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On Wigner’s theorem

DANIEL S FREED

Wigner’s theorem asserts that any symmetry of a quantum system is unitary or

antiunitary. In this short note we give two proofs based on the geometry of the

Fubini–Study metric.

81R99; 81Q70, 82B03, 82D25, 19L50

For Mike Freedman, on the occasion of his 60 th birthday

The space of pure states of a quantum mechanical system is the projective space PH

of lines in a separable complex Hilbert space
�

H; h�;�i
�

, which may be finite or

infinite dimensional. It carries a symmetric function pW PH � PH! Œ0; 1� whose

value p.L1;L2/ on states L1;L2 2 PH is the transition probability: if  i 2Li is a

unit norm vector in the line Li , then

p.L1;L2/D jh 1;  2ij
2:

Let Autqtm.PH/ denote the group of symmetries of .PH;p/, the group of quantum

symmetries. A fundamental theorem of Wigner1 [12, Sections 20A and 26] (see also

Bargmann [2] and Weinberg [11, Section 2A]) expresses Autqtm.PH/ as a quotient

of linear and antilinear symmetries of H. This note began with the rediscovery of a

formula which relates the quantum geometry of .PH;p/ to a more familiar structure

in differential geometry: the Fubini–Study Kähler metric on PH. It leads to two proofs

of Wigner’s theorem, Theorem 8 of this note, based on the differential geometry of

projective space.

The proofs here use more geometry than the elementary proofs [2], [11, Section 2A].

We take this opportunity to draw attention to Wigner’s theorem and to the connection

between quantum mechanics and projective geometry. It is a fitting link for a small

tribute to Mike Freedman, whose dual careers in topology and condensed matter physics

continue to inspire.

Let d W PH � PH! R
�0 be the distance function associated to the Fubini–Study

metric.

1As I learned in Bonolis [3, page 74], this theorem was first asserted in a 1928 joint paper [10, page

207] of von Neumann and Wigner, though with only a brief justification. A more complete account

appeared in Wigner’s book (in the original German) in 1931.
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1 Theorem The functions p and d are related by

(2) cos.d/D 2p� 1:

As a gateway into the literature on ‘geometric quantum mechanics’, where (2) can be

found,2 see Brody and Hughston [4] and the references therein.

3 Corollary Autqtm.PH/ is the group of isometries of PH with the Fubini–Study

distance function.

4 Remark If H is infinite dimensional, then PH is an infinite dimensional smooth

manifold modeled on a Hilbert space. Basic notions of calculus and differential

geometry carry over to Hilbert manifolds (Lang [8]). The Myers–Steenrod theorem

asserts that a distance-preserving map between two Riemannian manifolds is smooth and

preserves the Riemannian metric. That theorem is also true on Riemannian manifolds

modeled on Hilbert manifolds (Garrido, Jaramillo and Rangel [6]).3 So in the sequel

we use that a distance-preserving map �W PH! PH is smooth and is an isometry in

the sense of Riemannian geometry.

The tangent space to PH at a line L � H is canonically T
L

PH Š HomC.L;L
?/,

where L? �H is the orthogonal complement to L, a closed subspace and therefore

itself a Hilbert space. If f1; f2W L!L? , then the Fubini–Study hermitian metric is

defined by

(5) hf1; f2i D Tr.f �
1 f2

/:

The adjoint f �
1

is computed using the inner products on L and L? . The composi-

tion f �
1
f

2
is an endomorphism of L, hence multiplication by a complex number which

we identify as the trace of the endomorphism. If ` 2L has unit norm, then the map

(6)
HomC.L;L

?/ �!L?

f 7�! f .`/

is a linear isometry for the induced metric on L? �H. The underlying Riemannian

metric is the real part of the hermitian metric (5); it only depends on the real part of

the inner product on H.

2Notice that (2) is equivalent to p D cos2.d=2/ .
3The proof depends on the existence of geodesic convex neighborhoods, proved in [8, Section VIII.5].

For the Fubini–Study metric on PH such neighborhoods may easily be constructed explicitly. I thank

Karl-Hermann Neeb for his inquiry about the Myers–Steenrod theorem in infinite dimensions.

Geometry & Topology Monographs, Volume 18 (2012)



On Wigner’s theorem 85

Proof of Theorem 1 Equation (2) is obvious on the diagonal in PH�PH, as well

as if dim H D 1. Henceforth we rule out both possibilities. Fix L1 6D L2 2 PH

and let V be the 2–dimensional space L1CL2 �H. The unitary automorphism of

HD V ˚V ? which is C1 on V and �1 on V ? induces an isometry of PH which

has PV as a component of its fixed point set. It follows that PV is totally geodesic.

Therefore, to compute d.L1;L2/ we are reduced to the case of the complex projective

line with its Fubini–Study metric: the round 2–sphere.

Let e1 2 L1 have unit norm and choose e2 2 V to fill out a unitary basis fe1; e2g.

Then �e1C e2 2L2 for a unique � 2C . If �D 0 then it is easy to check that d D �

and p D 0, consistent with (2), so we now assume � 6D 0. Identify PV n fC � e2g �C

by C � .e1C�e2/$ �. Use stereographic projection from the north pole .1; 0/ in

Euclidean 3–space R�C to identify f0g �C � S2 n f.1; 0/g, where S2 �R�C is

the unit sphere. Under these identifications we have

L1 !
�

�1 ; 0
�

L2 !

�

�
j�j2� 1

j�j2C 1
;

2j�j2

j�j2C 1

1

�

�

from which cos.d/ D .j�j2 � 1/=.j�j2 C 1/ can be computed as the inner product

of vectors in the 3–dimensional vector space R˚ C . Since p D j�j2=.j�j2 C 1/,

equation (2) is satisfied.

A real linear map S W H!H is antiunitary if it is conjugate linear and

hS 1;S 2i D h 1;  2i for all  1;  2 2H:

Let G.H/ denote the group consisting of all unitary and antiunitary operators on H.

In the norm topology it is a Banach Lie group (Milnor [9]) with two contractible

components; the same is true in the compact–open topology (Freed and Moore [5,

Appendix D]). The identity component is the group U.H/ of unitary transformations.

Any S 2 G.H/ maps complex lines to complex lines, so induces a diffeomorphism

of PH, and since S preserves the real part of h�;�i the induced diffeomorphism is an

isometry. The unit norm scalars T �G.H/ act trivially on PH, so there is an exact4

sequence of Lie groups

(7) 1 �! T �!G.H/ �! Autqtm.PH/:

Note that T is not central since antiunitary maps conjugate scalars.

4We assume dim H> 1 .
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8 Theorem (Wigner [12]) The homomorphism G.H/! Autqtm.PH/ is surjective:

every quantum symmetry of PH lifts to a unitary or antiunitary operator on H.

By Corollary 3 the same is true for isometries of the Fubini–Study metric, and indeed

we prove Wigner’s Theorem by computing the group of isometries.

9 Remark If �W G ! Autqtm.PH/ is any group of quantum symmetries, then the

surjectivity of G.H/! Autqtm.PH/ implies the extension (7) pulls back to a twisted

central extension of G . The twist is the homomorphism G ! Z=2Z which tells

whether a symmetry lifts to be unitary or antiunitary. The isomorphism class of this

twisted central extension is then an invariant of � . This is the starting point for joint

work with Greg Moore [5] about quantum symmetry classes and topological phases in

condensed matter physics.

10 Example P .C2/ D CP
1 with the Fubini–Study metric is the round 2–sphere

of unit radius. Its isometry group is the group O.3/ of orthogonal transformations

of SO.3/. The identity component SO.3/ is the image of the group U.2/ of unitary

transformations of C
2 . The other component of O.3/ consists of orientation-reversing

orthogonal transformations, such as reflections, and they lift to antiunitary symmetries

of C
2 . In this case the group G.H/ is also known as Pinc.3/; see Atiyah, Bott and

Shapiro [1].

We present two proofs of Theorem 8. The first is based on the following standard fact

in Riemannian geometry.

11 Lemma Let M be a Riemannian manifold, p 2M , and �W M !M an isometry

with �.p/D p . Suppose Br � TpM is the open ball of radius r centered at the origin

and assume the Riemannian exponential map expp maps Br diffeomorphically into M .

Then in exponential coordinates �
ˇ

ˇ

Br

equals the restriction of the linear isometry d�p

to Br .

Proof If � 2Br , then expp.�/D �.1/, where � W Œ0; 1�!M is the unique geodesic

which satisfies �.0/Dp; P�.0/D � . Since � maps geodesics to geodesics, �ıexppD

expp ıd�p on Br , as desired.

If �W Œ0; r 0/! Œ0; r/ is a diffeomorphism for some r 0 > 0, then

(12) � 7�! expp

�

�.j�j/�
�

maps Br 0 diffeomorphically into M , and � in this coordinate system is also linear.
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First Proof of Theorem 8 Let �W PH ! PH be an isometry. Composing with

an isometry in G.H/ we may assume �.L/ D L for some L 2 PH. The tangent

space TLPH is canonically HomC.L;L
?/, and also f 2 HomC.L;L

?/ determines

�f 2 PH by �f �HDL˚L? is the graph of f . We claim f 7! �f has the form

(12) for some �W Œ0;1/! Œ0; �/. It suffices to show that for any f 2HomC.L;L
?/ of

unit norm, the map t 7!�tf traces out a (reparametrized) geodesic in a parametrization

independent of f . As in the proof of Theorem 1 this reduces to dim HD 2 and so to

an obvious statement about the round 2–sphere. It follows from Lemma 11 that � is a

real isometry S 2 EndR

�

HomC.L;L
?/

�

. It remains to prove that S is complex linear

or antilinear; then we extend S by the identity on L to obtain a unitary or antiunitary

operator on HDL˚L? .

If dim HD 2 then Theorem 8 can be verified (see Example 10), so assume dim H> 2.

Identify HomC.L;L
?/� L? as in (6). Since S 2 EndR.L

?/ maps complex lines

in L? to complex lines, there is a function ˛W L?nf0g!C such that S.i�/D˛.�/S.�/

for all nonzero � 2L? . Fix � 6D 0 and choose � 2L? which is linearly independent.

Then

S
�

i.�C �/
�

D ˛.�C �/
�

S.�/CS.�/
�

D ˛.�/S.�/C˛.�/S.�/

from which ˛.�/D ˛.�/. Applied to i�; � we learn ˛.�/D ˛.i�/. On the other hand,

�S.�/D S.��/D ˛.i�/S.i�/D ˛.i�/˛.�/S.�/;

whence ˛.�/2 D�1. By continuity either ˛ � i or ˛ ��i , which proves that S is

linear or S is antilinear.

The second proof leans on complex geometry.

13 Lemma An isometry �W PH! PH is either holomorphic or antiholomorphic.

Proof Let I W T PH! T PH be the (almost) complex structure. Then I is parallel

with respect to the Levi–Civita covariant derivative, since PH is Kähler, and so therefore

is ��I . We claim any parallel almost complex structure J equals ˙I ; the lemma

follows immediately.

If J is parallel, then it commutes with the Riemann curvature tensor R. Compute

at L 2 PH and identify TLPH � L? , as in (6). Then if �; � 2 L? and h�; �i D 0,

since P .L ˚ C � � ˚ C � �/� PH is totally geodesic and has constant holomorphic
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sectional curvature one (Kobayashi and Nomizu [7, Section IX.7]), we compute

R.�; I�/� D�j�j2I�;

R.�; I�/�D�
1

2
j�j2I�:

It follows that J preserves every complex line K DC � � �L? and commutes with I

on K . Therefore, J D˙I on K . By continuity, the sign is independent of K and L.

Second Proof of Theorem 8 First, recall that if U is finite dimensional, then every

holomorphic symmetry of PU is linear. The proof is as follows. Let L! PU be the

canonical holomorphic line bundle whose fiber at L 2 PU is L. A holomorphic line

bundle on PU is determined by its Chern class, so ��LŠ L. Fix an isomorphism; it

is unique up to scale. There is an induced linear map on the space H 0.PU IL�/ŠU �

of global holomorphic sections:

(14) ��W H 0.PU IL�/ �!H 0.PU I��L�/ŠH 0.PU IL�/:

The transpose O� of (14) is the desired linear lift of � .

Let �W PH! PH be an isometry. After composition with an element of G.H/ we

may, by Lemma 13, assume � is holomorphic and fixes some L 2 PH. Let U �H

be a finite dimensional subspace containing L. Then the pullback of LH! PH to

��LH

ˇ

ˇ

PU
! PU has degree one, so is isomorphic to LU ! PU , and there is a

unique isomorphism which is the identity on the fiber over L. A functional ˛ 2H
�

restricts to a holomorphic section of ��L�
H

ˇ

ˇ

PU
! PU , so by composition with the

isomorphism ��L�
H

ˇ

ˇ

PU
Š L�

U
to an element of U � . The resulting map H

�! U �

is linear, and its transpose O�W U !H is the identity on L. Let U run over all finite

dimensional subspaces of H to define O�W H!H. The uniqueness of the isomorphism

��LH

ˇ

ˇ

PU
ŠLU implies that O� is well-defined and a linear lift of � . It is unitary since

� is an isometry.
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