
1090 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

On Wide Area Network Optimization
Yan Zhang, Student Member, IEEE, Nirwan Ansari, Fellow, IEEE, Mingquan Wu, Member, IEEE, and

Heather Yu, Member, IEEE,

Abstract—Applications, deployed over a wide area network
(WAN) which may connect across metropolitan, regional or
national boundaries, suffer performance degradation owing to
unavoidable natural characteristics of WANs such as high latency
and high packet loss rate. WAN optimization, also known as WAN
acceleration, aims to accelerate a broad range of applications
and protocols over a WAN. In this paper, we provide a survey
on the state of the art of WAN optimization or WAN acceleration
techniques, and illustrate how these acceleration techniques can
improve application performance, mitigate the impact of latency
and loss, and minimize bandwidth consumption. We begin by
reviewing the obstacles in efficiently delivering applications over
a WAN. Furthermore, we provide a comprehensive survey of the
most recent content delivery acceleration techniques in WANs
from the networking and optimization point of view. Finally, we
discuss major WAN optimization techniques which have been
incorporated in widely deployed WAN acceleration products -
multiple optimization techniques are leveraged by a single WAN
accelerator to improve application performance in general.

Index Terms—Wide area network (WAN), WAN acceleration,
WAN optimization, compression, data deduplication, caching,
prefetching, protocol optimization.

I. INTRODUCTION

TODAY’S IT organizations tend to deploy their infrastruc-

tures geographically over a wide area network (WAN)

to increase productivity, support global collaboration and

minimize costs, thus constituting to today’s WAN-centered

environments. As compared to a local area network (LAN),

a WAN is a telecommunication network that covers a broad

area; WAN may connect across metropolitan, regional, and/or

national boundaries. Traditional LAN-oriented infrastructures

are insufficient to support global collaboration with high

application performance and low costs. Deploying applications

over WANs inevitably incurs performance degradation owing

to the intrinsic nature of WANs such as high latency and

high packet loss rate. As reported in [1], the WAN throughput

degrades greatly with the increase of transmission distance and

packet loss rate. Given a commonly used maximum window

size of 64 KB in the original TCP protocol and 45 Mbps

bandwidth, the effective TCP throughput of one flow over a

source-to-destination distance of 1000 miles is only around

30% of the total bandwidth. With the source-to-destination

distance of 100 miles, the effective TCP throughput degrades

from 97% to 32% and 18% of the whole 45 Mbps bandwidth

Manuscript received 05 May 2011; revised 16 August and 03 September
2011.

Y. Zhang and N. Ansari are with the Advanced Networking Lab., Depart-
ment of Electrical and Computer Engineering, New Jersey Institute of Tech-
nology, Newark, NJ, 07102 USA (e-mail: {yz45, nirwan.ansari}@njit.edu).

M. Wu and H. Yu are with Huawei Technologies, USA (e-mail:
{Mingquan.Wu, heatheryu}@huawei.com).

Digital Object Identifier 10.1109/SURV.2011.092311.00071

when the packet loss rate increases from 0.1% to 3% and 5%,

respectively.

Many factors, not normally encountered in LANs, can

quickly lead to performance degradation of applications which

are run across a WAN. All of these barriers can be categorized

into four classes [2]: network and transport barriers, appli-

cation and protocol barriers, operating system barriers, and

hardware barriers. As compared to LANs, the available band-

width in WANs is rather limited, which directly affects the

application throughput over a WAN. Another obvious barrier

in WANs is the high latency introduced by long transmission

distance, protocol translation, and network congestions. The

high latency in a WAN is a major factor causing the long

application response time. Congestion causes packet loss and

retransmissions, and leads to erratic behavior of the transport

layer protocol, such as transmission control protocol (TCP).

Most of the existing protocols are not designed for WAN

environments; therefore, several protocols do not perform well

under the WAN condition. Furthermore, hosts also impact

on the application performance, including operating systems,

which host applications; and hardware platforms, which host

operating systems.

The need for speedup over WANs spurs on application

performance improvement over WANs. The 8-second rule

[3] related to a web server’s response time specifies that

users may not likely wait for a web page if the load-time

of the web page exceeds eight seconds. According to an E-

commerce web site performance study by Akamai in 2006

[4], this 8-second rule for e-commerce web sites is halved

to four seconds, and in its follow-up report in 2009 [5], a

new 2-second rule was indicated. These reports showed that

poor site performance was ranked second among factors for

dissatisfaction and site abandonment. Therefore, there is a dire

need to enhance application performance over WANs.

WAN optimization, also commonly referred to as WAN

acceleration, describes the idea of enhancing application per-

formance over WANs. WAN acceleration aims to provide

high-performance access to remote data such as files and

videos. A variety of WAN acceleration techniques have been

proposed. Some focus on maximizing bandwidth utilization,

others address latency, and still others address protocol in-

efficiency which hinders the effective delivery of packets

across the WAN. The most common techniques, employed

by WAN optimization to maximize application performance

across the WAN, include compression [6–10], data dedupli-

cation [11–24], caching [25–39], prefetching [40–62], and

protocol optimization [63–81]. Compression is very important

to reduce the amount of bandwidth consumed on a link

during transfer across the WAN, and it can also reduce the

1553-877X/12/$31.00 c© 2012 IEEE

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1091

transit time for given data to traverse over the WAN by

reducing the amount of transmitted data. Data deduplication

is another data reduction technique and a derivative of data

compression. It identifies duplicate data elements, such as an

entire file and data block, and eliminates both intra-file and

inter-file data redundancy, and hence reduces the data to be

transferred or stored. Caching is considered to be an effective

approach to reduce network traffic and application response

time by storing copies of frequently requested content in a

local cache, a proxy server cache close to the end user, or

even within the Internet. Prefetching (or proactive caching)

is aimed at overcoming the limitations of passive caching by

proactively and speculatively retrieving a resource into a cache

in the anticipation of subsequent demand requests. Several

protocols such as common Internet file system (CIFS) [82],

(also known as Server Message Block (SMB) [83]), and Mes-

saging Application Programming Interface (MAPI) [84] are

chatty in nature, requiring hundreds of control messages for a

relatively simple data transfer, because they are not designed

for WAN environments. Protocol optimization capitalizes on

in-depth protocol knowledge to improve inefficient protocols

by making them more tolerant to high latency in the WAN

environment. Some other acceleration techniques, such as load

balancing, routing optimization, and application proxies, can

also improve application performance.

With the dramatic increase of applications developed over

WANs, many companies, such as Cisco, Blue Coat, Riverbed

Technology, and Silver Peak Systems, have been marketing

WAN acceleration products for various applications. In gen-

eral, typical WAN acceleration products leverage multiple

optimization techniques to improve application throughput,

mitigate the impact of latency and loss, and minimize band-

width consumption. For example, Cisco Wide Area Appli-

cation Services (WAAS) appliance employs data compres-

sion, deduplication, TCP optimization, secure sockets layer

(SSL) optimization, CIFS acceleration, HyperText Transfer

Protocol (HTTP) acceleration, MAPI acceleration, and NFS

acceleration techniques to improve application performance.

The WAN optimization appliance market was estimated to be

$1 billion in 2008 [85]. Gartner, a technology research firm,

estimated the compound annual growth rate of the application

acceleration market will be 13.1% between 2010 and 2015

[86], and forecasted that the application acceleration market

will grow to $5.5 billion in 2015 [86].

Although WAN acceleration techniques have been deployed

for several years and there are many WAN acceleration prod-

ucts in the market, many new challenges to content delivery

over WANs are emerging as the scale of information data

and network sizes is growing rapidly, and many companies

have been working on WAN acceleration techniques, such as

Google’s web acceleration SPDY project [87]. Several WAN

acceleration techniques have been implemented in SPDY, such

as HTTP header compression, request prioritization, stream

multiplexing, and HTTP server push and serve hint. A SPDY-

capable web server can respond to both HTTP and SPDY

requests efficiently, and at the client side, a modified Google

Chrome client can use HTTP or SPDY for web access.

The SPDY protocol specification, source code, SPDY proxy

examples and their lab tests are detailed in the SPDY web

page [87]. As reported in the SPDY tests, up to 64% of page

download time reduction can be observed.

WAN acceleration or WAN optimization has been studied

for several years, but there does not exist, to the best of

our knowledge, a comprehensive survey/tutorial like this one.

There is coverage on bits and pieces on certain aspects of

WAN optimization such as data compression, which has been

widely studied and reported in several books or survey papers,

but few works [2, 39] have discussed WAN optimization or

WAN acceleration as a whole. Reference [2] emphasizes on

application-specific acceleration and content delivery networks

while Reference [39] focuses on dynamic web content gen-

eration and delivery acceleration techniques. In this paper,

we will survey state-of-the-art WAN optimization techniques

and illustrate how these acceleration techniques can improve

application performance over a WAN, mitigate the impact of

latency and loss, and minimize bandwidth consumption. The

remainder of the paper is organized as follows. We present

the obstacles to content delivery over a WAN in Section II. In

order to overcome these challenges in the WAN, many WAN

acceleration techniques have been proposed and developed,

such as compression, data deduplication, caching, prefetching,

and protocol optimization. We detail most commonly used

WAN optimization techniques in Section III. Since tremendous

efforts have been made in protocol optimization to improve

application performance over WAN, we dedicate one section

to discuss the protocol optimization techniques over WAN in

Section IV, including HTTP optimization, TCP optimization,

CIFS optimization, MAPI optimization, session layer opti-

mization, and SSL acceleration. Furthermore, we present some

typical WAN acceleration products along with the major WAN

optimization techniques incorporated in these acceleration

products in Section V; multiple optimization techniques are

normally employed by a single WAN accelerator to improve

application performance. Finally, Section VI concludes the

paper.

II. OBSTACLES TO CONTENT DELIVERY OVER A WAN

The performance degradation occurs when applications are

deployed over a WAN owing to its unavoidable intrinsic

characteristics. The obstacles to content delivery over a WAN

can be categorized into four classes [2]: network and transport

barriers, application and protocol barriers, operating system

barriers, and hardware barriers.

A. Network and Transport Barriers

Network characteristics, such as available bandwidth, la-

tency, packet loss rate and congestion, impact the application

performance. Figure 1 summarizes the network and transport

barriers to the application performance in a WAN.

1) Limited Bandwidth: The available bandwidth is gener-

ally much higher in a LAN environment than that in a WAN

environment, thus creating a bandwidth disparity between

these two dramatically different networks. The limited band-

width impacts the capability of an application to provide high

throughput. Furthermore, oversubscription or aggregation is

generally higher in a WAN than that in a LAN. Therefore, even

though the clients and servers may connect to the edge routers

1092 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

Congestion

WAN

Oversubscription

Bandwidth

Disparity

Congestion

Cong.

Inefficiencies of

Transport Protocol

Fig. 1. Network and transport barriers to application performance over a
WAN.

with high-speed links, the overall application performance

over a WAN is throttled by network oversubscription and

bandwidth disparity because only a small number of requests

can be received by the server, and the server can only transmit

a small amount of data at a time in responding to the

clients’ requests. Protocol overhead, such as packet header and

acknowledgement packets, consumes a noticeable amount of

network capacity, hence further compromising the application

performance.

2) High Latency: The latency introduced by transmission

distance, protocol translation, and congestion is high in the

WAN environment, and high latency is the major cause for

long application response time over a WAN.

3) Congestion and High Packet Loss Rate: Congestion

causes packet loss and retransmission, and leads to erratic

behaviors of transport layer protocols that may seriously

deteriorate the application performance.

B. Application and Protocol Barriers

The application performance is constantly impacted by

the limitations and barriers of the protocols, which are not

designed for WAN environments in general. Many protocols

do not perform well under WAN conditions such as long

transmission path, high network latency, network congestion,

and limited available bandwidth. Several protocols such as

CIFS and MAPI are chatty in nature, requiring hundreds of

control messages for a relatively simple data transfer. Some

other popular protocols, e.g., Hypertext Transfer Protocol

(HTTP) and TCP, also experience low efficiency over a WAN.

A detailed discussion on protocol barriers and optimizations

in a WAN will be presented in Section IV.

C. Operating System and Hardware Barriers

The hosts, including their operating systems, which host the

applications; and hardware platforms, which host operating

systems, also impact the application performance. Proper

selection of the application hosts’ hardware and operating

system components, including central processing unit, cache

capacity, disk storage, and file system, can improve the overall

application performance. A poorly tuned application server

will have a negative effect on the application’s performance

and functionality across the WAN. In this survey, we focus on

the networking and protocol impacts on the application perfor-

mance over WAN. A detailed discussion on the performance

barriers caused by operating systems and hardware platforms,

and guidance as to what aspects of the system should be

examined for a better level of application performance can

be found in [2].

III. WAN OPTIMIZATION TECHNIQUES

WAN acceleration technologies aim, over a WAN, to ac-

celerate a broad range of applications and protocols, mit-

igate the impact of latency and loss, and minimize band-

width consumption. The most common techniques employed

by WAN optimization to maximize application performance

across the WAN include compression, data deduplication,

caching, prefetching, and protocol optimization. We discuss

the following most commonly used WAN optimization tech-

niques.

A. Compression

Compression is very important to minimize the amount of

bandwidth consumed on a link during transfer across the WAN

in which bandwidth is quite limited. It can improve bandwidth

utilization efficiency, thereby reducing bandwidth congestion;

it can also reduce the amount of transit time for given data to

traverse the WAN by reducing the transmitted data. Therefore,

compression substantially optimizes data transmission over

the network. A comparative study between various text file

compression techniques is reported in [6]. A survey on XML

compression is presented in [7]. Another survey on lossless

image compression methods is presented in [8]. A survey on

image and video compression is covered in [9].

HTTP [88, 89] is the most popular application-layer pro-

tocol in the Internet. HTTP compression is very important

to enhance the performance of HTTP applications. HTTP

compression techniques can be categorized into two schemes:

HTTP Protocol Aware Compression (HPAC) and HTTP Bi-

Stream Compression (HBSC) schemes. By exploiting the

characteristics of the HTTP protocol, HPAC jointly uses three

different encoding schemes, namely, Stationary Binary Encod-

ing (SBE), Dynamic Binary Encoding (DBE), and Header

Delta Encoding (HDE), to perform compression. SBE can

compress a significant amount of ASCII text present in the

message, including all header segments except request-URI

(Uniform Resource Identifier) and header field values, into

a few bytes. The compressed information is static, and does

not need to be exchanged between the compressor and de-

compressor. All those segments of the HTTP header that

cannot be compressed by SBE will be compressed by DBE.

HDE is developed based on the observation that HTTP headers

do not change much for an HTTP transaction and a response

message does not change much from a server to a client.

Hence, tremendous information can be compressed by sending

only the changes of a new header from a reference. HBSC is an

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1093

TABLE I
COMPRESSION SAVINGS FOR DIFFERENT WEB SITE

CATEGORIES [90]

Web Site Type Text File Only Overall (Graphics)

High-Tech Company 79% 35%

Newspaper 79% 40%

Web Directory 69% 46%

Sports 74% 27%

Average 75% 37%

algorithm-agnostic framework that supports any compression

algorithms. HBSC maintains two independent contexts for the

HTTP header and HTTP body of a TCP connection in each

direction to avoid the problem of context thrashing. These

two independent contexts are created when the first message

appears for a new TCP connection, and are deleted until this

TCP connection finishes; thus, the inter-message redundancy

can be detected and removed since the same context is used

to compress HTTP messages at one TCP connection. HBSC

also pre-populates the compression context for HTTP headers

with text strings in the first message over a TCP connection,

and detects the compressibility of an HTTP body based

on the information in the HTTP header to further improve

the compression performance. HTTP header compression has

been implemented in Google’s SPDY project [87] - according

to their results, HTTP header compression resulted in an about

88% reduction in the size of HTTP request headers and an

about 85% reduction in the size of HTTP response headers. A

detailed description of a set of methods developed for HTTP

compression and their test results can be found in [10].

The compression performance for web applications depends

on the mix of traffic in the WAN such as text files, video and

images. According to Reference [90], compression can save

75 percent of the text file content and save 37 percent of the

overall file content including graphics. Their performance of

compression is investigated based on four different web site

categories, including high technology companies, newspaper

web sites, web directories, and sports. For each category, 5

web sites are examined. Table I lists the precentage of bytes

savings after compression for different investigated web site

categories.

B. Data Deduplication

Data deduplication, also called redundancy elimination [11,

12], is another data reduction technique and a derivative of

data compression. Data compression reduces the file size by

eliminating redundant data contained in a document, while

data deduplication identifies duplicate data elements, such as

an entire file [13, 14] and data block [15–23], and eliminates

both intra-file and inter-file data redundancy, hence reducing

the data to be transferred or stored. When multiple instances

of the same data element are detected, only one single copy of

the data element is transferred or stored. The redundant data

element is replaced with a reference or pointer to the unique

data copy. Based on the algorithm granularity, data dedu-

plication algorithms can be classified into three categories:

whole file hashing [13, 14], sub-file hashing [15–23], and

delta encoding [24]. Traditional data de-duplication operates

at the application layer, such as object caching, to eliminate

redundant data transfers. With the rapid growth of network

traffic in the Internet, data redundancy elimination techniques

operating on individual packets have been deployed recently

[15–20] based on different chunking and sampling methods.

The main idea of packet-level redundancy elimination is to

identify and eliminate redundant chunks across packets. A

large scale trace-driven study on the efficiency of packet-level

redundancy elimination has been reported in [91]. This study

showed that packet-level redundancy elimination techniques

can obtain average bandwidth savings of 15-60% when de-

ployed at access links of the service providers or between

routers. Experimental evaluations on various data redundancy

elimination technologies are presented in [11, 18, 91].

C. Caching

Caching is considered to be an effective approach to reduce

network traffic and application response time. Based on the

location of caches, they can be deployed at the client side,

proxy side, and server side. Owing to the limited capacity of

a single cache, caches can also work cooperatively to serve

a large number of clients. Cooperative caching can be set up

hierarchically, distributively, or in a hybrid mode. From the

type of the cached objects, caches can be classified as function

caching and content caching. A hierarchical classification of

caching solutions is shown in Figure 2.

1) Location of cache: Client side caches are placed very

close to and even at the clients. All the popular web browsers,

including Microsoft Internet Explorer and Mozilla Firefox, use

part of the storage space on client computers to keep records

of recently accessed web content for later reference to reduce

the bandwidth used for web traffic and user perceived latency.

Several solutions [25–27] have been proposed to employ

client cache cooperation to improve client-side caching effi-

ciency. Squirrel [25], a decentralized, peer-to-peer web cache,

was proposed to enable web browsers on client computers to

share their local caches to form an efficient and scalable web

cache. In Squirrel, each participating node runs an instance of

Squirrel, and thus web browsers will issue their requests to the

Squirrel proxy running on the same machine. If the requested

object is un-cacheable, the request will be forwarded to the

origin server directly. Otherwise, the Squirrel proxy will check

the local cache. If the local cache does not have the requested

object, Squirrel will forward the request to some other node

in the network. Squirrel uses a self-organizing peer-to-peer

routing algorithm, called Pastry, to map the requested object

URL as a key to a node in the network to which the request

will be forwarded. One drawback of this approach is that it

neglects the diverse availabilities and capabilities among client

machines. The whole system performance might be affected

by some low capacity intermediate nodes since it takes several

hops before an object request is served. Figure 3 illustrates an

example of the Squirrel requesting and responding procedure.

Client s issues a request to client j with 2 hops routing through

1094 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

Cache

Type of Cached ObjectCooperationLocation of Cache

Server-end

Caching

Edge/Proxy

Caching

Client-end

Caching

Independent

Caching

Cooperative

Caching

Hierarchical HybridDistributed

Function

Cache

Content

Cache

Fig. 2. Caching classification hierarchy.

client i. If the requested object is present in the browser

cache of client j, the requested object will be forwarded back

to client s directly through path A. Otherwise, client j will

forward the request to the origin server, and the origin server

will respond the request through path B.

Xiao et al. [26] proposed a peer-to-peer Web document

sharing technique, called browsers-aware proxy server, which

connects to a group of networked clients and maintains a

browser index file of objects contained in all client browser

caches. A simple illustration of the organization of a browsers-

aware proxy server is shown in Figure 4. If a cache miss in its

local browser cache occurs, a request will be generated to the

proxy server, and the browsers-aware proxy server will check

its proxy cache first. If it is not present in the proxy cache, the

proxy server will look up the browser index file attempting to

find it in other client’s browser cache. If such a hit is found in

a client, this client will forward the requested object directly

to the requesting client; otherwise, the proxy server will send

the request to an upper level proxy or the origin server. The

browser-aware proxy server suffers from the scalability issue

since all the clients are connected to the centralized proxy

server.

Xu et al. [27] proposed a cooperative hierarchical client-

cache technique. A large virtual cache is generated from

contribution of local caches of each client. Based on the client

capability, the clients are divided into the super-clients and the

ordinary clients, and the system workload will be distributed

among these relatively high capacity super-clients. Unlike the

browsers-aware proxy server scheme, the super-clients are

only responsible for maintaining the location information of

the cached files; this provides high scalability because caching

and data lookup operations are distributed across all clients

and super-clients. Hence, such a hierarchical web caching

structure reduces the workloads on the dedicated server in

browsers-aware proxy server scheme [26] and also relieves

the weak client problem in Squirrel [25].

Contrary to the client-side caching, server-end caches are

placed very close to the origin servers. Server-end caching

can reduce server load and improve response time especially

when the client stress is high. For edge/proxy side caching

[28], caches are placed between the client and the server.

According to the results reported in [29], local proxy caching

could reduce user perceived latency by at best 26%.

2) Cooperative Caching: Owing to the limited capacity of

single caches, multiple caches can share and coordinate the

cache states to build a cache network serving a large number of

users. Cooperative caching architectures can be classified into

three major categories [30]: hierarchical cooperative caching

[31], distributive cooperative caching [32–37], and hybrid

cooperative caching [38].

In the hierarchical caching architecture, caches can be

placed at different network levels, including client, institu-

tional, regional and national level from bottom to top in the

hierarchy. Therefore, it is consistent with present Internet

architecture. If a request cannot be satisfied by lower level

caches, it will be redirected to upper level caches. If it cannot

be served by any cache level, the national cache will contact

the origin server directly. When the content is found, it travels

down the hierarchy, leaving a copy at each of the intermediate

caches. One obvious drawback of the hierarchical caching

system is that multiple copies of the same document are stored

at different cache levels. Each cache level introduces additional

delays, thus yielding poor response times. Higher level caches

may also experience congestion and have long queuing delays

to serve a large number of requests.

In distributed caching systems, there are only institutional

caches at the edge of the network. The distributed caching

system requires some mechanisms to cooperate these insti-

tutional caches to serve each other’s cache misses. Several

mechanisms have been proposed so far, including the query-

based approach, content list based approach, and hash function

based approach. Each of them has its own drawbacks. A

query-based approach such as Inter Cache Protocol (ICP) [32]

can be used to retrieve the document which is not present

at the local cache from other institutional caches. However,

this method may increase the bandwidth consumption and

the user perceived latency because a cache have to poll all

cooperating caches and wait for all of them to answer. A

content list of each institutional cache, such as cache digest

[33] and summary cache [36], can help to avoid the need

for queries/polls. In order to distribute content lists more effi-

ciently and scalably, a hierarchical infrastructure of immediate

nodes is set up in general, but this infrastructure does not store

any document copies. A hash function [35] can be used to map

a client request into a certain cache, and so there is only one

single copy of a document among all cooperative caches; this

method is thus limited to the local environment with well-

interconnected caches.

Rodriguez et al. [30] proposed analytical models to study

and compare the performance of both hierarchical and dis-

tributed caching. The derived models can be used to calculate

the user perceived latency, the bandwidth utilization, the disk

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1095

LAN/WANLAN

Client s

Client i

R
e
q
u
e
s
t

1 2

Request

Origin Server

Request

Path A Path B

Client j

Fig. 3. A Simple illustration of Squirrel requesting and responding procedure.
The request is handled in one of two possible ways, path A or path B [25].

space requirements, and the load generated by each cache

cooperating scheme. In order to maximize the advantages and

minimize the weaknesses of both hierarchical and distributed

caching architectures, hybrid caching architecture has been

proposed [30, 38]. In a hybrid caching scheme, the cooperation

among caches may be limited to the same level or at a higher

level caches only. Rabinovich et al. [38] proposed a hybrid

caching scheme, in which the cooperation is limited between

the neighboring caches to avoid obtaining documents from dis-

tant or slower caches. The performance of the hybrid scheme

and the optimal number of caches that should cooperate at

each caching level to minimize user retrieval latency has been

investigated in [30].

3) Type of Cached Objects: Based on the type of the cached

objects, caches can be categorized as content caching and

function caching. In content caching, objects such as docu-

ments, HTML pages, and videos are stored. Content caching

is employed widely to reduce the bandwidth consumed for

traffic traveling across the network and user perceived latency.

In function caching, the application itself is replicated and

cached along with its associated objects, and so the proxy

servers can run applications instead of the origin server. A

detailed review on content caching and function caching for

dynamic web delivery is reported in [39].

D. Prefetching

Although caching offers benefits to improve application

performance across the WAN, passive caching has limitations

on reducing application latency due to low hit rates [29,

40]. Abrams et al. [40] examined the hit rates for various

workloads to investigate the removal policies for caching

within the Web. Kroeger et al. [29] confirmed a similar

observation that local proxy caching could reduce latency by

at best 26% under several scenarios. They also found that

the benefit of caching is limited by the frequency update

of objects in the web. Prefetching (or proactive caching) is

aimed at overcoming the limitations of passive caching by

proactively speculative retrieval of a resource into a cache in

the anticipation of subsequent demand requests. The experi-

ments reported in [29] showed that prefetching doubles the

latency reduction achieved by caching, and a combination of

caching and prefetching can provide a better solution to reduce

latency than caching and prefetching alone. So far, several

web prefetching architectures have been proposed according to

the locations of the prediction engine and prefetching engine,

which are two main elements of web prefetching architecture.

In addition, many prediction algorithms have been proposed,

and how far in advance a prefetching algorithm is able to

prefetch an object is a significant factor in its ability to

reduce latency. The effectiveness of prefetching in addressing

the limitations of passive caching has been demonstrated

by several studies. Most research on prefetching focused on

the prediction algorithm. The prediction algorithms used for

prefetching systems can be classified into two categories:

history-based prediction [43, 44, 50, 52–57] and content-based

prediction [58–62].
1) Web Prefetching Architecture: In general, clients and

web servers form the two main elements in web browsing,

and optionally, there may be proxies between the clients and

servers. A browser runs at the client side and a HTTP daemon

runs at the server side. A web prefetching architecture consists

of a prediction engine and a prefetching engine. The prediction

engine in the web prefetching architecture will predict the

objects that a client might access in the near future, and

the prefetching engine will preprocess those object requests

predicted by the prediction engine. Both the prediction engine

and prefetching engine can be located at the client, at the

proxy, or at the server. Several different web prefetching

architectures have been developed.

(i) Client-initiated prefetching. Both the prediction engine

and prefetching engine can be located at the clients [47]

to reduce the interaction between the prediction engine

and prefetching engine.

(ii) Server-initiated prefetching. Server can predict clients’

future access, and clients perform prefetching [43–46].

(iii) Proxy-initiated prefetching (Proxy Predicting and Proxy

Pushing or Client Prefetching). If there are proxies in

a web prefetching system, the prediction engine can be

located at the proxies and the predicted web objects can

be pushed to the clients by the proxies, or the clients can

prefetch in advance [50].

(iv) Collaborative prefetching. The prediction accuracy of

proxy-based prefetching can be significantly limited

without input of Web servers. A coordinated proxy-

server prefetching can adaptively utilize the reference

information and coordinate prefetching activities at both

proxy and web servers [48]. As reported in [41], a

collaborative client-server prediction can also reduce the

user’s perceived latency.

(v) Multiple level prefetching. A web prefetching architec-

ture with two levels caching at both the LAN proxy

server and the edge router connecting to the Internet was

proposed in [49] for wide area networks. The edge router

is responsible for request predictions and prefetching. In

[55], the prefetching occurs at both clients and different

levels of proxies, and servers collaborate to predict users’

requests [55].

The impact of the web architecture on the limits of la-

tency reduction through prefetching has been investigated in

[41]. Based on the assumption of realistic prediction, the

maximum latency reduction that can be achieved through

prefetching is about 36.6%, 54.4% and 67.4% of the latency

perceived by users with the prefetching predictor located

1096 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

at the server, client, and proxy, respectively. Collaborative

prediction schemes located at diverse elements of the web

architecture were also analyzed in [41]. At the maximum,

more than 95% of the user’s perceived latency can be achieved

with a collaborative client-server or proxy-server predictor. A

detailed performance analysis on the client-side caching and

prefetching system is presented in [42].

2) History Based Prediction Algorithms: The history based

prediction algorithms relies on the user’s previous actions such

as the sequence of requested web objects to determine the

next most likely ones to be requested. The major component

of a history-based prediction algorithm is the Prediction by

Partial Matching (PPM) model [92], which is derived from

data compression. PPM compressor uses the preceding few

characters to compute the probability of the next ones by

using multiple high-order Markov models. A standard PPM

prediction model has been used by several works for web

prefetching [43, 44, 50]. Following the standard PPM model,

several other PPM based prediction models, such as LRS-PPM

model [51] and popularity-based PPM model [52], have been

proposed.

Based on the preceding m requests by the client over some

period, the standard PPM model essentially tries to make

predictions for the next l requests with a probability threshold

limit t. Larger m, meaning more preceding requests to con-

struct the Markov predictor tree, can improve the accuracy of

the prediction. With l > 1, URLs within the next few requests

can be predicted. A server initiated prefetching scheme with a

dependency graph based predictor was proposed in [43]. The

dependency graph contains nodes for all files ever accessed

at a particular web server. The dependency arc between two

nodes indicates the probability of one file, represented as a

node, will be accessed after the other one is accessed. The

dependency graph based prediction algorithm is a simplified

first-order standard PPM model with m = 1, indicating that

the predicted request is only based on the immediate previous

one. First-order Markov models are not very accurate in

predicting the users browsing behavior because these mod-

els do not look far into the past to correctly discriminate

the different observed patterns. Therefore, as an extension,

Palpanas [44] investigated the effects of several parameters

on prediction accuracy in a server-initiated prefetching with

a standard PPM prediction engine. The impacts of previous

m requests and the number of predictions l on prediction

accuracy have been examined, and the experimental results

reported in [44] showed that more previous requests m result

in more accurate predictions, while more predicted requests

l with the same previous requests m degrade prediction

accuracy. A proxy-initiated prefetching with the standard PPM

model was proposed in [50], and from their results, it was

shown that the best performance is achieved with m = 2 and

l = 4.

High-order Markov model can improve the prediction ac-

curacy, but unfortunately, these higher-order models have

a number of limitations associated with high state-space

complexity, reduced coverage, and sometimes even worse

prediction accuracy. Sarukkai [53] used Markov models to

predict the next page accessed by the user by analyzing users’

navigation history. Three selective Markov models, support-

. . .

forward requested document;
or fetch/forward by the proxy

LAN

Client N

Client 1

Client j

Client i

Client 2

. . .

Br
ow
se
r m
iss

Proxy

Server

Brow
ser index

hit

Proxy

Cache

Browser

Index

Fig. 4. Organizations of the browser-aware proxy server [26].

pruned Markov model (SPMM), confidence-pruned Markov

model (CPMM), and error-pruned Markov model (EPMM),

have been proposed in [54] to reduce state complexity of

high order Markov models and improve prediction accuracy

by eliminating some states in Markov models with low pre-

diction accuracy. SPMM is based on the observation that

states supported by fewer instances in the training set tend

to also have low prediction accuracy. SPMM eliminates all

the states, the number of instances of which in the training

set is smaller than the frequency threshold, in different order

Markov models. CPMM eliminates all the states in which

the probability differences between the most frequently taken

action and the other actions are not significant. EPMM uses

error rates, which are determined from a validation step, for

pruning.

Markatos et.al [55] suggested a Top-10 criterion for web

prefetching. The Top-10 criterion based prefetching is a client-

server collaborative prefetching. The server is responsible for

periodically calculating its top 10 most popular documents,

and serve them to its clients. Chen et al. [52] proposed a

popularity-based PPM prediction model which uses grades

to rank URL access patterns and builds these patterns into

a predictor tree to aid web prefetching.

Most of the above prediction algorithms employ Markov

models to make decisions. Some other prediction algorithms

rely on data mining techniques to predict a new comer’s

request. A web mining method was investigated in [51] to

extract significant URL patterns by the longest repeating

subsequences (LRS) technique. Thus, the complexity of the

prediction model can be reduced by keeping the LRS and

storing only long branches with frequently accessed URLs.

Nanopoulos et al. [56] proposed a data mining based predic-

tion algorithm called WMo (o stands for ordering), which

improves the web prefetching performance by addressing

some specific limitations of Markov model based prediction

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1097

Client Server

T
im
e

SYN

SYN

GET www.google.com

HTML

Open TCP

Connection

HTTP request

for HTML

FIN

ACK

FIN

SYN

Client Parses

HTML

SYN

ACK

<html>

<Image A>

<Image B>

<html>

Open TCP

Connection

HTTP Request

for Image A

ACK

GET Image A

ACK

ACK

Image A

FIN

ACK

FIN

Fig. 5. The standard packet exchange for HTTP 1.0 [88].

algorithms, such as the order of dependencies between web

document accesses, and the ordering of requests. Songwattana

[57] proposed a prediction-based web caching model, which

applies web mining and machine learning techniques for

prediction in prefetching and caching. In this prediction-based

model, statistical values of each web object from empirical

data test set are generated by ARS log analyzer based on the

web log files, and a web mining technique is used to identify

the web usage patterns of clients requests.

3) Content Based Prediction Algorithms: A limitation of

history based prediction is that the predicted URLs must be

accessed before and there is no way to predict documents

that are new or never accessed. To overcome this limitation,

several content-based prediction algorithms [58–62] have been

proposed. The content-based prediction algorithms can extract

top ranked links by analyzing the content of current page and

previously viewed pages. Dean and Henzinger [58] proposed

a web searching algorithm by using only the connectivity

information in the web between pages to generate a set of

related web pages. In a web prefetching scheme proposed

in [59], users send usage reports to servers promptly. The

usage report of one particular page includes the information

about the URLs embedded within this page that is referenced

recently, the size of the referenced page, and all its embedded

images. The server will accumulate the information from all

usage reports on this particular page to generate a usage profile

of this page, and send it to the clients. The clients will make

prefetching decisions based on its own usage patterns, the

state of its cache, and the effective bandwidth of its link

to the Internet. The prefetching by combining the analysis

of these usage profiles can lower the user perceived latency

and reduce the wastage of prefetched pages. Ibrahim and Xu

[60] proposed a keyword-oriented neural network based pre-

fetching approach, called SmartNewsReader, which ranks the

links of a page by a score computed by applying neural

networks to the keywords extracted from the URL anchor

texts of the clicked links to characterize user access patterns.

Predictions in [61] are made on the basis of the content of the

recently requested Web pages. Georgakis and Li [62] proposed

a transparent and speculative algorithm for content based web

page prefetching, which relies on the user profile on the basis

of a user’s Internet browsing habits. The user profile describes

the frequency of occurrences of selected elements in a web

page clicked by the user. These frequencies are used to predict

the user’s future action.

4) Prefetching Performance Evaluation: It is difficult to

compare the proposed prefetching techniques since different

baseline systems, workload, and performance key metrics

are used to evaluate their benefits. In general, prefetching

performance can be evaluated from three aspects. The first

one is the prediction algorithm, including prediction accuracy

and efficiency. The additional resource usage that prefetching

incurs is another evaluation criterion. The prefetching perfor-

mance can also been evaluated by users’ perceived latency

reduction. A detailed discussion on prefetching performance

metrics can be found in [93].

E. Other Techniques

Load balancing offers resilience and scalability by distribut-

ing data across a computer network to maximize network

efficiency, and thus to improve overall performance. Route

Optimization is the process of choosing the most efficient

path by analyzing performance between routes and network

devices, and sending data in that path. This enables users to

achieve faster application response and data delivery. Trans-

parent or nontransparent application proxies are primarily used

to overcome application latency. By understanding application

messaging, application proxies can handle the unnecessary

messages locally or by batching them for parallel operation;

they can also act in advance, such as read ahead and write

behind, to reduce the application latency. As discussed in

Section II, packet loss rate in WANs is high. When high

packet loss rate is coupled with high latency, it is not surprising

that application performance suffers across a WAN. Forward

Error Correction (FEC) corrects bit errors at the physical layer.

This technology is often tailored to operate on packets at

the network layer to mitigate packet loss across WANs that

have high packet loss characteristics. Packet Order Correction

(POC) is a real-time solution for overcoming out-of-order

packet delivery across the WAN.

IV. PROTOCOL OPTIMIZATION

Protocol optimization is the use of in-depth protocol knowl-

edge to improve inefficient protocols by making them more

1098 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

tolerant to high latency in WAN environments. Several proto-

cols such as CIFS and MAPI are chatty in nature, requiring

hundreds of control messages for a relatively simple data

transfer, because they are not designed for WAN environ-

ments. Some other popular protocols, e.g., HTTP and TCP,

also experience low efficiency over a WAN. In this section,

we will discuss HTTP optimization, TCP acceleration, CIFS

optimization, MAPI optimization, session layer acceleration,

and SSL/TLS acceleration.

A. HTTP Optimization

Users always try to avoid slow web sites and flock towards

fast ones. A recent study found that users expect a page to

load in two seconds or less, and 40% of users will wait

for no more than three seconds before leaving a site [94].

HTTP is the most popular application layer protocol used by

web applications. Currently, there are two versions of HTTP

protocols: HTTP 1.0 [88] and HTTP 1.1 [89]. TCP is the dom-

inant transport layer protocol in use for HTTP applications; it

adds significant and unnecessary overhead and increases user

perceived latency. Many efforts have been made to investigate

HTTP performance, reduce the bandwidth consumption, and

accelerate the web page transmission. Persistent connections,

pipeline and compression introduced in HTTP 1.1 are the

basic HTTP acceleration techniques. HTTP compression tech-

niques have been discussed in Section III-A. Caching and

prefetching, which have been presented in Section III-C and

III-D, respectively, help to reduce user perceived latency. L4-7

load balancing also contributes to HTTP acceleration. HTTP

accelerators are offered to the market by Squid, Blue Coat,

Varnish, Apache, etc.

1) Inefficiency of HTTP Protocol Analysis: Figures 5 and

6 illustrate the standard packet exchange procedures when

a client visits a web site with HTTP 1.0 and HTTP 1.1,

respectively. As shown in these two figures, an URL request,

which executes the HTTP protocol, begins with a separate

TCP connection setup and follows by a HyperText Markup

Language (HTML) file transiting from the server to the client.

Since embedded objects are referenced with the HTML file,

these files cannot be requested until at least part of the HTML

file has been received by the client. Therefore, after the

client receives the HTML file, it parses the HTML file and

generates object requests to retrieve them from the server to

the client. In HTTP 1.0, each HTTP request to retrieve an

embedded object from the server has to set up its own TCP

connection between the client and the server, thus placing

additional resource constraint on the server and client than

what would be experienced using a single TCP connection.

Hence, as depicted in Figure 5, at least 4 RTTs are required

before the first embedded object is received at the client. The

low throughput of using this per-transaction TCP connection

for HTTP access has been discussed in [63]. The reduced

throughput increases the latency for document retrieval from

the server. To improve the user perceived latency in HTTP 1.0,

persistent connections and request pipelining are introduced in

HTTP 1.1.

2) Persistent Connection and Request Pipelining: Persis-

tent connection, using a single, long-lived connection for

Client Server
T
im
e

SYN

SYN

GET www.google.com

HTML

Open TCP

Connection

HTTP request

for HTML

Client Parses

HTML

<html>

<Image A>

<Image B>

<html>

HTTP Request

for Image A &

Image B

ACK

GET Image A

ACK

Image A

ACK

GET Image B

Image B

Fig. 6. The standard packet exchange for HTTP 1.1 with persistent
connection and request pipelining [89].

multiple HTTP transactions, allows the TCP connection stays

open after each HTTP request/response transaction, and thus

the next request/response transaction can be executed imme-

diately without opening a new TCP connection as shown in

Figure 6. Hence, persistent connections can reduce server and

client workload, and file retrieval latency. Even with persistent

connections, at least one round-trip time is required to retrieve

each embedded object in the HTML file. The client interacts

with the server still in a stop-and-wait fashion, sending a

HTTP request for an embedded object only after having

received the previous requested object. Request pipelining

allows multiple HTTP requests sent out to the same server

to retrieve the embedded objects. The effects of persistent

connections and request pipelining on the HTTP exchange

latency have been investigated in [63]. The results show that

persistent connections and request pipelining indeed provide

significant improvement for HTTP transactions. The user

perceived latency improvement decreases with the increase

of the requested document size since the actual data transfer

time dominates the connection setup and slow-start latencies

to retrieve large documents.

3) HTML Plus Embedded Objects: In HTTP 1.0 and 1.1,

one common procedure is that the client has to wait for the

HTML file before it can issue the requests for embedded

objects, thus incurring additional delay to user perceived

latency. In order to avoid this additional delay, Abhari and

Serbinski [64] suggested a modification to the HTTP protocol.

Before responding to the client with the requested HTML

file, the HTTP server parses the requested HTML documents

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1099

to determine which objects are embedded in this requested

HTML file and appends them onto the response to the client.

Since a normal HTTP client does not have the ability to receive

multiple files in a single transmission, a proxy is suggested to

be placed at the client side to translate client request and server

response. The experiments reported in [64] show a significant

page load time reduction of the proposed scheme.

4) Minimizing HTTP Requests: The web page load time

can be decreased by reducing the number of HTTP requests.

The concatenated JavaScript files and Cascading style sheets

(CSS) files through object inlining can reduce the number

of HTTP requests. Object inlining can reduce the page load

latency significantly, but the browser can only cache URL

addressable objects; the individual HTML, CSS and JavaScript

files cannot be cached. Furthermore, if any of the embedded

objects change, the browsers have to retrieve all of the objects.

Mickens [65] developed a new framework for deploying

fast-loading web applications, called Silo, by leveraging on

JavaScript and document object model (DOM) storage to

reduce both the number of HTTP requests and the bandwidth

required to construct a page. A basic web page fetching

procedure using the Silo protocol is depicted in Figure 7(a).

Instead of responding with the page’s HTML to a standard

GET request for a web page, the Silo enabled server replies

with a small piece of JavaScript, called JavaScript shim, which

enables the client to participate in the Silo protocol, and a list

of chunk ids in the page to be constructed. The JavaScript

shim will inspect the client DOM storage to determine which

of these chunks are not stored locally, and inform the missing

chunk ids to the server. Then, the server will send the raw

data for the missing chunks. The client assembles the relevant

chunks to overwrite the page’s HTML and reconstructs the

original inlined page. Thus, the basic Silo protocol fetches an

arbitrary number of HTML, CSS and JavaScript files with two

RTTs.

The basis Silo protocol enabled server does not differentiate

between clients with warm caches and clients with cold

caches. Soli uses cookies to differentiate clients by setting a

“warm cache” variable in the page’s cookie whenever clients

store chunks for that page. If this variable is set when the

client initiates HTTP GET request for a web page, the server

knows that the client chunk cache is warm, and otherwise

it is cold. Figure 7(b) shows a single RTT Silo protocol

with warm client cache. The client initiates an HTTP GET

request for a page with a warm cache indicator. If the client

attaches all of the ids of the local chunks within the cookie,

the server can reply with the Silo shim and the missing

chunk data in a single server response; otherwise, the basic

Soli protocol depicted in Figure 7(a) will follow the client-

server exchange process. As compared to the server response

to request with the warm cache, the server replies with an

annotated HTML to a standard GET request for a page with

a cold cache indication. The browser commits the annotated

HTML immediately, while the Silo shim parses the chunk

manifest, extracts the associated chunks, and writes them to

the DOM storage synchronously.

5) HTTP over UDP: Cidon et al. [66] proposed a hybrid

TCP-UDP transport for HTTP traffic that splits the HTTP

web traffic between UDP and TCP. A client issues a HTTP

Client Server
T
im
e

GET www.foo.com

JavaScri
pt shim + Chunk

ids in pag
e

Non-local chunk ids

<script>

pageCids = [`f4fd`, `b21f`, '];

missingCids = nonLocalCids(pageCids);

updateChunkCache(fetch(missingCids));

overwriteHTML(pageCids);

</script> Missing C
hunk ids

(a) The basic Silo protocol.

Client Server

T
im
e

GET www.foo.com +Cookie: Local Chunk ids

JavaScri
pt shim + Chunk

ids in pag
e + Missi

ng chunk
data

<script>

pageCids = [`f4fd`, `b21f`, ...];

missingChunks = {`f4f2`: `rawData0`,

`4c2d`: `rawData1`,

...};

overwriteHTML(pageCids);

updateChunkCache(missingChunks);

updateCookie(missingChunks);

</script>

(b) Single RTT Silo protocol, warm client cache.

Fig. 7. Silo HTTP protocol [65].

request over UDP. The server replies over UDP if the response

is small; otherwise, the server informs the client to resubmit

request over TCP. If no response is received within a timeout,

the client resubmits the response over TCP.

Dual-Transport HTTP (DHTTP) [67], a new transfer pro-

tocol for the web, was proposed by splitting the traffic

between UDP and TCP channels based on the size of server

response and network conditions. In DHTTP, there are two

communication channels between a client and a server, a

UDP channel and a TCP channel. The client usually issues

its requests over the UDP channel. The server responds to a

request of 1460 bytes or less over the UDP channel, while

the response to other requests will be transmitted over the

TCP channel. The performance analysis performed in [67]

shows that DHTTP significantly improves the performance of

Web servers, reduces user latency, and increases utilization of

remaining TCP connections. However, DHTTP imposes extra

requirements on firewalls and network address translation

(NAT) devices.

6) HTTP Packet Reassembly: HTTP packet reassembly

is quite normal in current networks. As examined in [68],

the HTTP packets reassembly proportions are about 70%-

80%, 80%-90%, and 60%-70% for web application HTTP

OK messages, HTTP POST messages, and video streaming

packets, respectively. Since HTTP does not provide any re-

assembly mechanism, HTTP packet reassembly has to be

completed in the IP layer and TCP layer. Traditionally, HTTP

packets reassembly consist of network packet capture, IP layer

defragmentation, and TCP layer reassembly before it is passed

to the HTTP protocol. A parallel HTTP packet reassembly

1100 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

Initialization

Phase I

Packet Input

Phase II

IP Defragmentation

Phase III

TCP Reassembly

Phase IV

Finalization

Phase V
Queue

Core 2

Core 1

Thread 1

Thread 2

Fig. 8. Parallel HTTP packet reassembly architecture [68].

strategy was proposed in [68] as shown in Figure 8. The

two most resource-consuming parts, IP layer defragmentation

and TCP layer reassembly, are distributed to two separate

threads to facilitate parallelism. Since the workload of IP

defragmentation is lower than that of TCP reassembly in the

current network, the packet input module is distributed to the

same thread with IP defragmentation. IP layer defragmenta-

tion and TCP layer reassembly communicate with a single-

producer single-consumer ring queue. Hence, different tasks

in HTTP packet reassembly can be distributed to different core

with a multi-core server using the affinity-based scheduling.

According to their experiments, the throughput of packets

reassembly system can be improved by around 45% on the

generic multi-core platform by parallelizing the traditional

serial HTTP packets reassembly system.

B. TCP Acceleration

Currently, TCP is the most popular transport layer protocol

for connection-oriented reliable data transfer in the Internet.

TCP is the de facto standard for Internet-based commercial

communication networks. The growth trends of TCP connec-

tions in WANs were investigated in [95]. However, TCP is

well known to have poor performance under conditions of

moderate to high packet loss and end-to-end latency.
1) Inefficiency of TCP over WAN: The inefficiency of

the TCP protocol over WAN comes from two mechanisms,

slow start and congestion control. Slow start helps TCP to

probe the available bandwidth. Many application transactions

work with short-live TCP connections. At the beginning of a

connection, TCP is trying to probe the available bandwidth

while the application data is waiting to be transmitted. Thus,

TCP slow start increases the number of round trips, thus

delaying the entire application and resulting in inefficient

capacity utilization.

The congestion avoidance mechanism adapts TCP to net-

work dynamics, including packet loss, congestion, and vari-

ance in available bandwidth, but it degrades application perfor-

mance greatly in WAN where the round-trip time is generally

in tens even hundreds of milliseconds. That is, it can take

quite some time for the sender to receive an acknowledgement

indicating to TCP that the connection could increase its

throughput slightly. Coupled with the rate at which TCP

increases throughput, it could take hours to return to the

maximum link capacity over a WAN.

2) TCP Models over WAN: Besson [96] proposed a fluid-

based model to describe the behavior of a TCP connection

over a WAN, and showed that two successive bottlenecks

seriously impact the performance of TCP, even during conges-

tion avoidance. The author also derived analytical expressions

for the maximum window size, throughput, and round-trip

time of a TCP connection. Mirza et al. [97] proposed a

machine learning approach to predict TCP throughput, which

was implemented in a tool called PathPerf. The test results

showed that PathPerf can predict TCP throughput accurately

over diverse wide area paths. A systematic experimental study

of IP transport technologies, including TCP and UDP, over

10 Gbps wide-area connections was performed in [98]. The

experiments verified the low TCP throughput in the WAN

due to high network latency, and the experimental results also

showed that the encryption devices have positive effects on

TCP throughput due to their on-board buffers.

3) Slow Start Enhancement: Many studies have observed

that TCP performance suffers from the TCP slow start mech-

anism in high-speed long-delay networks. TCP slow start can

be enhanced from two aspects by setting ssthresh intelligently

and adjusting the congestion window innovatively.

Hoe [99] proposed to enhance TCP slow start performance

by setting a better initial value of ssthresh to be the estimated

value of bandwidth delay product which is measured by the

packet pair method. There are also some other works that focus

on improving the estimate of ssthresh with a more accurate

measurement of bandwidth delay product. Aron and Druschel

[100] proposed to use multiple packet pairs to iteratively

improve the estimate of ssthresh. Paced Start [101] uses

packet trains to estimate the available bandwidth and ssthresh.

These methods avoid TCP from prematurely switching to the

congestion avoidance phase, but it may suffer temporary queue

overflow and multiple packet losses when the bottleneck buffer

is not big enough as compared to the bandwidth delay product.

Adaptive Start [102] was proposed to reset ssthresh repeatedly

to a more appropriate value by using eligible rate estimation.

Adaptive start increases the congestion window (cwnd) size

efficiently without packet overflows.

Several TCP slow start enhancements focus on intelligent

adjustment of the congestion window size. At the beginning

of the transmission, the exponential increase of the congestion

window size is necessary to increase the bandwidth utilization

quickly. However, it is too aggressive as the connection nears

its equilibrium, leading to multiple packet losses. Smooth Start

[103] improves the TCP slow start performance as the con-

gestion window size approaches the connection equilibrium

by splitting the slow-start into two phases, filling phase and

probing phase. In the filling phase, the congestion window

size is adjusted the same manner as traditional slow start,

while it is increased more slowly in the probing phase. How

to distinguish these phases is not addressed in smooth start.

An additional threshold max ssthresh is introduced in Limited

Slow Start [104]. The congestion window size doubles per

RTT, the same as traditional slow start, if the congestion

window size is smaller than max ssthresh; otherwise, the

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1101

congestion window size is increased by a fixed amount of

max ssthresh packets per RTT. Limited slow start reduces the

number of drops in the TCP slow start phase, but max ssthresh

is required to be set statistically prior to starting a TCP

connection.

Lu et al. [105] proposed a sender-side enhancement to slow-

start by introducing a two-phase approach, linear increase and

adjustive increase, to probe bandwidth more efficiently with

TCP Vegas congestion-detection scheme. A certain threshold

of queue length is used to signaling queue build-up. In the

linear increase phase, TCP is started in the same manner

as traditional slow start until the queue length exceeds the

threshold. The congestion window size increment slows down

to one packet per RTT to drain the temporary queue to avoid

buffer overflow and multiple packet losses. Upon sensing the

queue below the threshold, the sender enters the adjustive

increase phase to probe for the available bandwidth more

intelligently.

4) Congestion Control Enhancement: TCP variants have

been developed for wide-area transport to achieve Gbps

throughput levels. TCP Vegas [106] uses network buffer delay

as an implicit congestion signal as opposed to drops. This

approach may prove to be successful, but is challenging to

implement. In wireless and wired-wireless hybrid networks,

TCP-Jersey [107–109] enhances the available bandwidth es-

timations to improve the TCP performance by distinguishing

the wireless packet losses and the congestion packet losses. By

examining several significant TCP performance issues, such

as unfair bandwidth allocation and throughput degradation, in

wireless environments with window control theory, Hiroki et

al. [110] found that the static additive-increase multiplicative-

decrease (AIMD) window control policy employed by TCP is

the basic cause for its performance degradation. In order to

overcome the performance degradation caused by the static

AIMD congestion window control, explicitly synchronized

TCP (ESTCP) [110] was proposed by deploying a dynamic

AIMD window control mechanism, which integrates the feed-

back information from networks nodes. High-speed TCP [111]

modifies the congestion control mechanism with large conges-

tion windows, and hence, High-speed TCP window will grow

faster than standard TCP and also recover from losses more

quickly. This behavior allows High-speed to quickly utilize

the available bandwidth in networks with large bandwidth

delay products. A simple sender side alteration to the TCP

congestion window update algorithm, Scalable TCP [112],

was proposed to improve throughput in highs-speed WANs.

Numerical evaluation of the congestion control method of

Scalable TCP and its impacts on other existing TCP versions

were reported in [113].

Fast TCP [114] is a TCP congestion avoidance algorithm

especially targeted at long-distance and high latency links.

TCP Westwood [115] implements a window congestion con-

trol algorithm based on a combination of adaptive bandwidth

estimation strategy and an eligible rate estimation strategy

to improve efficiency and friendliness tradeoffs. Competing

flows with different RTTs may consume vastly unfair band-

width shares in high-speed networks with large delays. Binary

Increase Congestion Control (BIC) TCP [116] was proposed

by taking RTT unfairness, together with TCP friendliness and

bandwidth scalability, into consideration for TCP congestion

control algorithm design. Another TCP friendly high speed

TCP variant, CUBIC [117], is the current default TCP algo-

rithm in Linux. CUBIC modifies the linear window growth

function of existing TCP standards to be a cubic function

in order to improve the scalability of TCP over fast and

long distance networks. Fast TCP [114], BIC TCP [116], and

CUBIC TCP [117] estimate available bandwidth on the sender

side using intervals of Ack packets. However, the interval of

Ack packets is influenced by traffic on the return path, thus

making the estimation of the available bandwidth difficult and

inaccurate.

5) TCP Transparent Proxy: The long delay is one of the

main root causes for the TCP performance degradation over

WANs. TCP transparent proxy involves breaking of long

end-to-end control loops to several smaller feedback control

loops by intercepting and relaying TCP connections within

the network. The decrease in feedback delay accelerates the

reaction of TCP flows to packet loss more quickly; hence,

the accelerated TCP flows can achieve higher throughput

performance.

The snoop protocol [69] employs a proxy, normally a base

station, to cache packets and perform local retransmissions

across the wireless link to improve TCP performance by

monitoring TCP acknowledgement packets. No changes are

made to TCP protocols at the end hosts. Snoop TCP does not

break the end-to-end TCP principle.

Split TCP connections have been used to cope with hetero-

geneous communication media to improve TCP throughput

over wireless WANs (WWAN). Indirect-TCP (I-TCP) [70]

splits the interconnection between mobile hosts and any hosts

located in a wired network into two separate connections, one

over the wireless medium and another over the wired network,

at the network boundary with mobility support routers (MSRs)

as intermediaries to isolate performance issues related to the

wireless environment. Ananth et al. [71] introduced the idea

of implementing a single logical end-to-end connection as

a series of cascaded TCP connections. They analyzed the

characteristics of the throughput of a split TCP connection

analytically and proved the TCP throughput improvement by

splitting the TCP connection. A flow aggregation based trans-

parent TCP acceleration proxy was proposed and developed

in [72] for GPRS network. The proxy splits TCP connections

into wired and wireless parts transparently, and also aggregates

the connections destined to the same mobile hosts due to

their statistical dependence to maximize performance of the

wireless link while inter-networking with unmodified TCP

peers.

A Control for High-Throughput Adaptive Resilient Trans-

port (CHART) system [118] was designed and developed by

HP and its partners to improve TCP/IP performance and ser-

vice quality guarantees with a careful re-engineering Internet

layer 3 and layer 4 protocols. The CHART system enhances

TCP/IP performance through two principal architectural inno-

vations to the Internet Layer 3 and Layer 4 protocols. One

is the fine-grained signaling and sensing within the network

infrastructure to detect link failures and route around them.

The other one is the explicit agreement between end hosts

and the routing infrastructure on transmission rate, which will

1102 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

WAN

(Delay & Loss)

Server
Router

TCP Accelerator

Server Proxy

ONE Services Module

HP ProCurve Switch

Switching Fabric

TCP Accelerator

Client Proxy

Linux Daemon

OpenWRT Router

Linux Networking Stack

Wired or

Wireless Link

Client

Default gateway = OpenWRT router Client Client Proxy

Client Proxy Server Proxy

Server Proxy Server

Other Flows

Client to Server TCP

connection is split into

Linux IPtables

(a) Client proxy built in the OpenWRT software router.

WAN

(Delay & Loss)

Server
Router

TCP Accelerator

Server Proxy

ONE Services Module

HP ProCurve Switch

Switching Fabric

ONE Services Module

OpenWRT Router

Switching Fabric
Client

Default gateway = OpenWRT router Client Client Proxy

Client Proxy Server Proxy

Server Proxy Server

Other Flows

Client to Server TCP

connection is split into

P
o
rt
3

TCP Accelerator

Client Proxy

Software OF

(MAC rewriting)

P
o
rt
2

<flow entries>

in_port=port1,src_IP=Client,dst_IP=Server,protocol=TCP,action=output:port2

in_port=port2,src_IP=Client,dst_IP=Server,protocol=TCP,action=output:port3

<flow entry>

src_IP=Client,dst_IP=Server,protocol=TCP,action=mod_dst_mac:C-proxy-NIC;output:IN-PORT

(b) Client proxy integrated in the hardware switch.

Fig. 9. Transparent TCP Acceleration proxy system [73].

permit the end hosts to transmit at the agreed rate independent

of loss and delay. To achieve these two innovations, CHART

couples a network-wide real-time network monitoring service,

a new generation of network elements which monitor and

control flows to explicitly assign available bandwidth to new

and existing flows, and a new TCP driver, TCP-Trinity, which

implements the explicit-rate protocol on the end hosts to

accelerate data transmission by bypassing the slow-start and

congestion avoidance phases of data transfer. Either manual

modification on the end-hosts or route configuration changes

are required by the original CHART TCP accelerators.

In order to realize transparent TCP acceleration, a network

integrated transparent TCP accelerator proxy [73] was imple-

mented on HP’s ONE (Open Network Ecosystem) services

blade that can be added to the switch chassis, and on a

wireless OpenWRT platform with the CHART explicit-rate-

signaling based TCP accelerator proxy. The network integrated

TCP transparent acceleration is provided with flow redirection.

Figure 9 illustrates the network integrated transparent TCP

acceleration proxy system with client proxy built in the

OpenWRT software router and a hardware layer 2 switch,

respectively. As shown in these two figures, a single TCP

connection is splitted into three connections by the CHART

TCP acceleration system, namely, client to client proxy con-

nection, client proxy to server proxy connection, and server

proxy to server connection. The client proxy intercepts the

first TCP SYN packet from the client and replies SYN-ACK

to the client and initiates another TCP connection to the

server proxy, which replies SYN-ACK to the client proxy and

issues the final TCP connection to the server by receiving

the TCP SYN packet from the client proxy. The client proxy

and server proxy accelerate TCP connections between them

via modifications to the TCP congestion control mechanism

and explicit signaling of available bandwidth information. As

depicted in Figure 9(a), the OpenWRT router is configured

to use Linux IP tables to filter out the interested client-to-

server TCP packets from the internal forwarding path, and

redirect them to a TCP accelerator client proxy. While for

the hardware switch integrated proxy shown in Figure 9(b),

OpenFlow is used to run transparent TCP accelerator client

proxy on the hardware switch. OpenFlow can classify packets

based on 10 tuples, and thus TCP flows that require processing

by the CHART proxy can be precisely selected. Owing to the

limitations of OpenFlow on rewriting the destination MAC

address, the selected packets are redirected to an OpenFlow

software switch to rewrite the packet MAC address, and then

re-inject into the network. The rewritten MAC address is the

TCP accelerator client proxy input port MAC address; thus,

the packets are then forwarded to the accelerator client proxy.

6) TCP Offload Engine: TCP Offload Engine (TOE) is a

technology used in network interface cards (NIC) to offload

TCP processing to the network controller. Moving complex

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1103

A
A

IP Input

Processing

TCP

Acceleration
IP Output

Processing

TCP State

MemoryTCP Accelerator

Packet

Classification
IP

Forwarding

Router with Network Processor

Fig. 10. System architecture of TCP acceleration nodes with network
processors [74, 75].

TCP processing from end-systems into specified networking

hardware reduces the system load and frees up resources. The

experiment evaluation in [119] provided some insights into

the effectiveness of the TOE stack in scientific as well as

commercial domains.

A transparent TCP acceleration technique was proposed

in [74, 75] by using network processors to increase TCP

throughput inside the network without requiring any changes

in end-system TCP implementations, and is thus undetectable

to the end-system. Figure 10 shows the architecture of this

TCP accelerator implemented on a network processor. The

circles labeled by “A” are the acceleration nodes which split

a long end-to-end TCP connection into several small TCP

connections. Two packet forwarding paths are implemented

in the acceleration nodes. Non-TCP packets or packets that

cannot be accelerated due to resource constraint will be

forwarded through “Path A” without any modification. Hence,

packet classification is required to distribute packets to go

through TCP acceleration or not. TCP accelerator involves IP

input process, TCP acceleration, IP output processing, and a

large TCP state memory storage. Network processors equipped

with this transparent TCP accelerator can opportunistically act

as TCP proxies by terminating TCP connections and opening

a new connection towards the destination.

C. CIFS Optimization

CIFS [82], also known as SMB [83], is a protocol developed

by Microsoft for remote file access. CIFS defines the standard

way that client systems share files across the Internet or

other IP based networks. CIFS is a “chatty” protocol and

not designed for high latency WAN environments. As has

been pointed out, CIFS operates very poorly over a WAN

[120]. The fundamental reason is that each CIFS request

requires a response before the next request is sent to the

CIFS server, implying that a large number of back and forth

transactions are required to complete a request, and therefore,

CIFS is redundant by generating multiple requests for a

single file and the performance of CIFS decreases with the

increase of WAN latency as shown in Figure 11(a). The small

limitations of the windows client reading size, normally 4KB,

will even worsen the CIFS performance since the smaller the

reading size the more round-trips are required when a client is

accessing a file from a server. Furthermore, CIFS was designed

without considering bandwidth limitations, while the available

bandwidth in WANs is normally limited. The redundant CIFS

traffic over a bandwidth limited WAN deteriorates the CIFS

performance further.

Many CIFS accelerators have been developed based on one

or several of the following acceleration techniques:

• Caching: Respond to repeating client request without

accessing CIFS servers.

• Predicting: Recognize well-known CIFS sequences, and

act in advance, e.g., Read Ahead and Write Back, to

reduce CIFS clients experienced latency from the WAN

latency to the LAN latency.

• Read-ahead and Write-back: Read-ahead and Write-back

can be implemented in reading (downloading) or writing

(saving) a file from or to a server, respectively, to

minimize the CIFS response time and improve CIFS

performance consequently.

• Accumulating: Accumulate data in bigger messages to

reduce the request messages.

The F5 WANJet CIFS acceleration [121] utilizes Transparent

Data Reduction (TDR) [122], which is a two stage compres-

sion process to maximize bandwidth savings while minimizing

processing latency, to reduce the latency experienced by the

CIFS client from WAN latency to LAN latency as illustrated

in Figure 11(b). In order to download a file from a CIFS

server, the CIFS client issues an “open” CIFS request to the

CIFS server, and the CIFS server responds with a file ID as the

same sequence as in normal CIFS. Then, the CIFS client issues

the first read request and the CIFS server responds with data.

This first transaction incurs the WAN latency. After the initial

transactions, the WANJet system can determine whether one

CIFS client is attempting a file download. Thus, the server side

WANJet system begins pre-fetching data by generating read

requests locally to the server, and the pre-fetched data will be

sent to the client side WANJet. For the subsequent CIFS client

requests, instead of getting data from the server it now gets the

replies locally from the client side WANJet at LAN latency.

Using a combination of directory pre-fetching and caching,

the WANJet system can greatly improve the response time of

directory browsing.

Makani CIFS acceleration [123] implements a CIFS proxy

that predicts future CIFS related transactions. If an appliance

determines that a certain CIFS transaction is likely to occur, it

pre-fetches data and temporarily stores it in the cache, which

will be deleted once the pre-fetched data is referenced. After

the initial transaction, the client side appliance can determine

whether the CIFS client is attempting a file download; it starts

pre-fetching data aggressively by generating read requests to

the server. The server side appliance compresses the pre-

fetched data and sends it to the client-side appliance. The

1104 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

WAN

CIFS Client Server

T
im
e

Open

File ID

Read(1)

Response
(1)

Read(2)

Response
(2)

WAN

Latency

WAN

Latency

WAN

Latency

(a) Chattiness of CIFS

CIFS Client Server
T
im
e

WAN

Latency

LAN

Latency

WAN

Latency

Open
Open

Open

File ID

File ID
File ID

WANJet WANJet

Read (1) Read (1)
Read (1)

Resp (1)Response (1
)

Response (
1) Read (2)

Response
(2)

Response (
2)

Read (2)

Response (
2)

(b) WANJet CIFS

WAN

CIFS Client Server

T
im
e

Open

File ID

Read Ahea
d Respons

e

Read Ahead

WAN

Latency

Read (1)

WAN

Latency

Respons
e (1)

Read (2)

Resp. (
2)

LAN

Latency

Read (3)

Resp. (
3)

(c) Makani CIFS

.
.
.

WAN

CIFS Client Server

T
im
e

Resp
onse

Write Back

WAN

Latency

Write

File ID

LAN

Latency

Write (1)

Resp.
Write (2)

Resp.

Read/Write

Resp.

Write (3)

Resp.

Write (n)

(d) Blue Coat CIFS

Fig. 11. CIFS Acceleration Illustration

pre-fetched data is sent to the client side appliance and stored

temporarily in anticipation of requests from the CIFS client;

hence, CIFS appliances reduce the latency experienced by the

CIFS client from WAN latency to LAN latency. Figure 11(c)

illustrates that the Makani CIFS acceleration can reduce the

latency experienced by the CIFS client from WAN latency to

LAN latency when a client is accessing a file from the server.

In the case that a CIFS client is writing a file to a CIFS server,

the client side appliance responds locally to the CIFS client’s

write requests and passes the data to the server side appliance

at WAN link speed to complete the write operation. Like

WANJet, Makani CIFS accelerators can greatly improve the

response time of directory browsing by using a combination

of directory prefetching and caching.

Visuality System Ltd. developed a fully transparent embed-

ded CIFS proxy solution, CAX (CIFS accelerator) [76], to

improve user experience when accessing remote Windows file

servers across the WAN by employing caching, predicting and

accumulating. CAX can be embedded into network hardware

including routers, hardware accelerators, and other products.

Blue Coat CIFS optimization [77] implements read-ahead

and write back technique to reduce the latency associated

with CIFS in reading or writing a file from or to a server,

respectively. After having received a client CIFS read request,

the Blue Coat appliance can recognize and anticipate future

reads based on its knowledge of the CIFS protocol. Instead

of making hundreds or thousands of small requests as the

client is required to do, the Blue Coat appliance combines

many smaller read requests into a single more efficient Read

Ahead bulk request to save round-trips to the server by taking

advantage of the ability of the CIFS protocol to support 60KB

readings to retrieve the data in large chunks. It can further

accelerate file retrieval by issuing multiple read requests to

the server in parallel. The latency often occurs when writing

or saving a file to a server since the client must wait until

it receives acknowledgement from the server before sending

additional data. Figure 11(d) depicts how the CIFS client

writes a file to a server at LAN speed with Blue Coat CIFS

protocol optimization. To minimize the response time when

writing or saving a file to a server, the Blue Coat CIFS

optimization implements Write Back. With Write Back, the

client-side Blue Coat appliance acknowledges the client as if

it was the server, allowing the client to write the file at LAN

speed. Then, the client-side Blue Coat appliance will pass the

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1105

file to the server-side Blue Coat appliance, which is able to

write the file to the server as it receives the data from the

client, without requiring acknowledgement from the sever.

D. MAPI Optimization

MAPI [84] was originally designed by Microsoft to develop

messaging applications. MAPI is also a “chatty” protocol and

experiences low efficiency over a WAN as illustrated in Figure

12. A sender cannot send the next block of MAPI data before

it receives the acknowledgement for the last block of data.

Thus, the delay associated with client requests is bounded

by the WAN latency; therefore, email application users often

experience debilitating response time not only while sending

and receiving e-mails, but also while accessing group message

folders or changing calendar elements.

With MAPI protocol optimization, Makani appliances [78]

retrieve MAPI data before clients request them by acting as

a proxy between the client and server. Makani appliances

implement split-proxy and read-ahead stream optimization to

effectively reduce delays associated with the waiting time for

data retrieval in the MAPI protocol. Makani appliances can

terminate MAPI user requests as if they are severs, initiate

connections to other Makani appliances across the WAN by

implementing split-proxy, and respond to the client MAPI

request as a remote server. Makani’s MAPI optimization

implements aggressive read-ahead stream optimization to min-

imize user response time. The client side Makani appliance

monitors the first MAPI ReadStream request, and then reads

the full stream ahead and stores it in the local file system.

Thus, the latency is reduced, and consequently performance

is improved.

Blue Coat’s MAPI Optimization [79] minimizes the user

response time by encapsulating multiple messages into large

chunks to optimize the number of round-trips over the WAN.

In order to further decrease the response time, Blue Coat’s

MAPI optimization employs the Keep-alive feature to stay

connected and continue to retrieve data even after users have

logged off. With Keep-alive, the local and remote appliances

maintain “warm” connections between them to retrieve user

e-mail and to populate the byte cache dictionaries of both

proxies on each side of the WAN. Therefore, the clients can

access the email application at LAN speed since the user

email data has already been cached locally at the client side

appliance.

E. Session Layer Acceleration

Several studies have presented two main session layer accel-

eration techniques: DNS- and URL- rewriting techniques [80],

and parse and push techniques [81]. The performance of these

session layer optimization techniques has been investigated in

[124]. The main purpose of session layer optimization is to

reduce the number of DNS lookups and the number of TCP

connections at the client web browsers.

1) URL and DNS Rewriting: Webpages usually contain

several embedded objects hosted under different domain

names, and so the web browser has to perform several DNS

queries for these domain names and set up at least one TCP

connection to the URL server in each domain name for the

WAN

Client Exchange Server
T
im
e

EcDoConnectEx Request

EcDoCon
nectEx R

esponse

EcDoRpc Request

EcDoRpc
Response

EcDoRpc Request

EcDoRpc
Response

WAN

Latency

WAN

Latency

WAN

Latency

Fig. 12. Chattiness of MAPI

embedded objects. The large RTT in WANs increases the delay

incurred by DNS lookups.

The main idea of URL-rewriting proposed in [80] is that the

URLs for embedded objects in one web page are prefixed with

the IP address of a caching proxy. Thus, no DNS requests are

made by the client browser for the embedded URLs except

the one that resolves the domain name of the server that hosts

the top level page. As an example illustrated in Figure 13(a),

URL rewriting is performed by a URL rewriting proxy closer

to the client. The URL rewriting proxy intercepts the HTTP

request and response for a top level web page transparently,

and rewrites the URLs of the embedded objects by prefixing

them with the IP address of a caching proxy, which could be

located in the same or different machines. For example, the

embedded URLs in the responding HTML file from the origin

server www.foo.com is prefixed by the URL rewriting proxy

with the IP address of the caching proxy, which is 10.0.0.12

in this example. Therefore, the following embedded object

retrievals will be directed to the caching proxy server without

any DNS lookups at the client browser and TCP connections to

the origin servers to retrieve the embedded objects. The DNS

requests for the embedded objects are made by the caching

proxy if needed. Thus, the number of both DNS queries and

TCP connections at the client browser are reduced.

Whenever a web browser makes a DNS request for a

domain name, DNS rewriting proxy intercepts the DNS re-

sponse and inserts the IP address of the caching proxy to

the top of the original responded IP address list. Hence, the

browser will attempt to connect to the caching proxy first.

An example of DNS rewriting process to browse the web

page http://www.foo.com/index.html is illustrated in Figure

13(b). In this example, DNS rewriting proxy inserts the IP

address of the caching proxy 10.0.0.12 to the top of the DNS

response. Then, the browser makes a HTTP GET request to

the caching proxy to fetch /index.html. The caching proxy will

make a DNS query to the DNS server directly to resolve the

requested domain name and connects to the origin server to

retrieve /index.html. Since all HTTP requests for top level web

pages are directed to the same caching proxy, only one TCP

connection is required to be set up between the client and the

caching proxy, and it can be reused to retrieve multiple top

level pages and their embedded objects.

1106 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

www.foo.com

Caching Proxy

10.0.0.12

URL Rewriting Proxy

i.cnn.net Images.yahoo.com www.news.com

Rewritten

Original

(a) Example of URL rewriting

Name:www.foo.com

IP:???

(1)

Caching Proxy

10.0.0.12

DNS Server

Name:

www.foo.com

IP: 10.0.0.12

TTL: 1 day

IP: 193.123.25.10

TTL: 10 sec

DNS Rewriting

Proxy

(4)
Name:www.foo.com

IP:??? (2)

Name: www.foo.com

IP: 193.123.25.10
TTL: 10 sec

(3)

IP: 10.0.0.12

GET /index.html

HTTP/1.1

Host: www.foo.com

(5)

(6
)

N
am
e:w
w
w
.foo.com

IP: ???N
am
e: w
w
w
.foo.com

IP: 193.123.25.10

TTL: 10
sec (7)

(8)

www.foo.com

193.123.25.10

(9)

(b) Example of DNS rewriting

Fig. 13. Example of URL and DNS rewriting [80].

2) Parse and Push: The embedded objects are requested

after the browser parses the HTML file. So, a round trip

delay is normally incurred before transferring these embedded

objects. The parse and push mechanism [81] enables the proxy

server to pro-actively parse the HTML file and start to push

the embedded objects towards the client. Thus, the web page

download time can be reduced.

F. SSL/TLS Acceleration

Secure Socket Layer (SSL) and Transport Layer Security

(TLS) are widely deployed cryptographic protocols for provid-

ing communication security over the Internet. Apostolopoulos

et al. [125] showed that SSL/TLS handshake processing can

be very processor intensive even without the cryptographic

operations, and SSL/TLS can decrease the number of HTTP

transactions handled by web servers up to two orders of

magnitude. The extra latency introduced by SSL/TLS hand-

shake messages, both from the serialized message exchange,

as well as the cryptographic operations required for signing

and encrypting those messages, was examined in [126]. The

experimental results reported in [127] also distinctly show the

inherent latency imposed by the SSL/TLS handshake.

1) Fast Cryptography Algorithms and Implementations:

Several SSL handshake acceleration approaches involve tech-

niques for speeding up encryption/decryption operations. Four

fast RSA variants, namely, batch RSA, multi-prime RSA,

multi-power RSA, and rebalanced RSA, have been examined

to speed up RSA decryption in [128]. Batch RSA and two

multi-factor RSA techniques, multi-prime RSA and multi-

power RSA, are fully backward-compatible. Multiple public

keys and certificates are required to be obtained and managed

by the batch RSA algorithm. As compared to other three fast

RSA variants, rebalanced RSA can achieve a large speedup,

but only works with peer applications. By implementing

batch RSA in an SSL web server, the performance of SSL’s

handshake protocol can achieve by up to a speedup factor of

2.5 for 1024-bit RSA keys as shown in [129]. There also exist

numerous fast cryptography algorithms [130, 131].

Elliptic Curve Cryptgraphy (ECC) can accelerate key com-

putations with smaller key sizes while providing equivalent

security. The performance impacts of ECC on SSL was

studied in [132], which indicates that ECC implemented on an

Apache web server enables 11%-31% more HTTPS requests

per second handling over RSA. Fast ECC implementations

with FPGA and hardware were reported in [133] and [134],

respectively. To reduce complex certificate management over-

heads and long handshake latency in TLS, several identity-

based cryptography primitives, such as identity-based encryp-

tion, identity-based signature, identity-based signcryption and

identity-based authenticated key agreement can be adaptively

applied to the TLS handshake protocol as illustrated in [135].

In order to alleviate server load, a cryptographic compu-

tation RSA-based re-balancing scheme between SSL clients

and servers, called client-aided RSA (CA-RSA), was proposed

in [136]. CA-RSA is achieved by adapting server-aided RSA

(SA-RSA) to SSL/TLS settings with re-assigning SSL clients

as “servers” while overloaded servers as “weak clients”. The

main idea of CA-RSA is to shift some computational load

from the server to clients. Experimental results demonstrate

that CA-RSA can speed up private-key computation by a

factor of between 11 to 19 over plain RSA, depending on

the RSA key size.

2) Compression to SSL/TLS: Introducing general purpose

compression algorithms into SSL/TLS was reported in [137],

and it was showed that the average text files transfer time can

be improved especially for narrow bandwidth communication

lines with compression to SSL/TLS. TLS allows clients and

servers to negotiate selection of a lossless data compression

method as part of the TLS Handshake Protocol. The compres-

sion methods associated with DEFLATE and Lempel-Ziv-Stac

(LZS) lossless data compression algorithms for use with TLS

was described in [138] and [139], respectively.

3) SSL/TLS Offload: It has been shown in several works

that purely software-based cryptographic implementations are

very costly, and therefore, a majority of SSL/TLS accelerators

today focus on offloading the processor-intensive encryption

algorithms involved in SSL/TLS transactions to a hardware ac-

celerator. There are generally two TLS/SSL offload paradigms,

server-resident and network-resident SSL/TLS hardware accel-

erators.

Server-resident TLS/SSL hardware accelerators are typi-

cally implemented in standard PCI cards, either as stand-

alone devices, or integrated into network interface cards (NIC)

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1107

Client Server

T
im
e

SYN

SYN/ACK

Client Hello

Server H
ello

Certifica
tion, Don

e

FIN/ACK

GET

GET Res
ponse

ACK

ACK

ACK
Client Key,Cipher, Handshake

Cipher H
andshak

e

ACK

FIN

(a) Without SSL accelerator

Client SSL Proxy

T
im
e

SYN

SYN/ACK

ACK

Server

SYN

SYN
/ACK

GET Res
ponse

ACK

ACK

GET

GET
Resp

onse

ACK

Client Hello

Server H
ello

Certifica
tion, Don

e

GET

ACK

ACK

ACK
Client Key,Cipher, Handshake

Cipher H
andshak

e

(b) With SSL accelerator proxy

Fig. 14. Examples of SSL handshake in a HTTP transaction.

or system chipsets. Numerous vendors offer SSL accelerator

cards with cryptographic offload solutions, e.g., Broadcom,

CAI Networks, Cavium Networks, Silicom, THALES, and

IBM. Broadcom BCM5821 can achieve up to 4000 SSL/TLS

transactions per second. Jang et al. [140] proposed an SSL-

accelerator with Graphics Processing Units (GPUs) working

as a proxy for web servers to offload the server-side cryp-

tographic operations from CPUs. In order to achieve low

latency and high throughput simultaneously, an opportunis-

tic offloading algorithm was developed to balance the load

between CPU and GPU in SSL processing depending on the

load. The cryptographic operations will be handled by CPU

for low latency when the load is light. As the number of pend-

ing cryptographic operations increases, cryptographic requests

will pile up in the queue and cryptographic operations will be

offloaded to GPUs to improve throughput with GPU’s parallel

executions. Preliminary results show that GPUs accelerate

cryptographic operations with small latency overhead while

significantly boosting the throughput at the same time. Berson

et al. [141] demonstrated that public key cryptography can be

provided as a network service over untrusted networks with

a cryptoserver equipped with multiple cryptography accelera-

tors, and thus the utilization of cryptographic accelerators can

be improved by sharing them among many clients.

Network-resident SSL hardware accelerators normally com-

prise a multitude of switches, routers, load balancers, and

custom network appliances. Many load balancer vendors,

such as A10 Networks, Array Networks, Cisco Systems,

F5 Networks, Citrix Netscaler, and Juniper Networks, offer

solutions with SSL/TLS offload accelerators. Figure 14(a)

shows the message flow for a typical HTTPS transaction with

SSL/TLS handshake. From this figure, it is obvious that extra

SSL/TLS handshake messages introduce latency, both from

the serialized message exchange, as well as the cryptographic

operations required for signing and encrypting those mes-

sages. Figure 14(b) illustrates the SSL/TLS acceleration with

a network proxy within a HTTP transaction. The network

resident SSL acceleration proxy terminates end-to-end TCP

connection, SSL connection, and HTTP connection, and sets

up two separate TCP connections and HTTP connections to

clients and servers, respectively.
Ma and Bartoš [127] examined three SSL/TLS acceleration

implementation schemes, namely, software-based functional-

ity, server-resident hardware SSL accelerators, and central-

ized network-resident hardware SSL accelerators. They also

discussed the trade-offs between the two different SSL/TLS

offload techniques, SSL card accelerators and network proxies,

and investigated their relationship with respect to the current

performance of web services.

V. WAN ACCELERATION PRODUCTS

Many companies provide WAN accelerators. The typical

WAN acceleration products and the major WAN optimization

techniques associated with them are listed in Table II.

A. ApplianSys

By caching frequently visited web pages locally, Appli-

anSys CACHEBOX web caching appliance dramatically im-

1108 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

TABLE II
WAN ACCELERATION PRODUCTS OVERVIEW

Company Typical Products Major WAN Acceleration Techniques

ApplianSys CacheBox Bandwidth optimization, pre-caching

Aryaka Networks Cloud-based application acceleration and WAN optimization Compression, deduplication, protocol optimization (TCP,
CIFS, MAPI, FTP), and guaranteed QoS

Blue Coat ProxySG appliance, ProxyClient, Director, PacketShaper Bandwidth management, protocol optimization, byte
caching, object caching, compression

Cisco Wide Area Application Services (WAAS) appliance, virtual
WAAS, WAAS mobile, WAAS Express

Compression, deduplication, protocol optimization (HTTP,
TCP, CIFS, MAPI), SSL optimization, NFS acceleration

Citrix NetScaler, Branch Repeater Layer 4 Load balancing, Layer 7 content switching, TCP
optimization, HTTP compression, web optimization, SSL
acceleration, and traffic management

Cyberoam Unified Threat Management (UTM) platform Bandwidth management, load balancing

Expand Networks Appliance accelerator (Datacenter, regional office,
small/satellite office), virtual accelerator (datacenter, branch
office), mobile accelerator, Expandview management platform

TCP Acceleration, byte level caching, dynamic compres-
sion, Layer 7 QoS, application and protocol acceleration,
wide area file services.

Ipanema Technologies WAN Governance Flow optimization, TCP optimization, Layer 7 CIFS opti-
mization, QoS

Juniper Networks WXC series application acceleration platform Compression, caching, TCP acceleration, SSL optimization,
application and protocol specific acceleration

Riverbed Technology Steelhead appliance, Steel mobile software, virtual Steelhead
appliance, WhiteWater appliance

Data deduplication, protocol optimization, and application
layer protocol latency optimizations

Silver Peak Systems NX appliance, VX appliance, VRX appliance Deduplication, loss mitigation, QoS, and latency mitigation.

Exinda UPM, ExOS 6.0 TCP optimization, application acceleration, universal
caching, compression, intelligent acceleration, peer auto-
discovery

UDcast WANcompress, UDgateway Caching and data compression

XipLink XA appliance, XipOS Data compression, TCP acceleration, HTTP acceleration,
dynamic web cache

proves performance without the need to upgrade bandwidth,

and offers solutions for a wide range of web caching require-

ments, such as reducing bandwidth costs and accelerating web

access. CACHEBOX optimizes internet bandwidth usage by

serving content stored in the LAN and accelerating perfor-

mance on cached content.

B. Aryaka Networks

Aryaka offers a cloud-based solution for application accel-

eration and WAN optimization, which improves application

performance as software-as-a-service (saas). The major em-

ployed acceleration techniques include compression, dedupli-

cation, application protocol optimization, TCP optimization,

CIFS optimization, MAPI optimization, FTP optimization, and

guaranteed QoS.

C. Blue Coat

The Blue Coat ProxySG appliances can be deployed at

the core and edges of an enterprise’s application delivery

infrastructure to improve user productivity and reduce band-

width expense. The main acceleration techniques employed by

ProxySG include compression, bandwidth management, pro-

tocol optimization, and caching. ProxyClient enables remote

acceleration to provide a LAN-like experience to remote users

connecting over VPNs or WANs. Blue Coat Director delivers

comprehensive, centralized WAN optimization management

for a large network of ProxySG appliances. PacketShaper,

together with the ProxySG appliances, can monitor and ac-

celerate application performance for real-time protocols.

D. Cisco

Cisco WAAS software optimizes the performance of any

TCP-based application across a WAN by a combination of

WAN optimization, acceleration of TCP-based applications,

and Cisco’s Wide Area File Services (WAFS). WAAS im-

plements comprehensive application optimization, application-

specific protocol acceleration, bandwidth reduction through

compression and deduplication, and TCP flow optimization.

WAAS software can be delivered with WAAS appliances,

Cisco services ready engine modules on Cisco integrated

services routers, and some dedicated blades. Cisco virtual

WAAS (vWAAS) is a virtual appliance that accelerates ap-

plications delivered from private and virtual private cloud

infrastructures over WANs, through policy-based on-demand

orchestration. Cisco WAAS mobile extends application accel-

eration benefits to mobile workers. WAAS mobile optimizes

cellular, satellite, WiFi, WiMax, and DSL networks to reduce

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1109

timing variations, high latency, and noisy connections, and

increases link resiliency. The application protocol optimizers

employed by WAAS mobile reduce application round trips for

file transfers, Outlook, enterprise web applications, and web

browsing. Cisco WAAS Express leverages a combination of

data redundancy elimination, data compression, and TCP flow

optimization to maximize bandwidth optimization gains.

E. Citrix

Citrix NetScaler, a web application delivery appliance,

optimizes application performance through advanced layer 4

load balancing, layer 7 content switching, TCP optimization,

HTTP compression, web optimization, SSL acceleration, and

traffic management. Citrix Branch Repeater, available as both

a physical and a virtual appliance, optimizes the delivery of

applications to branch and mobile users. Branch Repeater

appliances are auto-discovered, auto-configured, and auto-

tuned. Branch Repeater incorporates two Citrix HDX tech-

nologies, HDX IntelliCache, and HDX Broadcast, to optimize

both hosted and streamed applications delivered to branches.

HDX IntelliCache optimizes performance for multiple users

accessing virtual desktops and applications from branch offices

by locally caching and de-duplicating bandwidth intensive

data, and by locally staging streamed application packages.

HDX Broadcast provides a set of technologies that adaptively

tune to real-time conditions to optimize network traffic.

F. Cyberoam

Cyberoam Unified Threat Management (UTM) appliances

support 3G and WiMAX WAN connectivity which offers

assured security over wireless WAN links. Cyberoam Band-

width Management offers identity-based bandwidth control,

preventing congestion and bandwidth abuse, and optimizing

bandwidth and multiple link management that provides WAN

redundancy and delivers assured WAN availability and reliable

connectivity.

G. Expand Networks

WAN acceleration products provided by Expand Networks

include appliance accelerator, virtual accelerator, and mobile

client accelerator along with ExpandView management plat-

form. They improve WAN performance by providing virtual

bandwidth. Expand appliance accelerators are available in

many sizes ranging from data center appliances, large to

medium regional offices, branch offices, to satellite offices. By

leveraging the existing virtual IT infrastructure in the datacen-

ter and branch offices, WAN optimization can be deployed as

a virtual appliance for datacenters and branch offices. Mobile

accelerator transforms the economics of WAN optimization

for smaller branch offices and mobile workers within medium

to large sized businesses. ExpandView, a central manage-

ment, reporting and alerting system, provides application

fluent network statistics, optimization performance, bandwidth

utilization and configuration management for appliance, and

virtual and mobile accelerators. One comprehensive, multi-

service platform with extensive management capabilities is

developed by ExpandView to incorporate many WAN opti-

mization techniques, including TCP acceleration, byte level

caching, dynamic compression, layer 7 QoS, application and

protocol acceleration, and wide area file services.

H. Ipanema Technologies

Ipanema WAN Governance extends application perfor-

mance management and permits a continuous service level

management through clear key performance indicators by

implementing a combination of application visibility, QoS

and control, WAN optimization, and dynamic WAN selection.

Ipanema’s WAN optimization utilizes both RAM and disk

redundancy elimination to optimize all TCP and UDP applica-

tions flows. It also employs CIFS optimization to improve Mi-

crosoft file sharing efficiency over WAN. All Ipanema WAN

optimization mechanisms are under the control of Ipanema’s

unique QoS and control innovation, and are automatically

tuned by Ipanema’s autonomic networking architecture.

I. Juniper Networks

The Juniper WXC series application acceleration platform

provides a scalable way to speed up the delivery of client-

server and web-based business applications and services over

the WAN by recognizing and eliminating redundant trans-

missions, accelerating TCP and application-specific protocols,

as well as prioritizing and allocating access bandwidth. The

major acceleration techniques employed by the WXC se-

ries application acceleration platform include compression,

caching, TCP acceleration, SSL optimization, and application

acceleration.

J. Riverbed Technology

Riverbed Steelhead appliances accelerate a broad range of

applications, including file sharing, exchange (MAPI), Lotus

Notes, web, database, and disaster recovery applications. The

Steelhead appliance employs data reduction, TCP acceler-

ation, and application layer protocol latency optimizations

to enhance application performance. Steelhead Mobile client

software enables application acceleration to mobile users. With

Riverbed Virtual Steelhead appliances, WAN optimization can

be extended to deployments where physical hardware may not

be conveniently suited. The WhiteWater appliance is designed

for optimization towards cloud storage providers.

K. Silver Peak Systems

Typical Silver Peak WAN acceleration appliances include

NX appliance, VX appliance, and VRX appliance. The VX

appliances are the software versions of the NX appliances. The

VRX appliances are the first and the only virtual WAN opti-

mization devices designed for data center deployment. All of

these appliances leverage a unique blend of WAN acceleration

techniques, including compression, data deduplication, loss

mitigation, QoS provisioning, and latency mitigation. Silver

Peak WAN acceleration appliances employ network accel-

eration, especially on TCP and other protocol acceleration

techniques, to minimize the effects of latency on application

performance and significantly improve application response

time across the WAN. These appliances also utilize a variety

of Quality of Service (QoS) and traffic shaping techniques

1110 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

to optimize traffic handling, including advanced queuing,

scheduling, and standards-based packet-marking. One impor-

tant feature of these appliances is that network memory is

used for data deduplication. Network memory operates at the

network layer and supports all IP-based protocols.

L. Exinda

Exinda Unified Performance Management (UPM) is a net-

work appliance that integrates real-time network monitoring,

reporting, traffic control, and application acceleration to effec-

tively manage a WAN. The optimization techniques leveraged

by UPM include TCP optimization, application acceleration,

universal caching, compression, intelligent acceleration, and

peer auto-discovery. Newly released ExOS 6.0 offers some

new features, such as TCP efficiency monitoring and reporting,

TCP health monitoring, service level agreement monitoring,

and SSL/HTTPs acceleration.

M. UDCast

UDCast WANcompress offers bandwidth optimization to

dramatically improve IP communications over satellite, wire-

less, wired and WiMAX networks across WAN, and reduces

the high operating expenditure associated with satellite com-

munications. Based on a combination of compression and

caching techniques to eliminate redundant data, WANcom-

press can save on average 50% of the bandwidth on a given

communications link. In order to perform real-time com-

pression, WANcompress performs data matching at the byte

level. The UDgateway service platform with WANcompress

improves satellite communication performance.

N. XipLink

The XipLink XA series appliances work together with

XA optimization software (XipOS) to deliver satellite and

wireless optimization. XipOS maximizes bandwidth across

wireless communication links by using extensions of the Space

Communication Protocol Specification (SCPS). It offers 2-10

times bandwidth gain through streaming compression. It also

utilizes TCP acceleration and Internet optimization through

HTTP acceleration and dynamic web caching.

VI. CONCLUSION

In this paper, we have provided a detailed discussion on

performance enhancement techniques over a WAN, especially

with the focus on WAN optimization, also known as WAN

acceleration. We first reviewed the obstacles to content de-

livery over a WAN. To overcome these challenges in the

WANs, many WAN acceleration techniques have been pro-

posed and developed. We have summarized most commonly

used WAN optimization techniques, in particular, compres-

sion, data deduplication, caching, prefetching, and protocol

optimization. Finally, we have presented commonly available

WAN acceleration products and the major WAN optimization

techniques associated with these acceleration products. We

hope that this paper will serve as a valuable vehicle for further

research on WAN optimization.

REFERENCES

[1] P. Sevcik and R. Wetzel, “Improving Effective WAN
Throughput for Large Data Flows,” http://www.silver-peak.com/
assets/download/pdf/Netforecast wp EffectiveThroughput.pdf,
November 2008.

[2] T. Grevers Jr. and J. Christner, Application Acceleration and WAN

Optimization Fundamentals. Indianapolis, IN: Cisco Press, 2007.

[3] S. Corner, http://www.submitcorner.com/Guide/Bandwidth/001.shtml.

[4] Akamai, http://www.akamai.com/dl/reports/Site Abandonment Final
Report.pdf, November 2006.

[5] , http://www.akamai.com/dl/whitepapers/ecommerce website
perf wp.pdf?curl=/dl/whitepapers/ecommerce website perf wp.pdf
&solcheck=1&.

[6] M. Al-laham and I. M. M. E. Emary, “Comparative study between
various algorithms of data compression techniques,” International
Journal of Computer Science and Network Security, vol. 7, no. 4, April
2007.

[7] S. Sakr, “Xml compression techniques: A survey and comparison,”
Journal of Computer and System Sciences, vol. 75, no. 5, pp. 303 –
322, 2009.

[8] J. Shukla, M. Alwani, and A. Tiwari, “A survey on lossless image
compression methods,” in Proc. 2nd International Conference on

Computer Engineering and Technology, April 2010, pp. 136–141.

[9] R. J. Clarke, “Image and video compression: a survey,” International

Journal of Imaging Systems and Technology, vol. 10, pp. 20–32, 1999.

[10] Z. Liu, Y. Saifullah, M. Greis, and S. Sreemanthula, “HTTP Com-
pression Techniques,” in Proc. IEEE Wireless Communications and

Networking Conference, March 2005, pp. 2495 – 2500.

[11] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani, “De-
mystifying Data Deduplication,” in Proc. Middleware Conference
Companion, Leuven, Belgium, 2008, pp. 12–17.

[12] Q. He, Z. Li, and X. Zhang, “Data Deduplication Techniques,” in
Proc. International Conference on Future Information Technology and
Management Engineering (FITME), Oct. 2010, pp. 430 –433.

[13] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, “Single In-
stance Storage in Windows 2000,” in Proc. 4th conference on USENIX

Windows Systems Symposium, Seattle, Washington, Aug. 2000, pp. 13–
24.

[14] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming Space from Duplicate Files in a Serverless Distributed
File System,” in Proc. 22 nd International Conference on Distributed

Computing Systems, Vienna, Austria, July 2002, pp. 617–624.

[15] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in Proc. SIGCOMM, Stock-
holm, Sweden, 2000, pp. 87–95.

[16] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: the implications of universal redundant traffic
elimination,” in Proc. SIGCOMM, Seattle, WA, USA, 2008, pp. 219–
230.

[17] A. Anand, V. Sekar, and A. Akella, “SmartRE: an architecture for coor-
dinated network-wide redundancy elimination,” SIGCOMM Computer
Communication Review, vol. 39, pp. 87–98, August 2009.

[18] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: an end-
system redundancy elimination service for enterprises,” in Proc. 7th

USENIX conference on Networked systems design and implementation,
San Jose, California, 2010, pp. 28–28.

[19] G. Lu, Y. Jin, and D. Du, “Frequency based chunking for data de-
duplication,” in Proc. Modeling, Analysis Simulation of Computer and

Telecommunication Systems, Aug. 2010, pp. 287 –296.

[20] S. Saha, A. Lukyanenko, and A. Yla-Jaaski, “Combiheader: Minimiz-
ing the number of shim headers in redundancy elimination systems,”
in Proc. INFOCOM workshops on Computer Communications, April
2011, pp. 798 –803.

[21] S. Quinlan and S. Dorward, “Venti: A New Approach to Archival
Data Storage,” in Proc. 1st USENIX Conference on File and Storage

Technologies (FAST), 2002, pp. 89 – 101.

[22] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li, “Decentralized
Deduplication in SAN Cluster File Systems,” in Proc. USENIX Annual
technical conference, San Diego, California, June 2009.

[23] C. Constantinescu, J. Pieper, and T. Li, “Block Size Optimization in
Deduplication Systems,” in Proc. Data Compression Conference, 2009.

[24] J. J. Hunt, K.-P. Vo, and W. F. Tichy, “An Empirical Study of
Delta Algorithms,” in Proc. SCM-6 Workshop on System Configuration

Management, 1996, pp. 49–66.

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1111

[25] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a decentralized peer-
to-peer web cache,” in Proc. 21th annual symposium on Principles of

distributed computing, Monterey, California, 2002, pp. 213–222.
[26] L. Xiao, X. Zhang, and Z. Xu, “On reliable and scalable peer-to-peer

web document sharing,” in Proc. International Parallel and Distributed

Processing Symposium (IPDPS), Fort Lauderdale, FL, April 2002, pp.
23–30.

[27] Z. Xu, Y. Hu, and L. Bhuyan, “Exploiting client cache: a scalable and
efficient approach to build large web cache,” in Proc. 18th International

Parallel and Distributed Processing Symposium (IPDPS), April 2004,
pp. 55–64.

[28] A. Vakali, “Proxy Cache Replacement Algorithms: A History-Based
Approach,” World Wide Web, vol. 4, pp. 277–297, 2001.

[29] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the Bounds
of Web Latency Reduction from Caching and Prefetching,” in Proc.

USENIX Symp. on Internet Technologies and Systems, Dec. 1997.
[30] P. Rodriguez, C. Spanner, and E. Biersack, “Analysis of web caching

architectures: hierarchical and distributed caching,” IEEE/ACM Trans.

Netw., vol. 9, no. 4, pp. 404 –418, Aug. 2001.
[31] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and

K. J. Worrell, “A hierarchical internet object cache,” in Proc. 1996
annual conference on USENIX Annual Technical Conference, San
Diego, CA, 1996.

[32] D.Wessels and K. Claffy, “Application of Internet cache protocol (ICP)
version 2,” http://tools.ietf.org/html/rfc2187, May 1997.

[33] A. Rousskov and D. Wessels, “Cache digests,” in Proc. 3rd Internal-

tional WWW Caching Workshop, June 1998, pp. 272–273.
[34] R. Tewari, M. Dahlin, H. Vin, and J. Kay, “Design considerations

for distributed caching on the internet,” in Proc. 19th International
Conference on Distributed Computing Systems, 1999, pp. 273 –284.

[35] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching
with consistent hashing,” in Proc. eighth international conference on
World Wide Web, Toronto, Canada, 1999, pp. 1203–1213.

[36] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.

Netw., vol. 8, pp. 281–293, June 2000.
[37] K. Leung, E. Wong, and K. Yeung, “Design of distributed video cache

system on the internet,” in Proc. 23rd International Conference on

Distributed Computing Systems Workshops, May 2003, pp. 948 – 953.
[38] M. Rabinovich, J. Chase, and S. Gadde, “Not all hits are created

equal: cooperative proxy caching over a wide-area network,” Computer
Networks and ISDN Systems, vol. 30, pp. 2253–2259, November 1998.

[39] J. Ravi, Z. Yu, and W. Shi, “A survey on dynamic web content
generation and delivery techniques,” Journal of Network Computer

Applications, vol. 32, pp. 943–960, September 2009.
[40] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and S. Williams,

“Removal Policies in Network Caches for World-Wide Web Docu-
ments,” in Proc. SIGCOMM, California, USA, 1996, pp. 293–305.

[41] J. Domenech, J. Sahuquillo, J. Gil, and A. Pont, “The Impact of
the Web Prefetching Architecture on the Limits of Reducing User’s
Perceived Latency,” in Proc. IEEE/WIC/ACM International Conference

on Web Intelligence, Dec. 2006, pp. 740 –744.
[42] A. Balamash, M. Krunz, and P. Nain, “Performance analysis of a

client-side caching/prefetching system for web traffic,” Comput. Netw.,
vol. 51, pp. 3673–3692, September 2007.

[43] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to
improve world wide web latency,” SIGCOMM Computer Communica-
tion Review, vol. 26, pp. 22–36, July 1996.

[44] T. Palpanas, “Web Prefetching Using Partial Match Prediction,”
Department of Computer Science, University of Toronto, Master’s
Thesis, March 1998, (available as Technical Report CSRG-376
http://www.cs.toronto.edu/̃themis/publications/webprefetch.pdf).

[45] J. Domènech, J. Gil, J. Sahuquillo, and A. Pont, “DDG: An Efficient
Prefetching Algorithm for Current Web Generation,” in Proc. 1st IEEE

Workshop on Hot Topics in Web Systems and Tech, 2006.
[46] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin, “NPS:

A Non-interfering Deployable Web Prefetching System,” in Proc. 4th

USENIX Symposium on Internet Technologies and Systems, 2003.
[47] A. Balamash, M. Krunz, and P. Nain, “Performance analysis of a

client-side caching/prefetching system for web traffic,” Comput. Netw.,
vol. 51, pp. 3673–3692, September 2007.

[48] X. Chen and X. Zhang, “Coordinated data prefetching by utilizing
reference information at both proxy and web servers,” SIGMETRICS

Performance Evaluation Review, vol. 29, pp. 32–38, September 2001.
[49] C. Bouras, A. Konidaris, and D. Kostoulas, “Predictive Prefetching on

the Web and Its Potential Impact in the Wide Area,” World Wide Web,
vol. 7, pp. 143–179, 2004.

[50] L. Fan, P. Cao, W. Lin, and Q. Jacobson, “Web Prefetching Between
Low-Bandwidth Clients and Proxies: Potential and Performance,” in
Proc. ACM SIGMETRICS, Atlanta, Georgia, 1999, pp. 178–187.

[51] J. Pitkow and P. Pirolli, “Mining longest repeating subsequences to
predict world wide web surfing,” in Proc. 2nd conference on USENIX

Symposium on Internet Technologies and Systems, Boulder, Colorado,
Oct. 11-14 1999.

[52] X. Chen and X. Zhang, “Popularity-based ppm: an effective web
prefetching technique for high accuracy and low storage,” in Proc.

International Conference on Parallel Processing, 2002, pp. 296 – 304.
[53] R. R. Sarukkai, “Link prediction and path analysis using markov

chains,” in Proc. 9th international World Wide Web conference on
Computer networks, Amsterdam, The Netherlands, 2000, pp. 377–386.

[54] M. Deshpande and G. Karypis, “Selective markov models for predict-
ing web page accesses,” ACM Transactions Internet Technology, vol. 4,
pp. 163–184, May 2004.

[55] E. Markatos and C. Chronaki, “A top-10 approach to prefetching on
the web,” in Proc. INET, Geneva, Switzerland, 1998.

[56] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A data mining
algorithm for generalized web prefetching,” IEEE Trans. Knowl. Data
Eng., vol. 15, no. 5, pp. 1155 – 1169, Sep.-Oct. 2003.

[57] A. Songwattana, “Mining web logs for prediction in prefetching and
caching,” in Proc. Third International Conference on Convergence and

Hybrid Information Technology, vol. 2, 2008, pp. 1006 –1011.
[58] J. Dean and M. R. Henzinger, “Finding related pages in the world

wide web,” in Proc. 8th international conference on World Wide Web,
Toronto, Canada, 1999, pp. 1467–1479.

[59] D. Duchamp, “Prefetching hyperlinks,” in Proc. USENIX Symposium
on Internet Technologies and Systems, Boulder, Colorado, 1999.

[60] T. Ibrahim and C.-Z. Xu, “Neural nets based predictive prefetching
to tolerate www latency,” in Proc. 20th International Conference on

Distributed Computing Systems (ICDCS), April 2000, pp. 636 –643.
[61] B. D. Davison, “Predicting web actions from html content,” in Proc.

the thirteenth ACM conference on Hypertext and hypermedia, College
Park, Maryland, USA, 2002, pp. 159–168.

[62] A. Georgakis and H. Li, “User behavior modeling and content based
speculative web page prefetching,” Data Knowl. Eng., vol. 59, pp.
770–788, December 2006.

[63] V. N. Padmanabhan and J. C. Mogul, “Improving http latency,”
Computer Networks and ISDN Systems, vol. 28, pp. 25–35, Dec. 1995.

[64] A. Abhari and A. Serbinski, “HTTP modification to reduce client
latency,” in Proc. Canadian Conference on Electrical and Computer

Engineering (CCECE), May 2008, pp. 1491–1496.
[65] J. Mickens, “Silo: exploiting javascript and dom storage for faster

page loads,” in Proceedings of the 2010 USENIX conference on Web

application development, ser. WebApps’10, Boston, MA, 2010.
[66] I. Cidon, R. Rom, A. Gupta, and C. Schuba, “Hybrid tcp-udp transport

for web traffic,” in Proc. IEEE International Performance, Computing
and Communications Conference, Feb. 1999, pp. 177–184.

[67] M. Rabinovich and H. Wang, “Dhttp: an efficient and cache-friendly
transfer protocol for the web,” IEEE/ACM Trans. Netw., vol. 12, pp.
1007–1020, December 2004.

[68] F. Yang, Y. Dou, Z. Lei, H. Zou, and K. Zhang, “The Optimization of
HTTP Packets Reassembly based on Multi-core Platform,” in Proc. 2nd

IEEE International Conference on Network Infrastructure and Digital
Content, Sept. 2010, pp. 530 –535.

[69] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving
TCP/IP Performance over Wireless Networks,” in Proc. 1st annual in-

ternational conference on Mobile computing and networking, Berkeley,
California, 1995, pp. 2–11.

[70] A. Bakre and B. Badrinath, “I-TCP: indirect TCP for Mobile Hosts,”
in Proc. 15th International Conference on Distributed Computing

Systems, 1995, pp. 136 –143.
[71] A.I. Sundararaj and D. Duchamp, “Analytical Characterization of the

Throughput of a Split TCP Connection,” Department of Computer
Science, Stevens Institute of Technology, Tech. Rep., 2003.

[72] R. Chakravorty, S. Katti, C. J, and P. I, “Flow Aggregation for
Enhanced TCP over Wide-Area Wireless,” in Proc. INFOCOM, April
1-3 2003, pp. 1754 – 1764.

[73] J. Lee, P. Sharma, J. Tourrilhes, R. McGeer, J. Brassil, and A. Bavier,
“Network Integrated Transparent TCP Accelerator,” in Proc. 24th IEEE
International Conference on Advanced Information Networking and

Applications (AINA), April 2010, pp. 285 –292.
[74] T. Wolf, S. You, and R. Ramaswamy, “Transparent TCP Acceleration

Through Network Processing,” in Proc. IEEE Global Telecommunica-
tions Conference (GLOBECOM), Dec. 2005, pp. 750–754.

[75] S. Ladiwala, R. Ramaswamy, and T. Wolf, “Transparent TCP Acceler-
ation,” Computer Communication, vol. 32, pp. 691–702, March 2009.

1112 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 14, NO. 4, FOURTH QUARTER 2012

[76] M. Rabinovich and I. Gokhman, “CIFS Acceleration Techniques,” in
Proc. Storage Developer Conference, 2009.

[77] Blue Coat, “Blue Coat CIFS Protocol Optimization,”
http://www.bluecoat.com/doc/398%20-.

[78] Makani Networks, “Makani MAPI Protocol Optimization,”
http://www.makaninetworks.com/register/docs/makani-mapi.pdf.

[79] Blue Coat, “Blue Coat MAPI Protocol Optimization,”
http://www.bluecoat.com/doc/397%20-.

[80] P. Rodriguez, S. Mukherjee, and S. Ramgarajan, “Session level tech-
niques for improving web browsing performance on wireless links,” in
Proc. 13th international conference on World Wide Web, New York,
NY, USA, 2004, pp. 121–130.

[81] R. Chakravorty, A. Clark, and I. Pratt, “Gprsweb: optimizing the web
for gprs links,” in Proc. 1st international conference on Mobile systems,
applications and services (MobiSys), San Francisco, California, 2003,
pp. 317–330.

[82] Common Internet File System (CIFS), http://msdn.microsoft.com/en-
us/library/aa302188.aspx.

[83] Server Message Block, http://en.wikipedia.org/wiki/Server Message
Block#NetBIOS.

[84] Microsoft, “Messaging Application Programming Interface (MAPI),”
http://msdn.microsoft.com/en-us/library/aa142548(v=exchg.65).aspx.

[85] M. Machowinski, “WAN optimization market passes $1 billion in 2008,
up 29%; enterprise router market down.”

[86] J. Skorupa, “Forecast: Application Acceleration
Equipment, Worldwide, 2007-2015, 1Q11 Updated,”
http://www.gartner.com/DisplayDocument?id=1577015, March 2011.

[87] Google, http://www.chromium.org/spdy/spdy-whitepaper.

[88] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer
Protocol – HTTP/1.0,” IETF RFC 1945, May 1996.

[89] R. Fielding et. al , “Hypertext Transfer Protocol – HTTP/1.1,” IETF

RFC 2616, June 1999.
[90] A. B. King, Speed up Your Site: Web Site Optimization. New Riders,

2003.
[91] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy

in network traffic: findings and implications,” in Proc. 11th Interna-

tional Joint Conference on Measurement and Modeling of Computer

Systems, Seattle, WA, USA, 2009, pp. 37–48.
[92] J. Cleary and I. Witten, “Data compression using adaptive coding and

partial string matching,” IEEE Trans. Commun., vol. 32, no. 4, pp. 396
– 402, Apr. 1984.

[93] J. Domènech, J. A. Gil, J. Sahuquillo, and A. Pont, “Web prefetching
performance metrics: a survey,” Perform. Eval., vol. 63, pp. 988–1004,
October 2006.

[94] AKAMAI TECHNOLOGIES, “Akamai reveals 2 seconds as the new
threshold of acceptability for ecommerce web page response times,”
http://www.akamai.com/html/about/press/releases/2009/press 091408.
html, Sep. 14, 2009.

[95] V. Paxson, “Growth Trends in Wide-Area TCP Connections,” IEEE
Network, vol. 8, no. 4, pp. 8 –17, Jul/Aug 1994.

[96] E. Besson, “Performance of TCP in a Wide-Area Network: Influence
of Successive Bottlenecks and Exogenous Traffic,” in Proc. Global

Telecommunications Conference, vol. 3, 2000, pp. 1798 –1804.

[97] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning
Approach to TCP Throughput Prediction,” IEEE/ACM Trans. Netw.,
vol. 18, no. 4, pp. 1026 –1039, Aug. 2010.

[98] N. Rao, S. Poole, S. Hicks, C. Kemper, S. Hodson, G. Hinkel, and
J. Lothian, “Experimental Study of Wide-Area 10 Gbps IP Transport
Technologies,” in Proc. Military Communications Conference (MIL-

COM), Oct. 2009, pp. 1 –7.
[99] J. C. Hoe, “Improving the start-up behavior of a congestion control

scheme for tcp,” in Proc. SIGCOMM, Palo Alto, California, United
States, 1996, pp. 270–280.

[100] M. Aron and P. Druschel, “Tcp: Improving start-up dynamics by
adaptive timers and congestion control,” Rice University, Tech. Rep.
TR98-318, 1998.

[101] N. Hu and P. Steenkiste, “Improving tcp startup performance using
active measurements: algorithm and evaluation,” in Proc. 11th IEEE

International Conference on Network Protocols, Nov. 2003, pp. 107 –
118.

[102] R. Wang, G. Pau, K. Yamada, M. Sanadidi, and M. Gerla, “Tcp startup
performance in large bandwidth networks,” in Proc. INFOCOM, vol. 2,
March 2004, pp. 796 – 805.

[103] H. Wang and C. Williamson, “A new scheme for tcp congestion con-
trol: smooth-start and dynamic recovery,” in Proc. Sixth International

Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, July 1998, pp. 69 –76.

[104] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Win-
dows,” RFC 3742, March 2004.

[105] X. Lu, K. Zhang, C. P. Fu, and C. H. Foh, “A sender-side tcp en-
hancement for startup performance in high-speed long-delay networks,”
in Proc. IEEE Wireless Communications and Networking Conference
(WCNC), 2010, pp. 1 –5.

[106] L. Brakmo and L. Peterson, “Tcp vegas: end to end congestion
avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465 –1480, Oct. 1995.

[107] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP communi-
cations,” IEEE J. Sel. Areas Commun., vol. 22, no. 4, pp. 747 – 756,
May 2004.

[108] K. Xu and N. Ansari, “Stability and fairness of rate estimation-based
AIAD congestion control in TCP,” IEEE Commun. Lett., vol. 9, no. 4,
pp. 378 – 380, April 2005.

[109] K. Xu, Y. Tian, and N. Ansari, “Improving TCP Performance in
Integrated Wireless Communications Networks,” Computer Networks,
vol. 47, no. 2, pp. 219–237, February 2005.

[110] H. Nishiyama, N. Ansari, and N. Kato, “Wireless loss-tolerant conges-
tion control protocol based on dynamic aimd theory,” IEEE Wireless

Commun., vol. 17, no. 2, pp. 7 –14, April 2010.

[111] S. Floyd, “Highspeed TCP for large congestion window,” IETF RFC

3649, Dec. 2003.

[112] T. Kelly, “Scalable TCP: Improving Performance in Highspeed
Wide Area Networks,” SIGCOMM Computer Communication Review,
vol. 33, pp. 83–91, April 2003.

[113] M. Tekala and R. Szabo, “Evaluation of Scalable TCP,” in Proc.

3rd ACS/IEEE International Conference on Computer Systems and

Applications, 2005.

[114] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motiva-
tion, Architecture, Algorithms, Performance,” IEEE/ACM Trans. Netw.,
vol. 14, no. 6, pp. 1246 –1259, Dec. 2006.

[115] M. Gerla, B. K. F. Ng, M. Y. Sanadidi, M. Valla, and R. Wang,
“TCP Westwood with Adaptive Bandwidth Estimation to Improve
Efficiency/Friendliness Tradeoffs,” Computer Communications, vol. 27,
pp. 41–58, 2003.

[116] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks,” in Proc. INFOCOM, vol. 4,
March 2004, pp. 2514 – 2524.

[117] S. Ha, I. Rhee, and L. Xu, “CUBIC: a New TCP-Friendly High-Speed
TCP Variant,” SIGOPS Operation System Review, vol. 42, pp. 64–74,
July 2008.

[118] J. Brassil, R. McGeer, R. Rajagopalan, P. Sharma, P. Yalagandula,
S. Banerjee, D. P. Reed, and S.-J. Lee, “The CHART System: a
High-Performance, Fair Transport Architecture Based on Explicit-Rate
Signaling,” Operating Systems Review, vol. 43, pp. 26–35, Jan. 2009.

[119] W. Feng, P. Balaji, C. Baron, L. Bhuyan, and D. Panda, “Performance
characterization of a 10-Gigabit Ethernet TOE,” in Proc. 13th Symp.
on High Performance Interconnects, Aug. 2005, pp. 58 – 63.

[120] N. Carpenter, “SMB/CIFS Performance Over WAN Links,”
http://blogs.technet.com/b/neilcar/archive/2004/10/26/247903.aspx,
2009.

[121] F5 Networks, “F5 WANJet CIFS Acceleration,”
http://www.f5.com/pdf/white-papers/cifs-wp.pdf.

[122] , “F5 WANJet Transparent Data Reduction,”
http://www.f5.com/pdf/white-papers/wanjet-tdr-wp.pdf.

[123] Makani Networks, “Makani CIFS Acceleration,”
http://www.makaninetworks.com/register/docs/makani-cifs.pdf.

[124] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and I. Pratt,
“Performance optimizations for wireless wide-area networks: compar-
ative study and experimental evaluation,” in Proc. 10th annual inter-
national conference on Mobile computing and networking (MobiCom),
Philadelphia, PA, USA, 2004, pp. 159–173.

[125] G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer Security:
How much does it really cost?” in Proc. IEEE International Conference

on Computer Communications (INFOCOM’99), New York, NY, USA,
Mar. 1999, pp. 717 –725.

[126] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance analysis of
tls web servers,” in Proc. Network and Distributed System Security

Symposium (NDSS’02), San Diego, CA, USA, Feb. 2002, pp. 553–
558.

[127] K. J. Ma and R. Bartoš, “Analysis of transport optimization tech-
niques,” in Proc. International Conference on Web Services (ICWS),
Sept. 2006, pp. 611 –620.

[128] D. Boneh and H. Shacham, “Fast Variants of RSA,” RSA Cryptobytes,
vol. 5, no. 1, pp. 1–9, Winter/Spring 2002.

ZHANG et al.: ON WIDE AREA NETWORK OPTIMIZATION 1113

[129] H. Shacham and D. Boneh, “Improving SSL Handshake Performance
via Batching,” in Proc. CT-RSA 2001, D. Naccache, Ed., vol. 2020,
2001, pp. 28–43.

[130] A. Murat Fiskiran and R. Lee, “Fast parallel table lookups to accelerate
symmetric-key cryptography,” in Proc. International Conference on

Information Technology: Coding and Computing (ITCC), 2005, pp.
526 – 531.

[131] V. Gopal, S. Grover, and M. Kounavis, “Fast multiplication techniques
for public key cryptography,” in Proc. IEEE Symposium on Computers

and Communications (ISCC), 2008, pp. 316 –325.
[132] “Speeding Up Secure Web Transactions Using Elliptic Curve Cryptg-

raphy,” in Proc. 11th Network and Systems Security Symposium, 2004,
pp. 231–239.

[133] W. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
fpga,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 2,
pp. 198 –205, 2008.

[134] Z. Jiahong, X. Tinggang, and F. Xiangyan, “A Fast Hardware Im-
plementation of Elliptic Curve Cryptography,” in Proc. Information
Science and Engineering (ICISE), 2009, pp. 1519 –1522.

[135] C. Peng, Q. Zhang, and C. Tang, “Improved tls handshake protocols
using identity-based cryptography,” in Proc. International Symposium

on Information Engineering and Electronic Commerce (IEEC), May
2009, pp. 135 –139.

[136] C. Castelluccia, E. Mykletun, and G. Tsudik, “Improving secure
server performance by re-balancing ssl/tls handshakes,” in Proc. ACM
Symposium on Information, Computer and Communications Security

(ASIACCS), Taipei, Taiwan, 2006, pp. 26–34.
[137] N. Okamoto, S. Kimura, and Y. Ebihara, “An introduction of compres-

sion algorithms into SSL/TLS and proposal of compression algorithms
specialized for application,” in Proc. Advanced Information Networking

and Applications (AINA), 2003, pp. 817 – 820.
[138] S. Hollenbeck, “Transport Layer Security Protocol Compression Meth-

ods,” RFC 3749, May 2004.
[139] R. Friend, “Transport Layer Security (TLS) Protocol Compression

Using Lempel-Ziv-Stac (LZS),” RFC 3943, November 2004.
[140] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “Accelerating SSL

with GPUs,” in Proc. ACM SIGCOMM, New Delhi, India, 2010, pp.
437–438.

[141] T. Berson, D. Dean, M. Franklin, D. Smetters, and M. Spreitzer,
“Cryptography as a Network Service,” in Proc. 7th Network and
Systems Security Symposium, 2001.

Yan Zhang (S’10) received the B.E. and M.E.
degrees in electrical engineering from Shandong
University, Jinan, Shandong, China, in 2001 and
2004, respectively. She is currently pursuing the
Ph.D. degree in the Department of Electrical and
Computer Engineering at New Jersey Institute of
Technology. Her research interests include automatic
modulation classification algorithms, distributed de-
tection in sensor network, congestion control in data
center networks, content delivery acceleration over
wide area networks, and energy-efficient network-

ing.

Nirwan Ansari (S’78-M’83-SM’94-F’09) received
the B.S.E.E. (summa cum laude with a perfect GPA)
from the New Jersey Institute of Technology (NJIT),
Newark, in 1982, the M.S.E.E. degree from Univer-
sity of Michigan, Ann Arbor, in 1983, and the Ph.D
degree from Purdue University, West Lafayette, IN,
in 1988.

He joined NJIT’s Department of Electrical and
Computer Engineering as Assistant Professor in
1988, became a tenured Associate Professor in 1993,
and has been a Full Professor since 1997. He has

also assumed various administrative positions at NJIT. He was Visiting (Chair)
Professor at several universities. He authored Computational Intelligence for

Optimization (Springer, 1997, translated into Chinese in 2000) with E. S. H.
Hou, and edited Neural Networks in Telecommunications (Springer, 1994)
with B. Yuhas. He has also contributed over 350 technical papers, over one
third of which were published in widely cited refereed journals/magazines. He
has also guest-edited a number of special issues, covering various emerging
topics in communications and networking. His current research focuses on
various aspects of broadband networks and multimedia communications.

Prof. Ansari has served on the Editorial Board and Advisory Board of eight
journals, including as a Senior Technical Editor of the IEEE Communications
Magazine (2006-2009). He has served the IEEE in various capacities such as
Chair of the IEEE North Jersey Communications Society (COMSOC) Chapter,
Chair of the IEEE North Jersey Section, Member of the IEEE Region 1 Board
of Governors, Chair of the IEEE COMSOC Networking Technical Committee
Cluster, Chair of the IEEE COMSOC Technical Committee on Ad Hoc and
Sensor Networks, and Chair/Technical Program Committee Chair of several
conferences/symposia. Some of his recent recognitions include a 2007 IEEE
Leadership Award from the Central Jersey/Princeton Section, NJIT Excellence
in Teaching Award in Outstanding Professional Development in 2008, a 2008
IEEE MGA Leadership Award, the 2009 NCE Excellence in Teaching Award,
a couple of best paper awards (IC-NIDC 2009 and IEEE GLOBECOM 2010),
a 2010 Thomas Alva Edison Patent Award, and designation as an IEEE
Communications Society Distinguished Lecturer (2006-2009, two terms).

Mingquan Wu received his Ph.D. in electrical
engineering from Michigan State University in 2005.
From November 2005 to August 2010, he was a
member of technical staff in Thomson Corporate
Research. He joined Huawei as a senior researcher
in September 2010. His research interests include
multimedia reliable transmission over wireless net-
works, network modeling and resource optimiza-
tion, ad hoc and overlay network transport protocol
design, content delivery acceleration, etc. He has
published over 20 referred papers and has more than

a dozen pending patents. He has multiple proposals accepted by IEEE 802.11s,
IEEE802.11aa and IEEE802.16j standards.

Heather Yu got her Ph.D. in Electrical Engineering
from Princeton University in 1998. Currently, she
is the Director of the Huawei Media Networking
Lab located at Bridgewater, NJ. With the mission of
establishing a world class R&D team and leading the
key multimedia technology innovations, she led the
NJ team successfully accomplished the development
of several new media technology research areas
and a series of new technology innovations offering
competitive edge capabilities and supporting various
functionalities for Huawei’s products. Before joining

Huawei, she was with Panasonic Princeton Lab working on media commu-
nication, media processing, media security, and P2P technology research.
Since graduated from Princeton, Heather served numerous positions in related
associations, such as Chair of the IEEE Multimedia Communications Tech
Committee, IEEE Communications Society Strategic Planning Committee
member, IEEE Human Centric Communications emerging technology com-
mittee chair, Associate Editor in Chief for PPNA journal, AEs of several
IEEE journals/magazines, and Conference chair and TPC chair for many
conferences in the field. She holds 23 granted US patents and has many in
pending. She published 70+ publications, including 4 books, P2P Networking
and Applications, Semantic Computing, P2P Handbooks, and Multimedia
Security Technologies for Digital Rights Management.

