥∥2

H2
0 (Ω)×L2(Ω)

.

This shows that B∗ is admissible, and so is B ([8]). In other words,

u �→ {w, ẇ} is continuous from L2(Σ) → C([0, T ]; L2(Ω) × H−2(Ω)). (3.14)

By (3.14), z(t) ∈ C([0, T ]; H2
0 (Ω)) that is continuous in u ∈ L2(Σ). Hence

RHS1 ≤ CT ‖u‖2
L2(Σ), ∀ u ∈ L2(Σ), (3.15)

where we used Lemma 2.2.
Step 3 (estimate for RHS2). By formulae

div0(a(x)zdivg(N)AzDf)

= za(x)divg(N)Df(Az) + a(x)AzDf(zdivg(N)) + za(x)divg(N)Azdiv0(Df)

and

div0(a(x)N(z)AzDf) =a(x)Df(Az)N(z) + a(x)AzDf(N(z)) + a(x)N(z)Azdiv0(Df),
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we have

1
2

∫ T

0

∫
Ω

za(x)divg(N)Df(Az)dxdt

=
1
2

∫ T

0

∫
Γ

a2z2divg(N)Az2Df · νdΓdt

+
1
2

∫ T

0

∫
Γ1

a2z2divg(N)Az2Df · νdΓdt− 1
2

∫ T

0

∫
Γ1

a1z1divg(N)Az1Df · νdΓdt

−1
2

∫ T

0

∫
Ω

a(x)AzDf(zdivg(N))dxdt− 1
2

∫ T

0

∫
Ω

za(x)divg(N)Azdiv0(Df)dxdt

= −1
2

∫ T

0

∫
Ω

a(x)AzDf(zdivg(N))dxdt

= −1
2

∫ T

0

∫
Ω

za(x)divg(N)Azdiv0(Df)dxdt.

(3.16)

Similarly,∫ T

0

∫
Ω

a(x)Df(Az)N(z)dxdt =
∫ T

0

∫
Γ

N(z2)a2Az2Df · νdΓ

−
∫ T

0

∫
Ω

a(x)AzDf(N(z))dxdt −
∫ T

0

∫
Ω

a(x)N(z)Azdiv0(Df)dxdt.

(3.17)

By boundary conditions we see that the first term on the right hand side of (3.17)
equals zero. Substitute (3.16) and (3.17) into RHS2 to get

RHS2 = −
∫ T

0

∫
Ω

a(x)AzDf(zdivg(N))dxdt

−Re
∫ T

0

∫
Ω

a(x)AzDf(N(z))dxdt

−1
2

∫ T

0

∫
Ω

za(x)divg(N)Azdiv0(Df)dxdt

−Re
∫ T

0

∫
Ω

a(x)N(z)Azdiv0(Df)dxdt.

(3.18)

Thus, along the same lines as in Step 2, we get

RHS2 ≤ CT ‖u‖2
L2(Σ), ∀ u ∈ L2(Σ), (3.19)

where we used Lemma 2.2 again.
The following Steps 4–6 are very similar to that of [16] for the variable coefficients

case without transmission, but for the sake of completeness, we list the sketch of the
proof here.

Step 4 (regularity of ż). To handle RHS3, we need the regularity of ż.

ż = A−1ẅ = A−1(−Aw + ÃΥu) = −w + Υu ∈ L2(Σ). (3.20)
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Since both w ∈ C([0, T ]; L2(Ω)) and Υu ∈ L2(Σ) depend continuously on u ∈ L2(Σ), it
follows that

ż ∈ L2(Σ) continuously in u ∈ L2(Σ). (3.21)

Step 5 (estimates of RHS3 and b0,T for smoother u). To estimate both RHS3

and b0,T , confine u within a smoother class that is dense in L2(Σ),

u ∈ C1([0, T ] × Γ), u(·, 0) = u(·, T ) = 0. (3.22)

We will show the following two estimates

RHS3 ≤ CT ‖u‖2
L2(Σ) (3.23)

and
b0,T ≤ CT ‖u‖2

L2(Σ) (3.24)

for all u in the class of (3.22). From now on, we assume that z0 = z1 = 0 in (3.2).
Step 6 (proof of (3.24)). By the facts that ẇ ∈ C([0, T ]; H−2(Ω)) continuously in

u ∈ L2(Σ), A−1 ∈ L(H−2(Ω), H2
0 (Ω)) and ẇ(·, 0) = 0, we have

z(·, 0) = 0, z(·, T ) = A−1ẇ ∈ H2
0 (Ω) continuously in u ∈ L2(Σ). (3.25)

Next by (3.20), (3.22) and w(·, 0) = 0,{
ż(·, 0) = −w(·, 0) + Υu(·, 0) = 0,

ż(·, T ) = −w(·, T ) ∈ L2(Ω) continuously in u ∈ L2(Σ),
(3.26)

where we used the regularity (3.14).
Using (3.14), (3.25) and (3.26), we readily obtain

b0,T = Re
∫

Ω

żN(z)dx

∣∣∣∣
T

0

+ Re
1
2

∫
Ω

żzdivg(N)dx

∣∣∣∣
T

0

≤ CT ‖u‖2
L2(Σ). (3.27)

Step 7 (proof of (3.23)). For the second term with u in the class (3.22), we integrate
by parts with respect to t and make use of the divergence theorem again to obtain

−Re
∫ T

0

∫
Ω

ΥutN(z)dxdt = − Re
∫

Ω

ΥuN(z)dx

∣∣∣∣
T

0

+ Re
∫ T

0

∫
Ω

ΥuN(ż)dxdt

= Re
∫ T

0

∫
Ω

ΥuN(ż)dxdt

= Re
∫ T

0

∫
Ω

div0(ΥużN)dxdt − Re
∫ T

0

∫
Ω

Υużdiv0(N)dxdt

−Re
∫ T

0

∫
Ω

żN(Υu)dxdt

= Re
∫ T

0

∫
∂Ω

ΥużN · νdΓdt − Re
∫ T

0

∫
Ω

Υużdiv0(N)dxdt

−Re
∫ T

0

∫
Ω

żN(Υu)dxdt

= −Re
∫ T

0

∫
Ω

Υużdiv0(N)dxdt − Re
∫ T

0

∫
Ω

żN(Υu)dxdt.

(3.28)
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By the equalities (3.20), (3.28) and the fact that Υu ∈ L2(0, T ; H3/2(Ω)) implies
N(Υu) ∈ L2(0, T ; H1/2(Ω)), all continuously in u ∈ L2(Σ), we have

−Re
∫ T

0

∫
Ω

ΥutN(z)dxdt ≤ C‖u‖2
L2(Σ).

A similar estimate holds true for the first term of RHS3 and we thereby obtain (3.23).
Step 8. We can then extend estimate (3.23) of RHS3 and (3.24) of b0,T to all u ∈

L2(Σ) by a density argument, which together with (3.19) and (3.15) gives (3.3). The
proof is complete. �

4. Proof of Theorem 1.2. In order to show Theorem 1.2, we need the following
Lemma 4.1 which generalizes the regularity results for elliptic boundary problems to the
transmission case.

Lemma 4.1. Suppose φ solves the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x)A2φ(x) = h(x), x ∈ Ω,

φ2(x) = 0,
∂φ2(x)
∂νA

= u(x), x ∈ Γ,

φ1(x) = φ2(x),
∂φ1(x)
∂νA

=
∂φ2(x)
∂νA

, x ∈ Γ1,

a1Aφ1(x) = a2Aφ2(x), a1
∂Aφ1(x)

∂νA
= a2

∂Aφ2(x)
∂νA

, x ∈ Γ1.

(4.1)

Then there exists a constant C > 0 independent of (φ, h, u) such that

‖φ‖Hs(Ω) ≤ C(‖h‖Hs−4(Ω) + ‖u‖
Hs− 3

2 (Γ)
) for s ≥ 4, (4.2)

and
‖φ‖Hs(Ω) ≤ C‖u‖

Hs− 3
2 (Γ)

for 0 < s < 4 and h ≡ 0. (4.3)

Proof. The solution of (4.1) can be written as

φ(x) =

{
φ1(x), x ∈ Ω1,

φ2(x), x ∈ Ω2,

where φ1 and φ2 satisfy, respectively,⎧⎪⎨
⎪⎩

a2A2φ2(x) = h(x), x ∈ Ω,

φ2(x) = 0,
∂φ2(x)
∂νA

= u(x), x ∈ Γ,

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1A2φ1(x) = h(x), x ∈ Ω1,

φ1(x) = φ2(x),
∂φ1(x)
∂νA

=
∂φ2(x)
∂νA

, x ∈ Γ1,

a1Aφ1(x) = a2Aφ2(x), a1
∂Aφ1(x)

∂νA
= a2

∂Aφ2(x)
∂νA

, x ∈ Γ1.
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By virtue of the elliptic regularity (7.27) of [20] on p. 189, we have

‖φ2‖Hs(Ω) ≤ C(‖h‖Hs−4(Ω) + ‖u‖
Hs− 3

2 (Γ)
) for s ≥ 4. (4.4)

Similarly, by the elliptic regularity (7.28) of [20] on p. 189, we also have

‖φ2‖Hs(Ω) ≤ C‖u‖
Hs− 3

2 (Γ)
for s < 4 and h ≡ 0, (4.5)

where C > 0 denotes, throughout the proof, some constants independent of functions
involved although it may have different values in different cases.

For s ≥ 4, it follows from the standard trace theorem in Sobolev space that φ2|Γ1 ∈
Hs− 1

2 (Γ1), ∂φ2
∂νA

∣∣
Γ1

∈ Hs− 3
2 (Γ1) and

(
‖φ2‖

Hs− 1
2 (Γ1)

+ ‖ ∂φ2

∂νA
‖

Hs− 3
2 (Γ1)

)
≤ C‖φ2‖Hs(Ω) for s ≥ 4. (4.6)

As for 0 < s < 4, applying the trace theorem 7.3 of [20] on p. 187, we have φ2|Γ1 ∈
Hs− 1

2 (Γ1), ∂φ2
∂νA

∣∣
Γ1

∈ Hs− 3
2 (Γ1) and

(
‖φ2‖

Hs− 1
2 (Γ1)

+ ‖ ∂φ2

∂νA
‖

Hs− 3
2 (Γ1)

)
≤ C‖φ2‖Hs(Ω1) for 0 < s < 4 and h ≡ 0. (4.7)

Applying the same elliptic regularity as above for both s ≥ 4 and 0 < s < 4, we get
φ1 ∈ Hs(Ω1) for any s > 0. At the same time, it follows from the connection boundary
conditions on Γ1 that

‖φ1‖Hs(Ω1) ≤ C

(
‖h‖Hs−4(Ω1) + ‖φ2‖

Hs− 1
2 (Γ1)

+ ‖ ∂φ2

∂νA
‖

Hs− 3
2 (Γ1)

)
for s ≥ 4, (4.8)

and

‖φ1‖Hs(Ω1) ≤ C

(
‖φ2‖

Hs− 1
2 (Γ1)

+ ‖ ∂φ2

∂νA
‖

Hs− 3
2 (Γ1)

)
for 0 < s < 4 and h ≡ 0. (4.9)

(4.2) and (4.3) are thus obtained by combining (4.4), (4.6), (4.8), (4.5), (4.7) and (4.9).
�

It is known from the Appendix of [11] that the transfer function of the system (2.6) is

H(λ) = λB∗(λ2 + Ã)−1B, (4.10)

where Ã, B and B∗ are given by (2.3), (2.4) and (2.5), respectively. Moreover, from the
well-posedness claimed by Theorem 1.1, it follows that there are constants M, β > 0 such
that ([10])

sup
Reλ≥β

‖H(λ)‖L(U) = M < ∞. (4.11)
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Proposition 4.1. Theorem 1.2 is valid if for any u ∈ C∞
0 (Γ), the solution w to the

following equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2w(x) + a(x)A2w(x) = 0, x ∈ Ω,

w2(x) = 0,
∂w2(x)
∂νA

= u(x), x ∈ Γ,

w1(x) = w2(x),
∂w1(x)
∂νA

=
∂w2(x)
∂νA

, x ∈ Γ1,

a1Aw1(x) = a2Aw2(x), a1
∂Aw1(x)

∂νA
= a2

∂Aw2(x)
∂νA

, x ∈ Γ1

(4.12)

satisfies

lim
λ∈R,λ→+∞

∫
Γ

a2

∣∣∣∣ 1λAw(x)
∣∣∣∣
2

dx = 0. (4.13)

Proof. It was shown in [29] that in the frequency domain, (1.7) is equivalent to

lim
λ∈R,λ→+∞

H(λ)u = 0 in strong topology of U for any u ∈ U, (4.14)

where H(λ) is given by (4.10). Due to (4.11) and the density argument, it suffices to
show that (4.14) is satisfied for all u ∈ C∞

0 (Γ).
Now assume that u ∈ C∞

0 (Γ), and put

w(x) = ((λ2 + Ã)−1Bu)(x).

Then w satisfies (4.12) and

(H(λ)u)(x) = −λA(A −1w)(x), x ∈ Γ. (4.15)

Taking s = 4 in (4.2), we get a function v ∈ H4(Ω, Γ1) satisfying the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x)A2v(x) = 0, x ∈ Ω,

v2(x) = 0,
∂v2(x)
∂νA

= u(x), x ∈ Γ,

v1(x) = v2(x),
∂v1(x)
∂νA

=
∂v2(x)
∂νA

, x ∈ Γ1,

a1Av1(x) = a2Av2(x), a1
∂Av1(x)

∂νA
= a2

∂Av2(x)
∂νA

, x ∈ Γ1.

Thus (4.12) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2w(x) + a(x)A2(w(x) − v(x)) = 0, x ∈ Ω,

(w2 − v2)(x) =
∂(w2 − v2)(x)

∂νA
= 0, x ∈ Γ,

(w1 − v1)(x) = (w2 − v2)(x),
∂(w1 − v1)(x)

∂νA
=

∂(w2 − v2)(x)
∂νA

, x ∈ Γ1,

a1A(w1 − v1)(x) = a2A(w2 − v2)(x),

a1
∂A(w1 − v1)(x)

∂νA
= a2

∂A(w2 − v2)(x)
∂νA

, x ∈ Γ1
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or

λ2(A −1w)(x) = a(x)(−w(x) + v(x)).

So (4.15) becomes

(H(λ)u)(x) =
1
λ

a(x)Aw(x) − 1
λ

a(x)Av(x). (4.16)

Since Av(x) is independent of λ, the required result then follows from (4.16) and (4.14).
�

In order to prove (4.13), we state the following Lemma 4.2 that comes from Lemma
4.1 of [16].

Lemma 4.2. Let w be the solution of (4.12). Then there exists a function η(x) indepen-
dent of λ, which is continuous on Γ, such that

∆gw(x) =
∂2w(x)

∂µ2
+ η(x)

∂w(x)
∂µ

, ∀ x ∈ Γ. (4.17)

Now we are in a position to prove Theorem 1.2.
Proof. Firstly, multiply both sides of the first equation of (4.12) by w and integrate

by parts to give

0 =
∫

Ω

λ2 |w|2 + a(x)A2w · wdx

=
∫

Ω

λ2 |w|2 dx +
∫

Ω

a(x) |Aw|2 dx −
∫

Γ

a2Aw2
∂w2

∂νA
dΓ

=
∫

Ω

λ2 |w|2 dx +
∫

Ω

a(x) |Aw|2 dx −
∫

Γ

a2Aw2udΓ,

from which we get

∫
Ω

|w|2 dx +
1
λ2

∫
Ω

a(x) |Aw|2 dx ≤ 1
λ
‖u‖L2(Γ)

∥∥∥∥ 1
λ

a2Aw2

∥∥∥∥
L2(Γ)

. (4.18)

Secondly, choose the vector field N on Ω as in (3.4). As was done in Section 3, multiply
both sides of the first equation of (4.12) by N(w), integrate by parts and use (2.8), (2.9),
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(3.7), (3.10), (3.17), (4.17) and the divergence formula to yield

0 = Re
∫

Ω

[λ2wN(w) + a(x)A2wN(w)]dx

=
λ2

2

∫
Ω

[div0(|w|2 N) − |w|2 div0(N)]dx + Re
∫

Ω

a(x)Aw∆g(N(w))dx

+Re
∫

Γ

N(w2)a2
∂(Aw2)

∂µ
dΓ + Re

∫
Γ1

N(w2)a2
∂(Aw2)

∂µ
dΓ

−Re
∫

Γ1

N(w1)a1
∂(Aw1)

∂µ
dΓ − Re

∫
Γ

a2Aw2
∂(N(w2))

∂µ
dΓ

−Re
∫

Γ1

a2Aw2
∂(N(w2))

∂µ
dΓ + Re

∫
Γ1

a1Aw1
∂(N(w1))

∂µ
dΓ

+Re
∫

Ω

a(x)Df(Aw)N(w)dx

= −λ2

2

∫
Ω

div0(N) |w|2 dx + Re
∫

Ω

a(x)Aw∆g(N(w))dx

+Re
∫

Γ

u

|νA|g
a2

∂(Aw2)
∂µ

dΓ − Re
∫

Γ

a2Aw2
∂2w2

∂µ2
dΓ

+Re
∫

Γ1

[a1|Aw1|2 − a2|Aw2|2]dΓ + Re
∫

Γ

N(w2)a2Aw2Df · νdΓ

−Re
∫

Ω

a(x)AwDf(N(w))dx − Re
∫

Ω

a(x)N(w)Awdiv0(Df)dx.

Hence

a2

∥∥∥∥ 1
λ
Aw

∥∥∥∥
2

L2(Γ)

= −
∫

Ω

div0(N) |w|2 dx +
2
λ2

Re
∫

Γ

u

|νA|g
a2

∂(Aw2)
∂µ

dΓ

+
2
λ2

Re
∫
Γ

u

|νA|g
η(x)a2Aw2dΓ +

2
λ2

Re
∫
Γ

u

|νA|g
a2Aw2Df · νdΓ

+
2
λ2

Re
∫

Γ

a2Aw2Df(w2)dΓ − 1
λ2

∫
Ω

a(x) |Aw|2 divg(N)dx

+
2
λ2

Re
∫

Ω

a(x)Aw[(−�N)(w) + 2〈DN, D2w〉T 2(R2
x) − D2f(N, Dw)

−D2w(N, Df) + Ric(N, Dw)]dx − 2
λ2

Re
∫

Ω

a(x)AwDf(N(w))dx

− 2
λ2

Re
∫

Ω

a(x)N(w)Awdiv0(Df)dx +
1
2

∫
Γ1

(a2 − a1)
a1a2

|a1Aw1|2dΓ

≤ C1 ‖w‖2
L2(Ω) +

C2

λ2
‖u‖L2(Γ) ‖w‖H4(Ω) +

C3

λ
‖u‖L2(Γ)

∥∥∥∥ 1
λ
Aw

∥∥∥∥
2

L2(Ω)

+
C4

λ2
‖Aw‖2

L2(Ω) ,

(4.19)
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where Ci > 0, i = 1, 2, 3, 4 are constants independent of λ. Notice that in the last
inequality above, we have used Lemma 2.2, the assumption a2 ≤ a1 and the following
facts:

sup
x∈Γ

|η(x)| ≤ C, ‖Df(w)‖L2(Γ) ≤ C ‖u‖L2(Γ) ,

‖w‖H2(Ω) ≤ C ‖Aw‖L2(Ω) ,

∥∥∥∥∂(Aw)
∂µ

∥∥∥∥
L2(Γ)

≤ C ‖w‖H4(Ω) ,

for some constant C > 0 independent of λ. The first two inequalities are apparent. The
third estimate is also well known due to the vanishing condition of w on ∂Ω, and the last
estimate comes from the trace theorem in Sobolev space (see [20]).

Finally, setting s = 4 in (4.2) we deduce that the solution of (4.12) satisfies

‖w‖H4(Ω) ≤ C5

[∥∥∥∥ 1
λ2

w

∥∥∥∥
L2(Ω)

+ ‖u‖H5/2(Γ)

]

for some constant C5 independent of λ. This together with (4.18) and (4.19) yields

a2

∥∥∥∥ 1
λ
Aw

∥∥∥∥
2

L2(Γ)

≤ (C1 + C3 + C4)
1
λ
‖u‖L2(Γ)

∥∥∥∥ 1
λ
Aw

∥∥∥∥
L2(Γ)

+ C2C5 ‖u‖L2(Γ) ‖w‖L2(Ω)

+C2C5
1
λ2

‖u‖L2(Γ) ‖u‖H5/2(Γ)

≤ (C1 + C3 + C4)
1
λ
‖u‖L2(Γ)

∥∥∥∥ 1
λ
Aw

∥∥∥∥
L2(Γ)

+C2C5λ
−1/2 ‖u‖3/2

L2(Γ)

∥∥∥∥ 1
λ
Aw

∥∥∥∥
1/2

L2(Ω)

+C2C5
1
λ2

‖u‖L2(Γ) ‖u‖H5/2(Γ) ,

which implies that lim
λ∈R,λ→+∞

a2

∥∥λ−1Aw
∥∥

L2(Γ)
< +∞. Therefore

lim
λ∈R,λ→+∞

a2

∥∥∥∥ 1
λ
Aw

∥∥∥∥
L2(Γ)

= 0.

This is (4.13). The proof is complete. �

5. Exact controllability. For the controllability problem, we confine the control to
be real functions. We first consider the well-posedness and boundary regularity of the
dual system of problem (1.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẅ(x, t) + a(x)A2w(x, t) = 0, (x, t) ∈ Q,

w(x, 0) = w0, ẇ(x, 0) = w1, x ∈ Ω,

w2(x, t) = 0,
∂w2

∂νA
(x, t) = 0, (x, t) ∈ Σ,

w1(x, t) = w2(x, t),
∂w1

∂νA
(x, t) =

∂w2

∂νA
(x, t), (x, t) ∈ Σ1,

a1Aw1(x, t) = a2Aw2(x, t), a1
∂Aw1

∂νA
(x, t) = a2

∂Aw2

∂νA
(x, t), (x, t) ∈ Σ1.

(5.1)
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Define operator A by

A =
(

0 I

−aA 0

)
with D(A) = H4(Ω, Γ1) × H2

0 (Ω). (5.2)

It is readily shown that A is skew-adjoint, i.e. A∗ = −A. So A generates a C0-group eAt

on H2
0 (Ω) × L2(Ω).

Proposition 5.1. For any given initial data (w0, w1) ∈ H2
0 (Ω)× L2(Ω), Equation (5.1)

admits a unique weak solution

w(t) ∈ C([0, T ]; H2
0 (Ω)) ∩ C1([0, T ]; L2(Ω)). (5.3)

Furthermore, if (w0, w1) ∈ H4(Ω, Γ1) × H2
0 (Ω), then

w(t) ∈ C([0, T ]; H4(Ω, Γ1)) ∩ C1([0, T ]; H2
0 (Ω)). (5.4)

To discuss the boundary regularity of the solution of (5.1), we need the following
Lemma 5.1 that is similar to Lemma 4.2.

Lemma 5.1. Let w be a smooth function on Ω such that w|Γ = 0. Then there exists a
continuous function m(x) on Γ independent of w such that

∆gw(x) =
∂2w(x)

∂µ2
+ m(x)

∂w(w)
∂µ

, ∀x ∈ Γ. (5.5)

Furthermore, if w satisfies
∂w

∂νA

∣∣∣
Γ

= 0, then

N(w)|Γ = 0 for any vector field N on Ω. (5.6)

By Lemma 5.1,

Aw = ∆gw + Df(w) = ∆gw =
∂2w

∂µ2
=

1
|νA|2g

∂2w

∂ν2
A

on Γ. (5.7)

Now, we establish the following multiplier identity that plays a key role in obtaining
the boundary regularity and the observability inequality.

Lemma 5.2. Let N be a vector field on (Rn, g). Assume that w solves problem (5.1).

Let f(x) =
1
2

log det(aij(x)). Then

1
2

∫
Σ

a2(Aw2)2N · νdΣ − 1
2

∫
Σ1

[
a1(Aw1)2 − a2(Aw2)2

]
N · νdΣ

=
∫

Ω

ẇN(w)dx

∣∣∣∣
T

0

+
1
2

∫
Q

[
|ẇ|2 − a(x)(Aw)2

]
div0NdQ

+
∫

Q

a(x)Aw
[
2〈DN, D2w〉T 2(Rn

x ) + FN(w) + Ric(N, Dw) − D2f(N, Dw)
]
dQ,

(5.8)

where FN ∈ X(Rn) is defined by FN = DDfN −�N and D2f is the Hessian of f in
terms of g.
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Proof. Multiply the first equation of (5.1) by N(w) and integrate by parts to obtain∫
Q

ẅN(w)dQ =
∫

Ω

ẇN(w)dx

∣∣∣∣
T

0

−
∫

Q

ẇN(ẇ)dQ

=
∫

Ω

ẇN(w)dx

∣∣∣∣
T

0

−
∫

Q1

ẇ1N(ẇ1)dQ −
∫

Q2

ẇ2N(ẇ2)dQ

=
∫

Ω

ẇN(w)dx

∣∣∣∣
T

0

− 1
2

∫
Q1

[div0(|ẇ1|2N) − |ẇ1|2div0N ]dQ

−1
2

∫
Q2

[div0(|ẇ2|2N) − |ẇ2|2div0N ]dQ

=
∫

Ω

ẇN(w)dx

∣∣∣∣
T

0

− 1
2

∫
Σ1

|ẇ1|2N · (−ν)dΣ +
1
2

∫
Q1

|ẇ1|2div0NdQ

−1
2

∫
Σ1

|ẇ2|2N · νdΣ − 1
2

∫
Σ

|ẇ2|2N · νdΣ +
1
2

∫
Q2

|ẇ2|2div0NdQ

=
∫

Ω

ẇN(w)dx

∣∣∣∣
T

0

+
1
2

∫
Q

|ẇ|2div0NdQ.

(5.9)

Given x ∈ R
n. Let E1, E2, · · · , En be a frame field normal at x on (Rn, g), which means

that 〈Ei, Ej〉g = δij in some neighborhood of x and (DEi
Ej)(x) = 0 for 1 ≤ i, j ≤ n

(see [33]). Let N =
n∑

i=1

γiEi. Then N(w) =
n∑

i=1

γiEi(w), where Ei(w) is the covariant

derivative of w with respect to Ei under the Riemannian metric g. Then at x

N(Aw) = N(∆gw + (Df)w) = N(∆gw) + N(〈Df, Dw〉g)

= N(∆gw) + N(〈Ei(f)Ei, Ej(w)Ej〉g)

= N(∆gw) + γjEj(Ei(f)Ei(w))

= N(∆gw) + γjEjEi(f)Ei(w) + γjEi(f)EjEi(w)

= N(∆gw) + D2f(N, Dw) + D2w(N, Df),

(5.10)

where EjEi(f) and EjEi(w) are, respectively, the second covariant derivatives of f and
w at x, and

〈Df, D(N(w))〉g = Ei(f)Ei(N(w)) = Ei(f)[Ei(γj)Ej(w) + γjEiEj(w)]

= DN(Dw, Df) + D2w(N, Df).
(5.11)

With the help of (2.8), (5.10) and (5.11), we obtain

A(N(w)) = (∆g + Df)(N(w)) = ∆g(N(w)) + 〈D(N(w)), Df〉g
= (−�N)(w) + 2〈DN, D2w〉T 2(Rn

x) + N(∆gw) + Ric(N, Dw)

+DN(Dw, Df) + D2w(N, Df)

= N(Aw) + 2〈DN, D2w〉T 2(Rn
x) + FN(w) + Ric(N, Dw) − D2f(N, Dw),

(5.12)
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where we denoted FN = DDfN −�N . By virtue of the divergence theorem,
∫

Ω

a(x)N((Aw)2)dx

=
∫

Γ

a2(Aw2)2N · νdΓ +
∫

Γ1

[
a2(Aw2)2 − a1(Aw1)2

]
N · νdΓ

−
∫

Ω

a(x)(Aw)2div0Ndx.

(5.13)

Since w ∈ H2
0 (Ω), by Green’s identity, it follows from (5.12) and (5.13) that∫

Q

a(x)A2wN(w)dQ =
∫

Q1

a1A2w1N(w1)dQ +
∫

Q2

a2A2w2N(w2)dQ

= −
∫

Σ1

N(w1)a1
∂Aw1

∂νA
dΣ −

∫
Q1

a1〈D(Aw1), D(N(w1))〉gdQ

+
∫

Σ1

N(w2)a2
∂Aw2

∂νA
dΣ +

∫
Σ

N(w2)a2
∂Aw2

∂νA
dΣ

−
∫

Q2

a2〈D(Aw2), D(N(w2))〉gdQ

=
∫

Σ

N(w2)a2
∂Aw2

∂νA
dΣ +

∫
Σ1

[
N(w2)a2

∂Aw2

∂νA
− N(w1)a1

∂Aw1

∂νA

]
dΣ

+
∫

Q1

a1AwA(N(w1))dQ +
∫

Σ1

a1Aw1
∂N(w1)

∂νA
dΣ

+
∫

Q2

a2Aw2A(N(w2))dQ −
∫

Σ1

a2Aw2
∂N(w2)

∂νA
dΣ −

∫
Σ

a2Aw2
∂N(w2)

∂νA
dΣ

= −
∫

Σ

a2Aw2
∂N(w2)

∂νA
dΣ +

∫
Σ1

[
a1Aw1

∂N(w1)
∂νA

− a2Aw2
∂N(w2)

∂νA

]
dΣ

+
∫

Q

a(x)Aw[2〈DN, D2w〉T 2(Rn
x) + AN(w) + Ric(N, Dw)

−D2f(N, Dw)]dQ +
1
2

∫
Σ1

[
a2(Aw2)2 − a1(Aw1)2

]
N · νdΣ

+
1
2

∫
Σ

a2(Aw2)2N · νdΣ − 1
2

∫
Q

a(x)(Aw)2div0NdQ.

(5.14)

Notice that in the last step, we used the fact that N(w1) = N(w2) on Γ1.

Since w2|Σ =
∂w2

∂νA

∣∣∣
Σ

= 0 implies N(w2)|Σ = 0, it follows from identity (5.7) that

∂N(w2)
∂νA

= N

(
∂w2

∂νA

)
=

〈
N, νA

|νA|g

〉
g

νA
|νA|g

(
∂w2

∂νA

)

= N · ν 1
|νA|2g

∂2w2

∂ν2
A

= Aw2N · ν on Σ.

(5.15)
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Now we treat the term a1Aw1
∂N(w1)

∂νA
− a2Aw2

∂N(w2)
∂νA

on Σ1. Since a1Aw1|Σ1 =

a2Aw2|Σ1 , (w1 − w2)|Σ1 =
∂(w1 − w2)

∂νA

∣∣∣∣
Σ1

= 0, similar to (5.15), we have

a1Aw1
∂N(w1)

∂νA
− a2Aw2

∂N(w2)
∂νA

= [a1(Aw1)2 − a2(Aw2)2]N · ν on Σ1. (5.16)

Combining (5.9), (5.14), (5.15) and (5.16), we arrive at (5.8). The proof is complete. �
The following Lemma 5.3 claims the boundary regularity (hidden regularity) for prob-

lem (5.1).

Lemma 5.3. There exists a constant CT > 0 such that for any mild solution of (5.1), it
has ∫

Σ

(Aw2)2dΣ ≤ CT

(
‖w0‖2

H2
0 (Ω) + ‖w1‖2

L2(Ω)

)
. (5.17)

Proof. Choose the vector field N in (5.8) such that N = νA on Γ and N = 0 in some
neighborhood of Ω1. Then N · ν = |νA|2g ≥ λ > 0. This together with (5.8), Lemma 5.2
and Lemma 5.3 gives (5.17). �

Lemma 5.4. Let N be a vector field and w a solution to (5.1). If ϕ ∈ C2(Rn), then it
has∫

Q

[|ẇ|2 − a(x)(Aw)2]ϕdQ = −
∫

Ω

ẇwϕdx

∣∣∣∣
T

0

+
∫

Q

a(x)Aw[wAϕ + 2Dϕ(w)]dQ. (5.18)

Proof. By virtue of Green’s identity, we have∫
Ω

ẇwϕdx

∣∣∣∣
T

0

=
∫

Q

[(−a(x)A2w)wϕ + |ẇ|2ϕ]dQ

= −
∫

Q

a(x)AwA(wϕ)dQ −
∫

Σ

a2
∂Aw2

∂νA
w2ϕdΣ +

∫
Σ

a2Aw2
∂(w2ϕ)

∂νA
dΣ

+
∫

Q

|ẇ|2ϕdQ

=
∫

Q

[|ẇ|2 − a(x)(Aw)2]ϕdQ −
∫

Q

a(x)Aw[wAϕ + 2Dϕ(w)]dQ

−
∫

Σ

a2
∂Aw2

∂νA
w2ϕdΣ +

∫
Σ

a2Aw2
∂(w2ϕ)

∂νA
dΣ

=
∫

Q

[|ẇ|2 − a(x)(Aw)2]ϕdQ −
∫

Q

a(x)Aw[wAϕ + 2Dϕ(w)]dQ.

(5.19)

In the last step above, we used the following formula:
A(wϕ) = (Aw)ϕ + 2Dϕ(w) + (Aϕ)w. �

Now we define the energy function for the system (5.1) as

E(t) ≡ E(w, t) =
1
2

∫
Ω

(
|ẇ|2 + a(x)|Aw|2

)
dx. (5.20)
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Then E(t) ≡ E(0) for all t > 0. Let

L(t) =
∫

Ω

(w2 + |Dw|2g)dx (5.21)

be the lower-order term in terms of E(t).

Lemma 5.5. Suppose that Assumption (H3) holds. Let w solve the equation (5.1) with
Aw = 0 on Σ0. Then w ≡ 0 in Q.

Proof. Set

Y = {w ∈ X � C([0, T ]; H2
0 (Ω))∩C1([0, T ]; L2(Ω)), w solves (2.1) with Aw = 0 on Σ0}.

We prove Y = 0. Actually, by (5.3) and (5.40) that will be shown later, we have

E(0) ≤ C
(
‖Aw2‖2

L2(Σ0)
+ ‖w‖2

L∞(0,T ;H1
0 (Ω))

)
, ∀ w ∈ X satisfying (5.1). (5.22)

Now, we show that there exists a constant C > 0 such that for any w ∈ X satisfying
(5.1)

‖w‖2
L∞(0,T ;H1

0 (Ω)) ≤ C
(
‖Aw2‖2

L2(Σ0)
+ ‖w‖2

L∞(0,T ;L2(Ω))

)
. (5.23)

In fact, if (5.23) is not true, then there exists a solution sequence {wn} ∈ X to Equation
(5.1) such that

‖Awn2‖2
L2(Σ0)

+ ‖wn‖2
L∞(0,T ;L2(Ω)) → 0 as n → ∞, (5.24)

with
‖wn‖2

L∞(0,T ;H1
0 (Ω)) = 1. (5.25)

It then follows from (5.3) and (5.22) that {wn} is bounded in X and hence is relatively
compact in L∞(0, T ; H1

0 (Ω)). By extracting a subsequence if necessary, we may assume
without loss of generality that {wn} converges strongly to w ∈ L∞(0, T ; H1

0 (Ω)). By
(5.25), it has

‖w‖2
L∞(0,T ;H1

0 (Ω)) = 1. (5.26)

However, (5.24) implies w = 0 in Q. This contradicts (5.26).
Next, from (5.22) and (5.23), we have

E(w, 0) ≤ C
(
‖Aw2‖2

L2(Σ0)
+ ‖w‖2

L∞(0,T ;L2(Ω))

)
, ∀ w ∈ X satisfying (5.1). (5.27)

By the density argument, (5.27) still holds true for w ∈ L∞(0, T ; L2(Ω)) satisfying (5.1).
We thus have proved that w ∈ Y implies that v = ẇ solves (5.1) with Av|Σ0 = 0 and
v ∈ L∞(0, T ; L2(Ω)). This together with (5.27) gives

(v(0), v̇(0)) ∈ H2
0 (Ω) × L2(Ω). (5.28)

Finally, since by Proposition 5.1, v ∈ X, it follows from (5.27) that the map ∂t: w → ẇ

is continuous from Y to Y and the injection of {w ∈ Y ; ẇ ∈ Y } is compact. Therefore,
Y is a finite dimensional space. There must exist an η ∈ C and w ∈ Y \ {0} such that
ẇ = ηw, which implies

w(x, t) = eηtw(x, 0). (5.29)

Substitute (5.29) into (5.1) to obtain (1.11) with u(x) = w(x, 0) and ζ = −η2. By
Assumption (H3) we have w(x, t) ≡ 0 and hence Y = {0}. �
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With these preparations, we can now show Theorem 1.3.
Proof. By the duality principle, the proof is accomplished if we can show that there

is a constant CT > 0 independent of the solution w of Equation (5.1) such that

E(0) ≤ CT

∫
Σ0

(Aw2)2dΣ, (5.30)

for Σ0 = Γ0 × (0, T ), where Γ0 given by (1.12) is relatively open in Γ.
To this end, for any x ∈ Ω we define T ∈ T 2(Rn

x) by

T (X, Y ) = DN(X, Y ) + DN(Y, X), ∀ X, Y ∈ R
n
x . (5.31)

It is clear that T (·, ·) is symmetric, and from (1.8), we have

DN(X, Y ) + DN(Y, X) = 2b(x)〈X, Y 〉g ∀ X, Y ∈ R
n
x , x ∈ Ω. (5.32)

Given x ∈ Ω, let {ei}n
i=1 be an orthonormal basis of (Rn

x , g). By (5.32), we have

〈DN, D2w〉T 2(Rn
x) = DN(ei, ej)D2w(ei, ej) = b(x)∆gw = b(x)Aw + Df(w). (5.33)

By Lemma 5.1, there exist constants C > 0, ε > 0 such that

∣∣∣∣
∫

Ω

ẇN(w)dx

∣∣∣∣ ≤ ε

∫
Ω

|ẇ|2dx +
1
4ε

∫
Ω

|N(w)|2dx ≤ εE(0) +
C

4ε
L(t), (5.34)∣∣∣∣

∫
Ω

ẇwϕdx

∣∣∣∣ ≤ εE(0) +
C

4ε
L(t), (5.35)∣∣∣∣

∫
Q

a(x)Aw
[
FN(w) + Ric(N, Dw) − D2f(N, Dw)

]
dQ

∣∣∣∣
≤ εTE(0) +

C

4ε

∫ T

0

L(t)dt,

(5.36)

∣∣∣∣
∫

Q

a(x)b(x)AwDf(w)dQ

∣∣∣∣ ≤ εTE(0) +
C

4ε

∫ T

0

L(t)dt, (5.37)

∣∣∣∣
∫

Q

a(x)Aw[wAϕ + 2Dϕ(w)]dQ

∣∣∣∣ ≤ εTE(0) +
C

4ε

∫ T

0

L(t)dt. (5.38)
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Keeping Assumptions (H1)–(H3) and a2 ≤ a1 in mind, by (5.8), (5.18) and (5.33)–
(5.38), we have

1
2

∫
Σ0

a2(Aw2)2N · νdΣ

≥ 1
2

∫
Σ

a2(Aw2)2N · νdΣ − 1
2

∫
Σ1

[
a1(Aw1)2 − a2(Aw2)2

]
N · νdΣ

=
∫

Ω

ẇN(w)dx

∣∣∣∣
T

0

+
1
2

∫
Q

[
|ẇ|2 − a(x)(Aw)2

]
div0NdQ

+
∫

Q

a(x)Aw
[
2〈DN, D2w〉T 2(Rn

x) + FN(w) + Ric(N, Dw) − D2f(N, Dw)
]
dQ

≥ 2b0

∫
Q

a(x)(Aw)2dQ +
1
2

∫
Q

[
|ẇ|2 − a(x)(Aw)2

]
div0NdQ

−
(

2εE(0) +
C

4ε
(L(T ) + L(0))

)
− 2

(
εTE(0) +

C

4ε

∫ T

0

L(t)dt

)

= b0

∫
Q

(
|ẇ|2 + a(x)(Aw)2

)
dQ +

∫
Q

[
|ẇ|2 − a(x)(Aw)2

](1
2
div0N − b0

)
dQ

−
(

2εE(0) +
C

4ε
(L(T ) + L(0))

)
− 2

(
εTE(0) +

C

4ε

∫ T

0

L(t)dt

)

≥ (b0 − 4ε − 3Tε)E(0) −
(

3C

4ε

∫ T

0

L(t)dt +
C

2ε
(L(T ) + L(0))

)
.

(5.39)

Setting ε > 0 small enough, we obtain

E(0) ≤ CT

∫
Σ0

(Aw)2dΣ + C

(∫ T

0

L(t)dt + L(T ) + L(0)

)
. (5.40)

Now we apply the standard compact uniqueness argument to absorb the lower-order
terms in (5.40). In other words, we want to show that there exists a constant C > 0 such
that

‖w‖2
L∞(0,T ;H1

0 (Ω)) ≤ C

∫
Σ0

(Aw)2dΣ (5.41)

for solution w of (5.1). In fact, if (5.41) is not true, then there exists a solution sequence
{wn} of Equation (5.1) such that∫

Σ0

(Awn)2dΣ → 0, n → ∞ (5.42)

with
‖wn‖2

L∞(0,T ;H1
0 (Ω)) ≡ 1. (5.43)

It then follows from (5.40) and (5.3) that {wn} is a bounded sequence in C([0, T ]; H2
0 (Ω))∩

C1([0, T ]; L2(Ω)) and hence relatively compact in L∞(0, T ; H1
0 (Ω)) because the injection

C([0, T ]; H2
0 (Ω)) ∩ C1([0, T ]; L2(Ω)) → L∞(0, T ; H1

0 (Ω))
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is compact due to Simon’s result [26]. By extracting a subsequence if necessary, we may
assume without loss of generality that {wn} converges strongly to w ∈ L∞(0, T ; H1

0 (Ω)).
By (5.43),

‖w‖2
L∞(0,T ;H1

0 (Ω)) = 1. (5.44)

Furthermore, {wn} and {ẇn} converge to w and ẇ in L∞(0, T ; H2
0 (Ω)) and

L∞(0, T ; L2(Ω)), respectively, in weak star topology. Therefore, w is a solution to (5.1)
with

w ∈ C([0, T ]; H2
0 (Ω)) ∩ C1([0, T ]; L2(Ω)). (5.45)

By (5.40) and (5.17), we have

Aw = 0 on Σ0. (5.46)

Finally, by virtue of Lemma 5.5, we have

w ≡ 0 in Q, (5.47)

which contradicts (5.44). The proof is complete. �

Appendix. Since there is no explanation for the identity (2.8) in [34], here we give
a brief proof.

Proof. Einstein summation is used throughout the proof . Let x ∈ Rn be fixed. Let
{ei}n

i=1 be a frame field normal at the point x on Riemannian manifold (Rn, g). Then at
x, it has

〈DN, D2ϕ〉T 2(Rn
x) = DN(ei, ej)D2ϕ(ei, ej)

= 〈Dei
N, ej〉g[eiej(ϕ) − Dei

ej(ϕ)]

= 〈Dei
N, ej〉gei〈∇gϕ, ej〉g

= 〈Dei
N, ej〉g(〈Dei

∇gϕ, ej〉g + 〈∇gϕ, Dei
ej〉g)

= 〈Dei
N, ej〉g〈Dei

∇gϕ, ej〉g
= 〈Dei

N, Dei
∇gϕ〉g.

(A.1)

By the formulae divgX = 〈Dei
X, ei〉g for any X ∈ X(Rn), ∇gϕ = ei(ϕ)ei and

|∇gϕ|2g =
∑n

i=1(ei(ϕ))2, we have, at x,

N(∆gϕ) = N(divg(∇gϕ)) = N〈Dei
∇gϕ, ei〉g

= 〈∇g〈Dei
∇gϕ, ei〉g, N〉g

= 〈(ej〈Dei
∇gϕ, ei〉g)ej , N〉g

= 〈〈Dej
Dei

(∇gϕ), ei〉gej , N〉g
= 〈Dei

Dei
(∇gϕ), N〉g.

(A.2)
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Computing the first term on the right hand side of (2.8) we obtain, at x,

(−�N)(ϕ) = −(−D2
ekek

N + ek ∧ i(wj)R(ek, ej)N)(ϕ)(by the formula (2.7))

= Dek
Dek

N(ϕ) − ek ∧ i(wj){〈R(ek, ej)N, el〉gel}(ϕ)

= 〈∇gϕ, Dek
Dek

N〉g − 〈R(ek, ej)N, ej〉gek(ϕ)

= 〈∇gϕ, Dek
Dek

N〉g − 〈R(∇gϕ, ej)N, ej〉g
= 〈∇gϕ, Dek

Dek
N〉g − Ric(∇gϕ, N).

(A.3)

The left hand side of (2.8) at x can be expressed as

∆g(N(ϕ)) = divg(∇g(N(ϕ))) = divg(ei(N(ϕ))ei)

= 〈Dej
ei(N(ϕ))ei, ej〉g

= eiei〈∇gϕ, N〉g
= ei{〈Dei

∇gϕ, N〉g + 〈∇gϕ, Dei
N〉g}

= 〈Dei
Dei

(∇gϕ), N〉g + 2〈Dei
∇gϕ, Dei

N〉g + 〈∇gϕ, Dei
Dei

N〉g.

(A.4)

Combining identities (A.1)–(A.4), noting the arbitrariness of x and the fact that the
Ricci curvature tensor Ric(·, ·) is a symmetric second-order covariant tensor field, we
finally obtain (2.8). �
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