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The relationship between the scale transformation and. Weyl's gauge transformation is 
investigated. It is shown that a scale invariant Lagrangian can be transformed into a scalar 
density which is invariant under x-dependent gaug~ transformations in Weyl's sense. The 
Lagrangian of the latter form gives a symmetric energy momentum tensor· the trace of 
which can be shown to vanish provided that some equation for Weyl's gauge field is satisfied 
in addition to the equations of the original· scale invariant fields. A simple example is 
investigated to show an extraordinary property of Weyl's gauge field. 

§I. Introduction 

Since the last few years, the so-called scale invariance has attracted our at­
tention in connection with the high energy behaviour of some collision processes. 
The transformation considered in such cases differs from the famous gauge trans­
formation proposed by W eyPl-sJ but is quite similar to the latter in some respects. 

The aim of ,the present paper is to 'investigate the relationship between the 
transformations of both kinds and to give a prescription for the derivation of a 
symmetric energy-momentum tensor, the trace of which vanishes when the system 
is scale invariant. It will be shown that such an energy-momentum 'tensor not 
only depends on the original scale-invariant fields but also should have a contri­
bution from the gauge field rp" which was first proposed by W eyl in order to 
unify the electromagnetic field with the gravitational field from the view point 
of the world geometry. 

The field rp" was abandoned contrary to W eyl's intention owing to some de­
fects. In fact this gauge fi~ld has an: extraordinary property as will be shown 
in § 5, and it is a matter of course that the field rp" could not be identified with 
the electromagnetic field. In § 5 it will be shown that rp, has a Tachyon-like 
property with a Lagrangian; density which has an opposite sign to that of the 
electromagnetic field. Such a "wrong" sign of the Lagrangian density forces· 
us to have an expectation that this unusual field might play a role of a cohesion 
field which we have been looking for in order to explain the stable character of 
elementary particles. It may be worth while to investigate the behaviour of rp". 
from such a· view point as mentioned just above. Section 5 is nothing but the 
introduction to such a new exploration. 
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On Weyl's Gauge Field 2osi 

§ 2. Review of W eyl's theory of gauge transformation 

For the later discussion, let us begin with .a brief review of Weyl's theory 
of gauge transformation. 

Consider a vector field V"'(x) in a Minkowski space. A derivative of V"'(x), 

. V'" (x) = aV"' 
,v ax' ' 

has an invariant meaning, namely, it behaves as a .component of a mixed tensor 
under any Lorentz transformation. However, if the group of transformations is 

. replaced with general transformations of coordinates, the above derivative should 
be modified in the following way: 

(2·1) 

in order to retain the tensor character under general transformations. Here {,"' ;..} 
is the Christoffel three-index symbol which is written in terms of the metric tensor 
g ,.., as follows: 

d {,"' ;..} =-~Jgi'P {g pv,:>. + 9;..p,v- 9v1.,p} • 

Let us consider W eyl's gauge transformation: 

(2·2) 

where A Is any re~l function of the x"''s and the coordinate variable x"' is sup­
posed to be kept unchanged. Let V"' (x) be assumed to be transformed as 

V"'~V"' a AnV"' 

under the transformation (2 · 2). n is a constant which characterizes the trans­
formation' property of V. 

If A is assumed to be a constant, the covariant derivative Vfv has the same 
transformation property as that of V"', because g"'' should be transformed as 

owing to its definition and consequently {/ ;..} becomes invariant. On the other 
hand, if A depends on x, the w:ell-known prescription for general gauge fields 4l 

leads to the gauge-invariant and generally covariant derivative which can be de­
rived from (2 ·1) by a simple substitution of aJ;I ordinary derivative with a cor­
responding gauge-invariant derivative: 

(2·3) 

The additional terms in (2 ·, 3) are proportional to a new vector field cp, which 
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2082 R. Utiyama 

is called W eyl's gauge field and obeys the following rule under the gauge trans­
formation: 

The gauge-invariant and generally covariant derivative of a, vector V" is defined 
by 

(2·4) 

and the new affine cpnnection r is given by 

(2·5) 

For the sake of convenience, let us call Q(x) a quantity with the gauge 
weight n when Q is transformed by the rule 

Then, (2 · 2) shows that g "" has a gauge weight 2, and according to the defini­
tion (2 · 4) the gauge-invariant and generally covariant derivative of g "" is given 
by 

The right-hand side of the above expression vanishes owing to the definition (2 · 5) 
regardless of any choice of g "" and q;.,_. 

As an example, consider a vector V" with the weight 0. The square of the 
magnitude of this vector, i.e., (VY=g"" V"V" has a gauge weight 2. Thus the 
gauge-invariant derivative of (VY becomes 

17" C vy = D" C vy =a" C vy + 2q;" C vy; 
which shows that the scalar ( VY ~ith a weight 2 undergoes a, change when its 
constituent vectors are transferred from a point x to an infinitely clos'ed point 
x + dx by a parallel transport: 

{V(x)}2~ {V(x+dx)1j}2 a {l-2q;.,_dx>-} · {V(x)}2• 

Here {V(x+dx)11 } 2 indicates a square of the magnitude of V" at x+dx after the 
parallel transport. The fact that even a scalar changes its magnitude when it 
is transferred from point to point by an infinitesimal parallel transport is the most 
characteristic point of the geometry proposed by W eyl. 

The q;" which had to be introduced in order to recover the same transfor­
mation property of 17 .,_ V" as that for the case of a constant )., was regarded by 
W eyl as representing the electromagnetic potential. However, his .idea was forced 
to be abandoned owing to some strong objections. In fact, it will be shown in 
the present paper that W eyl's gauge field is a kind of Tachyon field and is g~v-
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On Weyl's Gauge Field 2083 

erned by a constraint of a cdmpletely new type . which was never seen in the 
case of the electromagnetic field. 

§ 3. Scale transformation and W eyl's gauge transformation 

In connection with the behaviour of cross sections of some extremely high 
energy processes, many people are interested in the invariance of physical laws 
under a scale transformation 

g 1., =unchanged. (a=any constant) (3·1) 

It will be shown that the action integral of some system is invariant under the 
scale transformation (3 ·1) if it is Lorentz invariant and also gauge invariant in 
W eyl's sense with a constant A. 

In order to prove the above· statement, 'let us consider a system of fields 
1JIA (A= 1, 2, · · · N) with a Lagrangian 

(3·2) 

where 7fp• is the metric tensor of the Minkowskian 'type. If (3 · 2) is Lorentz 
invariant, it is easy to make (3 · 2) be a scalar density under any linear trans­
formation of coordinates by substituting 7J"" with a constant metric tensor (". and 
multiplying (3 · 2) with a factor '/f.. Here C denotes I det ((".)I which is assumed 
to be =FO. After such a modl.fic~tion, the action integral 

'(3·3) 

is invariant under any linear transformation of coordinates, especially under the 
transformation of the following type (dilatation): 

(a=any constant) 

If 1JIA is assumed to be a covariant tensor of rank r, it is transformed as follows: 

d 
1j!A ~ 1j!A1 (x') =a-T1fiA (x) 

under the transformation stated above.. Similarly, the metric tensor undergoes 
the change 

, }!___ -2 

C".~C11v=a '"" · 
If Weyl's gauge transformation (with a constant A.) is performed subsequently to 
the above transformation, and the dilatation parameter a is particularly chosen 
to be equal to A., the resultant transformation is nothing but the scale transfor­
mation (3 ·1), namely 

x"~x"'( =A.x") ~x"' =x"' =A.x", 
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2os4 R. Utiyama 

cl'.~c:.c =A.- 2<:1'.) ~~:;=A.2<::.=ci'., 
'IJfA~ 1JfA1 (=A -r'IJfA) ~ 'ijtA1 = An'IJfA' = An-r'IJfA , 

where 'IJfA has been assumed to have the gauge weight n and the Minkowskian 
111'• should be taken in place of (~'. after this transformation. Therefore if (3 · 3) 
is gauge invariant in W eyl's sense with a constant A., it is necessarily invariant 
under the scale transformation (3 ·1). The inverse of this statement is also true 
as is easily shown. 

In the above proof, we have considered only the case that 'IJfA is covariant. 
tensors for the sake of simplicity, but it is not hard to extend the above consid­
eration to the case of spinor fields. 

§ 4. The vanishing trace of the energy-momentum tensor 

It ·is believed that the trace of the energy-momentum tensor of a system van­
ishes if the action integral of that system· is scale invariant,· but any satisfactory 
proof for this fact has never been published so far. 

To prove this, it is necessary to rewrite (3 · 3), which is assumed to b~ scale 
invariant, in a little more general form. We ha:re to consider a gauge invariant 
Lagrangian for the case of x-dependent A.. As was already shown in § 2, we are 
able to rewrite (3· 3) in an invariant form under ·any xcdependent gauge trans­
formation by SUbstituting 0 p'IJfA With a gauge invariant derivative 

a' 
Dp1JfA=fJP1JfA+ncp~'1JfA. 

A gauge transformation with an x-dependent J.. does not allow us to remain 
111 the case of a constant metric tensor (p•· Therefore it is necessary to rewrite 
(3 · 3) in a generally covariant form by a further substitution of 

(~'. with g~'.(x) 

and 

(4·1) 

where the r in the second term of the right-hand side is the gauge-invariant af­
fine coefficient defined by (2 · 5) .*l Thus the action integral which we are go. 
ing to discuss is 

*> Strictly speaking, a metric tensor of the conformally fiat world, namely, that of the follow­
ing type 

g,.(x)= {~(x)}2l7,. 
is sufficient for our present discussion. Since, however, the case with such a particular metric is 
rather troublesome to deal with, we make use of a general non-degenerate metric tensor g,.(x) 
without any restriction. 
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On Weyl's Gauge Field' 2085 

(4·2) 

where 

(4· 2)' 

and 

1s some gauge-invariant scalar density which should be added to the given 
Lagrangian L 0 in order to determine the behaviour of the Weyl's gauge field cp,.. 

From the procedure stated so far it is evident that I is a gauge-invariant 
scalar. Consequently, for an infinitesimal gauge transformation, 

J.(x) =l+c:(x), (c: =an infinitesimal function) 

og""(x) .z g""(x) -g""(x) =2c:(x) .g""(x), 

d 

ocp"=-o"c:(x), 

we have the following identity: 

S { oJ: (oJ:) . oJ: } 4 of= c(X) --n7JfA + 01' -- + 2--91'" d X 
. oWA . ocp" . og"" 

+Sal'{(}_[ 01JfA+ (}_[ 0(/Jp+ (}_[ 09pa_C.§_f}d'x=0. 
87JfA,p 0(/Jp,p 09pa,p 0(/J" 

Here the following abbreviation has been employed: 

o_f d ()_[ - ~ •( ()_[ ) 

01JfA (}7jfA Up (}7JfA,p. •. (similar notations for cp" and g"") 

The well-known line of reasoning used in Noether's theorem decomposes the 
above integral to a couple of 1dentities 

and 

0 I' { (}_[ 01JfA + It + It - It} =0 . 
(}7JfA,p 

Now, it 1s well known that the tensor density 

W" .z -2 o_f 
og"" 

(4·3) 

(4·4) 
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2086 R. Utiyama 

is a symmetric energy-momentum tensor .density of the total system ..f and plays 
the role of source for the gravitational field in Einstein's theory of· gravitation. 
Therefore the ·i~entity ( 4 · 3) Jeads to the vanishing trace of the energy-momentum 

; 

tensor: 

provided that the field equations 

(4·5) 

and 

(4·6) 

have been employed. 
The proof for 6l~ = 0 given above has two unsatisfactory points. Th~ first 

point is that the 6l''" depends not only on 1J'"A, but also on the gauge field cp,.. 
Therefore if we want to have an energy-momentum tensor of the 1J'"A alone, the 
gauge field cp, needs to be expressed in terms of iJrA by solving Eq. ( 4 · 6). Thus 
the resultant 6l"" with. a property of vanishing trace has in general a non-local 
feature. The second weak point that is more serious is that the compatibility 
of Eq. ( 4 · 5) with ( 4 · 6) of which we are quite optimistic and do not customarily 
give any careful consideration. 

§ 5. Example; Tachyon field 

In order to investigate the compatibility of field equations pointed out in the 
end of § 4, let us consider a simple example. 

Let cjJ be a real scalar field the behaviour of which is determined by the 
following Lagrangian:*> 

(r;oo= _c 1) (5·1) 

It is easily seen that the action integral of (5·1) is invariant under the scale 
transformation 

x"~A.x", 

(A= any constant) 

The modified Lagrangian corresponding to (5 ·1) which is gauge-invariant scalar 
density under general transformations of coordinates 1s 

(5·2) 

*' The case in which the self-interaction· 1/4-ft/14 exists is disc~ssed in a report ·by the pres­
ent author.5' 
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On Weyl's Gauge Field 2087 

where 

fl"¢ =a"¢- rpAJ. 

As to the Lagrangian d.escribing the behaviour of the gauge field rp", let us adopt 

r _ a t-9 g"Pg•aj f · 
...1.-1- - 4 V - • "" pa ' (5·3) 

where 

d 
fpu• 81'rp.- a.rpl' 

and the parameter a 1s assumed to take a value + 1 or -1. . (5 · 3) is the only 

possible one among the various types of gauge invariant scalar densities which 
give a linear field equation of second order. 

The total action integral 

1s invariant under the gauge transformation 

(5·4) 

The prescription stated in § 3 leads to the symmetric energy-momentum tensor 
density (with a gauge weight - 2) of the following type: 

fJ""=- v' -g(fl"¢·fl"¢+af"Pf"agpa) -g""(.Lo+.Ll), 

the trace of which is 

e a w·g".= v' -gfl"¢·fl.¢·9"". (5·5) 

The field equations for ¢ and rp" are 

(5·6) 

and 

(5·7) 

Owing ,to the antisymmetry of f"" with respect to its suffices fJ. and v, (5 · 7) 

gives a law of conservation 

(5·8) 

No~ the right-hand side of (5 · 5) can be transformed into 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/50/6/2080/1923434 by guest on 21 August 2022



2088 R. Utiyama 

the second term of which vanishes with the aid of the :field equation (5 · 6), while 
the first term is equal to zero owing to the law of conservation (5 · 8). Thus 
we have shown that indeed the trace e vanishes provided that the field equations 
are satisfied. 

For the sake of simplicity, let us assume that the space time is couformally 
:flat. In such ,a case it is possible to introduce a Cartesian system of coordinates 
by making use of some appropriate gauge transformation together with a general 
transformation of coordinates. The field equations in such a case h.ecome 

and 

If the following notation 

Is employed, the gauge invariant derivative /i' "¢ takes a simple form 

/i' "¢ = - ¢. ?pI' ' 

and Eqs. (5 · 9) and (5 · 10) turn out to be 

f) I' (¢2?p") + ¢2?p l'?p" = 0 

and 

respectively, where 

.f". =a "rp.- a.rp" . 
The divergence of (5 ·10)' leads to 

which gives a new constraint 

¢2?p l'?p" = 0 

when the first term of (5 · 9)' is substituted by (5 · 8)'. 

(5·9) 

(5·10) 

(5· 9)' 

(5·10)' 

(5· 8)' 

(5. 9)'' 

It is easily seen that in the case of ¢=0, the gauge field ?p" satisfies the 
same equation as that of the electromagnetic :field and in such a case, the param­
eter a should be put equal to + 1 in order to obtain a positive definite energy 
density. 

On the other hand, if ¢ does not identically vanish, (5 ·10)' has a feature 
which shows that the gauge :field ?p" has a "mass" ¢ (x). Let us consider some 
region in the space time where rf;(x) is almost constant (such a region can al­
ways exist if the extension of this region is chosen sufficiently small). In such 
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On Weyl's Gauge Field 2089 

a case the field equations and the constraints take the following form m a suf­
ficiently good approximation: 

Oq5~'-am2q5~'=0, 

f) l'q;;l' = 0' 

q51'q51'=0' 

where m 2 has been put m place of {¢(x)}2• 

Now (5·11) has a plane wave solution: 

q;;~'(x) =AI' cos(k~x~ +a), 

where 

k0 = ../ (kY+am2 • 

The constraint (5 · 13) gives a condition 

which transforms (5 ·12) into a simple form 

(5·11) 

(5·12) 

(5·13) 

where e IS an angle between A and k. Therefore we obtain a relation 

../(k)2 +am2 =k.cos e<k 
(A0 is assumed to be positive), which shows that a should be equal to -1.*) 
Thus th~ field q:;l' is not an ordinary field but describes a kind of Tachyon field 
with non-positive-definite energy density which is due to the opposite sign of _f1• 

This example shows that the· postulate of gauge invariance and Lorentz in­
variance is not necessarily sufficient for the determination of the equation of 
the gauge field. In fact the parameter a in this example cannot be determined 
without a careful examination of solutions. It can occur that the Hamilton prin­
ciple leads to an incompatible set of field equations or to those which have phys­
ically unacceptable solutions even though the field equations have an invariant 
appearance. 

Before closing this article it should be noted that the unusual field q;~' might 
play some role in establishing a model of a stable elementary partic_le. It can 
be expected that the "wrong" sign of the Lagr~ngian density of q;l' gives rise 
to a destructive· effect on the physical propagators of other particles and conse­
quently suppresses the divergences being inherent in the quantum field theory. 
Many similar approaches have been tried so far but all these theories have a 
common weak point. That is, it is not easy to make such a cohesion field un-

*> If a=+ 1, the wave number vector k" should become imaginary. Such a wlution does not 
have a simple correspondence with a particle of the ordinary type. 
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observable. According to the. result stated in this section, however, W eyl's gauge 
·field is a ·Tachyon-like field which describes particles with momenta larger than 
its rest mass when it is quantized. This peculiar property of cp" which is char­
acteristic of Tachyons suggests that the field cp" makes its appearance only m 
the vicinity (of the order of the Compton ·wave length of cp~) of its source. 

The third strong point of W eyl's gauge field is that the interac~ion 'of cp" 
with other fields is uniquely determined (especially in the case of extremely high 
energy where the masses of other fields can be ignored) by the principle of gauge 
invariance. The various theories of cohesion field so far proposed had no such 
a guiding principle for the determination of the type of their interactions. 

The conjecture stated above seems to show that it is worth while to inves­
•· tigate in more detail the behaviour of W eyl's field both in the classical and quan­
tum theory. 
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