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3. On wM.Spaces. I

By Tadashi ISHII
Utsunomiya University

(Comm. by Kinjir5 KuNuc,I, M. . ,., Jan. 12, 1970)

1o Introduction. The purpose of the present paper is to intro-
duce the notion o wM-spaces, which is a generalization o M-spaces
introduced by K. Morita [6], and to show some preperties of these
spaces. For a sequence {} o open (or closed) coverings o a topol-
ogical space X, we shall consider the ollowing two conditions:

I: {Kn} is a decreasing sequence o2 non-empty subsets o X such
(M) that KnSt (x0, n) for each n and for some point x0 of X, then

N/n ::.
If {K} is a decreasing sequence of non-empty subsets o X such

(M) that Kn St (xo, n) :for each n and for some point x0 o2 X, then

A space X is an M-space if there exists a normal sequence {n} O
open coverings of X satisfying (M). A space X is an M*-space
(M-space) if there exists a sequence {} o2 locally finite (closure pre-
serving) closed coverings of X satisfying (M) (T. Ishii [2], F. Siwiec
and J. Nagata [8]). A space X is a wz-space if there exists a sequence
{} o open coverings o X satisfying (M1) (C. Borges [1]). As is
shown by K. Morita [7], there exists an M*-space which is locally
compact Hausdorff but not an M-space. Further, in our previous
paper [3], we proved that a normal space X is an M-space if and only
if it is an M*-space.

Now we shall define wM-spaces including all M-spaces, M*-spaces
and M-spaces.

Definition. A space X is a wM-space i there exists a sequence
{n} Of open coverings of X satisfying (M).

In the above definition, we may assume without loss o generality
that n/ refines n or each n.

As a remarkable property o a wM-space, we can prove that every
normal wM-space is strongly normal, that is, collectionwise normal
and countably paracompact (Theorem 2.4). This result plays an
important role in metrizability of wM-spaces in the next paper.
Throughout this paper we assume at least T or every topological
spaces unless otherwise specified.

1) For each positive integer k, Stk(x0, n) denotes the iterated star of a point
x0 in each covering .
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We express our hearty thanks to Prof. K. Morita for his kind
advices.

2. Some properties of wM.spaces.
Theorem 2.1. For a spaee X, the following eonditions are

equivalent.
( 1 ) X is a wM-space wi$h a sequence {} of open coverings of

X satisfying (M).
(2) There exists a sequence {} of open coverings of X such

that, for any locally finite sequence {A} of subsets of X, {St (A, 9)
n-1, 2,... ) is locally finite in X.

( 3 ) There exists a sequence {} of open coverings of X such that,
for any discrete sequence {x} of points of X, {St (x, .)In-1, 2,...
is locally finite in X.

Proof. (1)-*(2). Let X be a wM-space with a decreasing se-
quence {) of open coverings of X satisfying (M2). Then we can
prove that, for any locally finite sequence {A) of subsets of X,
{St(A, )) is locally finite in X. Indeed, if not, then for some
locally finite sequence {A} of subsets of X, {St (A, )} is not locally
finite in X. Hence there exists a point x0 such that any neighborhood
of x0 intersects infinitely many elements of {St (A, )}. Therefore,
for each n, we can select some positive integer i(n) such that St (x0, )
f St (A,,) #- , n i(n). Let y, e St (x0, ) St (A,, ,).
Then the sequence {y,} has an accumulation point Y0 in X, and hence
we can select a subsequence {y} of {y,} such that y e St (Y0, ),
i(n)<j(n). Since Y(n) e St (Aj(n) 9j(n))St (A(n), n), we have
fq St (Y0, ) : . Let X(n) e A() fq St (Y0, ). Then the sequence
{X(n)} has an accumulation point in X by (Mz), while it has no accumu-
lation point in X by local finiteness of {A()}. This is a contradiction.
Hence (2) holds.

(2)-(3). This implication is obvious.
(3)-.(1). Let {} be a sequence of open coverings o X such that,

for any discrete sequence {Xn} O points of X, {St (Xn, n)} is locally
finite in X. First, we prove that {n} satisfies (M). To prove this,
assume to be contrary. Then there exists a discrete sequence {Xn} of
points of X such that Xn e St (x0, ) for each n and for some point x0
of X. Since x0 e St (x, ) for each n, {St (x, n)} is not locally finite
in X, while it is locally finite in X by our assumption. This is a con-
tradiction. Hence {} satisfies (Mx). Next, we prove thut {} satis-
ties (M). To prove this, assume to be contrary. Then there exists a
discrete sequence {x} of points of X such that Xn e St (x0, n) for each
n and for some point x0 of X. Since St (Xn, 9) fq St (x0, ):, we can
select a point y e St (Xn, 9n) fq St (x0, 9n) for each n. Then the sequence
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{y} has an accumulation point in X by (M), while it has no accumu-
lation point in X, because {St (Xn, n)} is locally finite in X. This is a
contradiction. Hence (1) holds. Thus we complete the proof.

As the other characterizations of wM-spaces, we can prove the
following

Theorem 2.2. For a space X, the following conditions are
equivalent.

(1) X is a wM-space.
( 2 ) Each point x of X has a sequence {Un(x)} of symmetric neigh-

borhoods (i.e., y e Un(x) implies x e Un(Y)) satisfying the condition (.)
below:

If {Xn} is a sequence of points of X such that x e U(xo) for each
(,) n and for some point Xo of X, then the sequence {x} has an ac-

cumulation point in X, where U(xo)- {Un(Y) [Y Un(xo)}.
(3) Each point x of X has a sequence (U(x)} of symmetric neigh-

borhoods such that, for any locally finite sequence {A} of subsets of X,
(Un(An) n 1, 2, ...} i8 locally finite in X, where Un(An) [.J {Un(Y)
lYeAn}.

(4) Each point x of X has a sequence {Un(x)} of symmetric
neighborhoods such that, for any discrete sequence {xn} of points of X,
{Un(xn) n= 1, 2, } is locally finite in X.

Proof. (1)-(2). Let X be a wM-space with a sequence
of open coverings o X satisfying (M.), and put U(x)=St (x, n) for
each point x of X and for each n. Then {U(x)]n=l, 2,...} is a
sequence o symmetric neighborhoods o x and satisfies (.), because
U2n(X)- St (x, n).

(2)-(3). This implication can be proved by the similar way as
in the proof o the implication (1)(2) in Theorem 2.1.

(3)-.(4). This implication is obvious.
(4)-.(1). Suppose that each point x o X has a sequence {U(x)}

of symmetric neighborhoods such that, for any discrete sequence {Xn}
Of points of X, {Un(Xn)} is locally finite in X. Then it is easily verified
that any sequence {x} of points of X such that Xn e U(xo) for some
point x0 of X and or each n has an accumulation point in X. Further,
it is proved by induction for k that any sequence {x} of points of X
such that Xn U(xo) for some point x0 of X and or each n has an ac-
cumulation point in X.) Now let us put ?In={Int U(x)Ix e X} 2or
n= 1, 2,.... Then {?I} satisfies (M), because St(x, n) U(x).
Hence (1) holds. Thus we complete the proof.

Theorem 2.:. Every M-space is a wM-space.

2) For a point x0 of X and for each n, the sets Un(xo), k=2, 3,..., are defined
inductively, i.e., U(x0)= t3 {Un(y)]y e U-l(x0)}.
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Proof. Let X be an M*-space with a sequence {} of closure
preserving closed coverings of X satisfying (M), where we may assume
without loss of generality that {} is decreasing. Then for each k>__2
it is easily proved that, if {K} is a decreasing sequence of non-empty
subsets of X such that KnSt (x0, n) for each n and for some point

x0 of X, then /#. Let us put {Int (St (x, )) x e X} for
each n. Then {n} is a sequence of open coverings of X and satisfies
(M), because St (x, In) St (x, n)" Hence X is a wM-space. Thus
we complete the proof.

In view of Theorem 2.3, all M- and M*-spaces are also wM-
spaces.

Now we shall show by an example that a wA-space is not a wM-
space in general, that is, the condition (M) does not imply the condition

Example. (A w3-space which is not a wM-space). Let R be the
set of ordinals not greater than the first infinite ordinal w, and let S
be the set of ordinals not greater than the first uncountable ordinal
each with the order topology. If we put X=R S-{(w, tg)}, then the
space X is a locally compact Hausdorff wz/-space but is not a wM-space.
Indeed, if we put

n--{{i}(S,
n_j_

for each n, then {In} satisfies (M). But, if we put Xn-(n, 9),
n-1, 2, ..., then there is no sequence {} of open coverings of X such
that {St (x, n)} is locally finite in X, and hence X is not a wM-space.
Finally, it is obvious that X is a locally compact Hausdorff space.

Theorem 2.4. Every normal wM-space is strongly normal, that
is, collectionwise normal and countably paracompact.

To prove Theorem 2.4, we use the following lemmas.
Lemma 2.;. Let X be a wM-space with a sequence {} of open

coverings of X satisfying (M), and let k be a positive integer such
that k>= 3. If {x} is a sequence of points of X such that x e St (x0,
for each n and for some point Xo of X, then the sequence {x} has an
accumulation point in X.

This lemma immediately follows from (3) in Theorem 2.1 by in-
duction for k.

Lemma 2.6. Every wM-space is countably paracompact.
Proof. Let X be a wM-space with a decreasing sequence {n} of

open coverings of X satisfying (M), and let {G} be any countable open
covering of X such that GnG/,n-l, 2,’". Let us put

F-X-St (X-Gn, ), n= 1, 2, ....
Then X= [2 F. Indeed, if not, then there exists a point x0 of X such
that x0 e X- UF- St (X-G, I), and hence St (Xo, n) ( (X--Gn)
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# or n--1,2, This shows that I(X-Gn)#) by (M), which is
a contradiction. Hence X- t2 F. Now let us put

Hn-X-St (X-Gn, n), n-- 1, 2,
Then clearly FnHn Jor each n, and hence X= Hn. Further it holds
that HGn for each n. Consequently, by a theorem of F. Ishikawa
[4], X is countably paracompact. Thus we complete the proof.

Proof of Theorem 2.4. Let X be a normal wM-space with a
decreasing sequence {n} Of open coverings of X satisfying (M). As is
proved by M. Katetov [5], a normal space is strongly normal if and
only if for every locally finite collection {F} of closed subsets of X
there exists a locally finite collection {H} of open subsets of X such
that FH or each 2. To apply this theorem to our case, let {F} be
a locally finite collection o closed subsets o X. Then it is easily
proved by (M) that for each point x of X there exists some n such
that {21St (x, n)F:} is a finite set. For each n, let us denote by
An the subset of X consisting of points x of X such that {21St (x, )
F#} is a finite set, and put B--Int An. Then clearly BnBn+
for each n, and urther it is proved that {Bn} is an open covering of X.
Indeed, let x0 e X. Then, in view of Lemma 2.5, there exists some
such that {2[St (x0, ) F#} is a finite set. Therefore, for each
point x of St (x0, 2n), {21St (x, n) F4:} is a finite set. This shows
that St (x0, n)An, i.e., x0 e B-Int An, and hence X= B. Now,
since X is countably paracompact by Lemma 2.6, there exists a locally
finite open refinement {Gn} o {gn} such that GBn Jor each n. Let us

put Gn-St(F,I)Gn and H-Gn. Then clearly FcH or
n----1

each 2, and further {H} is a locally finite collection of open subsets of
X. Indeed, let x0 e X, and U(xo)-X- {Gn]xo Gn}. Since {Gn
In- 1, 2, } is locally finite in X, U(xo) is an open neighborhood of x0.
Let {Gn(i)Ii=1, ., k} be all of the elements of {Gn} each closure of
which contains x0. Then rom Xo e G() Bn(i), i 1, ., k, it follows
that {21St(x0, ln())F#} is a finite set or i=1, .,k. This implies
that {lSt(xo,In())St(F,In()):} is a finite set for i-1, ...,k.
Hence {21St(x0, ()) ( G()4:} is also a finite set or each i<=k. Let
us put m=Max {n(1), ..., n(k)}, V(xo) St (x0,) U(xo), A- {2[ V(xo)

Gn() :} and F= 4. Then / is a finite set for each i k, and
i=l

hence so is F. Further V(xo) intersects only elements H such that
2 e F. Consequently {H} is locally finite in X. Thus we complete the
proof.

In spite o validity o Theorem 2.4, we don’t know whether every
normal wM-space is an M-space or not.
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