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On XML Integrity Constraints in the Presence of DTDs

WENFEI FAN

Bell Laboratories, Murray Hill, New Jersey

AND

LEONID LIBKIN

University of Toronto, Toronto, Ontario, Canada

Abstract. The article investigates XML document specifications with DTDs and integrity constraints,
such as keys and foreign keys. We study the consistency problem of checking whether a given
specification is meaningful: that is, whether there exists an XML document that both conforms to the
DTD and satisfies the constraints. We show that DTDs interact with constraints in a highly intricate
way and as a result, the consistency problem in general is undecidable. When it comes to unary keys
and foreign keys, the consistency problem is shown to be NP-complete. This is done by coding DTDs
and integrity constraints with linear constraints on the integers. We consider the variations of the
problem (by both restricting and enlarging the class of constraints), and identify a number of tractable
cases, as well as a number of additional NP-complete ones. By incorporating negations of constraints,
we establish complexity bounds on the implication problem, which is shown to be coNP-complete
for unary keys and foreign keys.

Categories and Subject Descriptors: F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages—decision problems; H.2.1 [Database Management]: Logical Design—data models;
I.7.2 [Document and Text Processing]: Document Preparation—markup languages

General Terms: Algorithms, Design, Languages, Theory

Additional Key Words and Phrases: Consistency, DTDs, implication, integrity constraints, XML

1. Introduction

Although a number of dependency formalisms were developed for relational
databases, functional and inclusion dependencies are the ones used most often.
More precisely, only two subclasses of functional and inclusion dependencies,

W. Fan was on leave from Temple University and was supported in part by National Science Foundation
(NSF) Career Award IIS-0093168.
L. Libkin was supported in part by National Sciences and Engineering Research Council of Canada.
Authors’ addresses: W. Fan, 600 Mountain Avenue, Murray Hill, NJ 07974, e-mail: wenfei@research.
bell-labs.com; L. Libkin, Department of Computer Science, University of Toronto, Toronto, Ont., M5S
3H5, Canada, e-mail: libkin@cs.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this worked owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1(212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0004-5411/02/0500-0368 $5.00

Journal of the ACM, Vol. 49, No. 3, May 2002, pp. 368–406.



On XML Integrity Constraints in the Presence of DTDs 369

namely, keys and foreign keys, are commonly found in practice. Both are fun-
damental to conceptual database design, and are supported by the SQL standard
[Melton and Simon 1993]. They provide a mechanism by which one can uniquely
identify a tuple in a relation and refer to a tuple from another relation. They have
proved useful in update anomaly prevention, query optimization and index design
[Abiteboul et al. 1995; Ullman 1988].

XML (eXtensible Markup Language [Bray et al. 1998]) has become the prime
standard for data exchange on the Web. XML data typically originates in databases.
If XML is to represent data currently residing in databases, it should support keys
and foreign keys, which are an essential part of the semantics of the data. A number
of key and foreign key specifications have been proposed for XML, for example,
the XML standard (DTD) [Bray et al. 1998], XML Data [Layman et al. 1998],
and XML Schema [Thompson et al. 2001]. Keys and foreign keys for XML are
important in, among other things, query optimization [Popa 2000], data integration
[Florescu et al. 1996], and in data transformations between XML and database
formats [Lee and Chu 2000].

XML data usually comes with a DTD1 that specifies how a document is organized.
Thus, a specification of an XML document may consist of both a DTD and a set
of integrity constraints, such as keys and foreign keys. A legitimate question then
is whether such a specification isconsistent, or meaningful: that is, whether there
exists a (finite) XML document that both satisfies the constraints and conforms to
the DTD.

In the relational database setting, such a question would have a trivial answer:
one can write arbitrary (primary) key andforeign key specifications in SQL,
without worrying about consistency. However, DTDs (and other schema specifica-
tions for XML) are more complex than relational schema: in fact, XML documents
are typically modeled as node-labeled trees, for example, in XSL [Clark 1999],
XQL [Robie et al. 1998], XML Schema [Thompson et al. 2001], XPath [Clark and
DeRose 1999], and DOM [Apparao et al. 1998]. Consequently, DTDs may interact
with keys and foreign keys in a rather nontrivial way, as will be seen shortly. Thus,
we shall study the following family of problems, whereC ranges over classes of
integrity constraints:

XML SPECIFICATION CONSISTENCY (C)
INPUT: A DTD D, a set6 of C-constraints.
QUESTION: Is there an XML document that conforms toD and satisfies6?

In other words, we want to validate XML specifications statically. The main reason
is twofold: first, complex interactions between DTDs and constraints are likely to
result in inconsistent specifications, and second, an alternative dynamic approach
to validation (simply check a document to see if it conforms to the DTD and
satisfies the constraints) would not tell us whether repeated failures are due to a bad
specification, or problems with the documents.

1 Throughout this article, by a DTD we mean its type specification; we ignore its ID/IDREF constraints
since their limitations have been well recognized [Buneman et al. 2001; Fan and Sim´eon 2000]. We
shall only considerfiniteXML documents (trees).
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The concept of consistency of specifications was studied for other data models,
such as object-oriented [Calvanese and Lenzerini 1994a, 1994b] and extended
relational (e.g., with support for cardinality constraints [Kanellakis 1980]).

We shall study the following four classes of constraints defined in terms of XML
attributes:

—CK ,FK: a class of keys and foreign keys;
—CUnary

K ,FK : unary keys and foreign keys inCK ,FK, that is, those defined in terms of a
single attribute;

—CUnary
K¬,IC: unary keys, unary inclusion constraints and negations of unary keys;

—CUnary
K¬,IC¬ : unary keys, unary inclusion constraints and their negations.

Keys and foreign keys ofCK ,FK are a natural generalization of their relational
counterpart, and are capable of capturing those relational constraints. A foreign
key is a combination of two constraints: an inclusion constraint and a key. The
CUnary

K ,FK constraints are a special case ofCK ,FK constraints, which involve a single
attribute. These unary keys and foreign keys are similar to but more general than
XML ID and IDREF specifications. The study on simple constraints defined with
XML attributes is a first step towards understanding the interaction between in-
tegrity constraints and schema specifications for XML. As will be seen shortly,
the analyses of these simple constraints are already very intricate in the presence
of DTDs.

As generalizations ofCUnary
K ,FK constraints,CUnary

K¬,IC andCUnary
K¬,IC¬ both allow the pres-

ence of unary inclusion constraints independent of keys. In addition,CUnary
K¬,IC includes

negations of unary keys, andCUnary
K¬,IC¬ further permits negations of unary inclusion

constraints. Negation is considered mainly for the study ofimplication of CUnary
K ,FK

constraints, which is the complement of a special case of the consistency prob-
lem for CUnary

K¬,IC (respectively,CUnary
K¬,IC¬): given any DTDD and any finite set6 of

unary keys and inclusion constraints, is it the case that all XML trees satisfying6
and conforming toD also satisfy some other unary key (respectively, unary key
or inclusion constraint)? This question is important in, among other things, data
integration. For example, one may want to know whether a constraintϕ holds in
a mediator interface, which may use XML as a uniform data format [Baru et al.
1999; Papakonstantinou and Vianu 2000]. This cannot be verified directly since the
mediator interface does not contain data. One way to verifyϕ is to show that it is
implied by constraints that are known to hold [Florescu et al. 1996].

These problems, however, turn out to be far more intriguing than their counter-
parts in relational databases. In the XML setting, DTDs do interact with keys and
foreign keys, and this interaction may lead to problems with XML specifications.

Examples. To illustrate the interaction between XML DTDs and key/foreign
key constraints, consider a DTDD1, which specifies a (nonempty) collection of
teachers:

<!ELEMENT teachers (teacher+)>
<!ELEMENT teacher (teach, research)>
<!ELEMENT teach (subject, subject)>

It says that a teacher teaches two subjects. Here we omit the descriptions of elements
whose type is string (e.g., PCDATA in XML).
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teachers

teacher teacher

@name
"Joe"

teach

subject

research

"Web DB"subject

@taught_by
"Joe"

"XML" @taught_by
"Joe"

"DB"

FIG. 1. An XML tree conforming toD1.

Assume that each teacher has an attributename and each subject has an attribute
taught by. Attributes are single-valued. That is, if an attributel is defined for an
element typeτ in a DTD, then in a document conforming to the DTD, each element
of typeτ must have a uniquel attribute with a string value. Consider a set of unary
key and foreign key constraints,61:

teacher.name→ teacher,
subject.taughtby → subject,
subject.taughtby ⊆ teacher.name.

That is,name is a key ofteacher elements,taught by is a key ofsubject
elements and it is also a foreign key referencingname of teacher elements. More
specifically, referring to an XML treeT , the first constraint asserts that two distinct
teacher nodes inT cannot have the samename attribute value: the (string) value
of name attribute uniquely identifies ateacher node. It should be mentioned
that two notions of equality are used in the definition of keys: we assume string
valueequality when comparingname attribute values, andnodeidentity when it
comes to comparingteacher elements. The second key states thattaught by
attribute uniquely identifies asubject node inT . The third constraint asserts that
for anysubject nodex, there is ateacher nodey in T such that thetaught by
attribute value ofx equals thename attribute value ofy. Sincename is a key
of teacher, the taught by attribute of anysubject node refers to a unique
teacher node.

Obviously, there exists an XML tree conforming toD1, as shown in Figure 1.
However, there is no XML tree that both conforms toD1 and satisfies61. To see
this, let us first define some notations. Given an XML treeT and an element type
τ , we useext(τ ) to denote the set of all the nodes labeledτ in T . Similarly, given
an attributel of τ , we useext(τ.l ) to denote the set ofl attribute values of allτ
elements. Then, immediately from61 follows a set of dependencies:

|ext(teacher.name)| = |ext(teacher)|,
|ext(subject.taughtby)| = |ext(subject)|,
|ext(subject.taughtby)| ≤ |ext(teacher.name)|,
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where| · | is the cardinality of a set. Therefore, we have

|ext(subject)| ≤ |ext(teacher)|. (1)

On the other hand, the DTDD1 requires that each teacher must teach two subjects.
Since no sharing of nodes is allowed in XML trees and the collection ofteacher
elements is nonempty, fromD1 follows:

1 < 2 |ext(teacher)| = |ext(subject)|. (2)

Thus |ext(teacher)| < |ext(subject)|. Obviously, (1) and (2) contradict with each
other and therefore, there exists no XML tree that both satisfies61 and con-
forms toD1. In particular, the XML tree in Figure 1 violates the keysubject.taught
by→ subject.

This example demonstrates that a DTD may impose dependencies on the cardi-
nalities of certain sets of objects in XML trees. Thesecardinality constraintsinteract
with keys and foreign keys. More specifically, keys and foreign keys also enforce
cardinality constraints that interact with those imposed by DTD. This makes the
consistency analysis of keys and foreign keys for XML far more intriguing than
that for relational databases. Because of the interaction, simple key and foreign key
constraints (e.g.,61) may not be satisfiable by XML trees conforming to certain
DTDs (e.g.,D1).

As another example, consider the DTDD2 given below:

<!ELEMENT db (foo)>
<!ELEMENT foo (foo)>

Observe that there exists no finite XML tree conforming toD2. This demonstrates
that there is need for studying consistency of XML specifications even in the absence
of integrity constraints.

Contributions. The main contributions of the article are the following:

(1) For the classCK ,FK of keys and foreign keys, we show that both the consistency
and the implication problems are undecidable.

(2) These negative results suggest that we look at the restrictionCUnary
K ,FK of unarykeys

and foreign keys (which are most typical in XML documents). We provide a
coding of DTDs and these unary constraints by linear constraints on the integers.
This enables us to show that the consistency problem forCUnary

K ,FK (even under the
restriction to primary keys, that is, at most one key for each element type) is
NP-complete. We further show that the problem is still in NP for an extension
CUnary

K¬,IC, which also allows negations of key constraints.
(3) Using a different coding of constraints, we show that the consistency problem

remains in NP forCUnary
K¬,IC¬ , the class of unary keys, unary inclusion constraints

and their negations. Among other things, this shows that the implication prob-
lem for unary keys and foreign keys is coNP-complete.

(4) We also identify several tractable cases of the consistency problem, that is,
practical situations where the consistency problem is decidable in PTIME.

The undecidability of the consistency problem contrasts sharply with its trivial
counterpart in relational databases. The coding of DTDs and unary constraints with
linear integer constraints reveals some insight into the interaction between DTDs
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and unary constraints. Moreover, it allows us to use the techniques from linear
integer programming in the study of XML constraints.

It should be mentioned that as XML Schema and XML Data both subsume
DTDs and they support keys and foreign keys which are more general than those
considered here, the undecidability and NP-hardness results carry over to these
schema specifications and constraint languages for XML.

Related Work. Keys, foreign keys and the more general inclusion and func-
tional dependencies have been well studied for relational databases (cf. [Abiteboul
et al. 1995]). In particular, the implication problem for unary inclusion and func-
tional dependencies is in linear time [Cosmadakis et al. 1990]. In contrast, we shall
show that the XML counterpart of this problem is coNP-complete.

The interaction between cardinality constraints and database schemas has been
studied for object-oriented [Calvanese and Lenzerini 1994a, 1994b] and extended
relational data models [Kanellakis 1980]. These interactions are quite different from
what we explore in this article because XML DTDs are defined in terms of extended
context free grammars and they yield cardinality constraints more complex than
those studied for databases.

Key and foreign key specifications for XML have been proposed in the XML stan-
dard [Bray et al. 1998], XML Data [Layman et al. 1998], XML Schema [Thompson
et al. 2001], and in a recent proposal for XML keys [Buneman et al. 2001]. The need
for studying XML constraints has also been advocated in Widom [1999]. DTDs in
the XML standard allow one to specify limited (primary) unary keys and foreign
keys with ID and IDREF attributes. However, they are not scoped: one has no con-
trol over what IDREF attributes point to. XML Data and XML Schema support
more expressive specifications for keys and foreign keys with, for example, XPath
expressions. However, the consistency problems associated with constraints de-
fined in these languages have not been studied. We consider simple XML keys and
foreign keys in this paper to focus on the nature of the interaction between DTDs
and constraints. The implication problem for a class of keys and foreign keys was
investigated in Fan and Sim´eon [2001], but in the absence of DTDs (in a graph
model for XML), which trivializes the consistency analysis. For keys of [Buneman
et al. 2001a], the implication problem was studied [Buneman et al. 2001b] in the
tree model for XML, but DTDs were not considered there. To the best of our knowl-
edge, no previous work has considered the interaction between DTDs and keys and
foreign keys for XML (in the tree model). This article is a full version of Fan and
Libkin [2001], providing the details and the proofs omitted there.

A variety of constraints have been studied for semistructured data [Abiteboul and
Vianu 1999; Buneman et al. 2002; Fernandez et al. 1999]. In particular, Fernandez
et al. [1999] also studies the consistency problem; the special form of constraints
used there makes it possible to encode consistency as an instance of conjunctive
query containment. The interaction between path constraints and database schemas
was investigated in [Buneman et al. 1999]. These constraints typically specify in-
clusions among certain sets of objects in edge-labeled graphs, and are not capable
of expressing keys. Various generalizations of functional dependencies have also
been studied [Hara and Davidson 1999; Ito and Weddell 1995 ]. But these gen-
eralizations were investigated in database settings, which are quite different from
the tree model for XML data. Moreover, they cannot express foreign keys. Appli-
cation of constraints in data transformations was studied in Lee and Chu [2000];
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usefulness of keys and foreign keys in query optimization has also been recognized
[Popa 2000].

Organization. The rest of the article is organized as follows. Section 2 defines
four classes of XML constraints, namely,CK ,FK,CUnary

K ,FK ,CUnary
K¬,IC andCUnary

K¬,IC¬ . Section 3
establishes the undecidability of the consistency problem forCK ,FK, the class of
keys and foreign keys. Section 4 provides an encoding for DTDs and unary con-
straints with linear integer constraints, and shows that the consistency problems are
NP-complete forCUnary

K ,FK andCUnary
K¬,IC. Section 5 further shows that the problem remains

in NP forCUnary
K¬,IC¬ , the class of unary keys, inclusion constraints and their negations.

Section 6 summarizes the main results of the article and identifies directions for
further work.

2. DTDs, Keys and Foreign Keys

In this section, we first present a formalism of XML DTDs [Bray er al. 1998] and
the XML tree model. We then define four classes of XML constraints.

2.1. DTDS AND XML T REES. We extend the usual formalism of DTDs (as
extended context free grammars [Beeri and Milo 1999; Calvanese et al. 1999;
Neven 1999]) by incorporating attributes.

Definition 2.1. A DTD (Document Type Definition) is defined to beD =
(E, A, P, R, r ), where:

—E is a finite set ofelement types;
—A is a finite set ofattributes, disjoint fromE;
—P is a mapping fromE to element type definitions: for eachτ ∈ E, P(τ ) is a

regular expressionα defined as follows:

α ::= S | τ ′ | ε | α|α | α, α | α∗
whereS denotesstring type,τ ′ ∈ E, ε is the empty word, and “|”, “ ,” and “∗”
denote union, concatenation, and the Kleene closure, respectively;

—R is a mapping fromE to P(A), the power-set ofA; if l ∈ R(τ ), then we sayl
is defined forτ ;

—r ∈ E and is calledthe element type of the root.

We normally denote element types byτ and attributes byl . Without loss of gen-
erality, assume thatr does not occur inP(τ ) for anyτ ∈ E. We also assume that
eachτ in E \ {r } is connected to r, that is, eitherτ occurs inP(r ), or it appears in
P(τ ′) for someτ ′ that is connected tor .

As an example, let us consider theteacher DTD D1 given in Section 1. In our
formalism,D1 can be represented as (E1, A1, P1, R1, r1), where

E1={teachers, teacher, teach, research, subject}
A1={name, taught by}
P1(teachers)= teacher, teacher∗
P1(teacher) = teach, research
P1(teach) = subject, subject
P1(subject) = P1(research)= S
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R1(teacher) ={name}
R1(subject) ={taughtby}
R1(teachers)= R1(teach)= R1(research)=∅
r1= teachers

Similarly, we represent the DTDD2 given in Section 1 as (E2, A2, P2, R2, r2),
where

E2={db, foo}
A2=∅
P2(db) = P2( foo)= foo
R2(db) = R2( foo)=∅
r2= db

An XML document is typically modeled as a node-labeled ordered tree. Given
a DTD, we define the notion of its valid documents as follows.

Definition 2.2. LetD = (E, A, P, R, r ) be a DTD. AnXML tree T valid with
respect to D(conforming to D) is defined to beT = (V, lab, ele, att, val, root),
where

—V is a finite set ofnodes(vertices);
—lab is a function that maps each node inV to a label inE∪ A∪{S}; a nodev ∈ V

is called anelement ofτ if lab(v) = τ andτ ∈ E, anattributeif lab(v) ∈ A, and
a text nodeif lab(v) = S;

—ele is a partial function defined on elements inV ; for anyτ ∈ E, it maps each
elementv of typeτ to a (possibly empty) list [v1, . . . , vn] of elements and text
nodes inV such thatlab(v1) · · · lab(vn) is in the regular language defined by
P(τ );

—att is a partial function fromV × A to V such that for anyv ∈ V andl ∈ A,
att(v, l ) is defined ifflab(v) = τ , τ ∈ E andl ∈ R(τ );

—val is a partial function fromV to string values such that for any nodev ∈ V ,
val(v) is defined ifflab(v) = S or lab(v) ∈ A;

—root is the unique node inV such thatlab(root) = r , calledthe root of T.

For any elementv ∈ V , the nodesv′ in ele(v) are called thesubelementsof v. For
anyl ∈ A, if att(v, l ) = v′ thenv′ is calledan attributeof v. In either case we say
that there is aparent–child edgefrom v to v′. The subelements and attributes ofv
are called itschildren. An XML tree has a tree structure, that is, for eachv ∈ V ,
there is a unique path of parent-child edges fromroot to v. We writeT |= D when
T is valid with respect toD.

Intuitively, V is the set of nodes of the treeT . The mappinglab labels every
node ofV with a symbol fromE ∪ A ∪ {S}. Text nodes and attributes are leaves.
For an elementx of type τ , the functionsele and att define the children ofx,
which are partitioned intosubelementsandattributesaccording toP(τ ) andR(τ )
in the DTDD. The subelements ofx are ordered and their labels satisfy the regular
expressionP(τ ). In contrast, its attributes are unordered and are identified by their
labels (names). The functionval assigns string values to attributes and text nodes.
We consider single-valued attributes. That is, ifl ∈ R(τ ) then every element of type
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τ has a uniquel attribute with a string value. SinceT has a tree structure, sharing
of nodes is not allowed inT .

For example, Figure 1 depicts an XML tree valid with respect to the DTDD1
given in Section 1.

Our model is simpler than the models of XQuery [Chamberlin et al. 2001]
and XML Schema [Thompson et al. 2001] as DTDs support only one basic type
(PCDATA or string) and do not have complex type constructs. Furthermore, we do
not have nodes representing namespaces, processing instructions and references.
These simplifications allow us to concentrate on the essence of the DTD/constraint
interaction. It should further be noticed that they do not affect the lower bounds
results in this article.

We need the following notations throughout this article: for anyτ ∈ E ∪ {S},
ext(τ ) denotes the set of all the nodes inT labeledτ . For any nodex in T labeled
by τ and for any attributel ∈ R(τ ), we write x.l for val(att(x, l )), that is, the
value of the attributel of node x. We defineext(τ.l ) to be {x.l | x ∈ ext(τ )},
which is a set of strings. For eachτ elementx in T and a listX = [l1, . . . , ln] of
attributes inR(τ ), we usex[X] to denote the list ofX-attribute values ofx, that is,
x[X] = [x.l1, . . . , x.ln]. For a setS, |S| denotes its cardinality.

2.2. XML CONSTRAINTS. We next define our constraint languages for XML.
We consider three types of constraints. LetD = (E, A, P, R, r ) be a DTD,

andT be an XML tree valid with respect toD. A constraintϕ over D has one of
the following forms:

—Key: τ [X] → τ , whereτ ∈ E andX is a set of attributes inR(τ ). The XML tree
T satisfiesϕ, denoted byT |= ϕ, iff in T ,

∀ xy ∈ ext(τ )

(∧
l∈X

(x.l = y.l )→ x = y

)
.

—Inclusion Constraint: τ1[X] ⊆ τ2[Y], whereτ1, τ2 ∈ E, andX,Y are nonempty
lists of attributes inR(τ1), R(τ2) of the same length. We writeT |= ϕ iff in T ,

∀ x ∈ ext(τ1) ∃ y ∈ ext(τ2) (x[X] = y[Y]).

—Foreign Key: A combination of two constraints, namely, an inclusion constraint
τ1[X] ⊆ τ2[Y] and a keyτ2[Y] → τ2. We writeT |= ϕ iff T satisfies both the
key and the inclusion constraint.

That is, a keyτ [X] → τ indicates that the setX of attributes is a key of elements
of τ , that is, two distinctτ nodes inT cannot have the sameX-attribute values; an
inclusion constraintτ1[X] ⊆ τ2[Y] says that the list ofX-attribute values of every
τ1 node inT must match the list ofY-attribute values of someτ2 node inT ; and
an foreign keyτ1[X] ⊆ τ2[Y], τ2[Y] → τ2 indicates thatX is a foreign key ofτ1
elements referencing keyY of τ2 elements.

Over a DTDD, the classCK ,FK of constraints consists of all the keys and foreign
keys overD. They are calledmulti-attributekeys and foreign keys as they may be
defined in terms of multiple attributes.
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To illustrate keys and foreign keys ofCK ,FK, let us consider a DTDD3 =
(E3, A3, P3, R3, r3), where

E3={school, student, course, enroll, name, subject}
A3={studentid, courseno, dept}
P3(school) = course∗, student∗, enroll∗
P3(course) = subject
P3(student)= name
P3(enroll) = P3(name) = P3(subject)= S
R3(course) ={dept, courseno}
R3(student)={studentid}
R3(enroll) ={studentid, dept, courseno}
R3(school) = R3(name)= R3(subject)=∅
r3= school

TypicalCK ,FK constraints overD3 include:

(1) student[studentid]→ student,
(2) course[dept, courseno]→ course,
(3) enroll[studentid, dept, courseno]→ enroll,
(4) enroll[studentid] ⊆ student[studentid],
(5) enroll[dept, courseno] ⊆ course[dept, courseno].

The first three constraints are keys inCK ,FK, and the pairs (4, 1) and (5, 2) are foreign
keys inCK ,FK. The last two constraints are inclusion constraints.

It is worth mentioning that two notions of equality are used to define keys: string
value equality is assumed inx.l = y.l (when comparing attribute values), and
x = y is true if and only ifx andy are the same node (when comparing elements).
This is different from the semantics of keys in relational databases. Note that a
foreign key requires the presence of a key in addition to an inclusion constraint.

The class of unary keys and foreign keys for XML, denoted byCUnary
K ,FK , is a

sublanguage ofCK ,FK. A CUnary
K ,FK constraint is aCK ,FK constraint defined with a single

attribute. More specifically, aconstraintϕ of CUnary
K ,FK over the DTDD is either

—key: τ.l → τ , whereτ ∈ E andl ∈ R(τ ); or
—foreign key: τ1.l1 ⊆ τ2.l2 andτ2.l2 → τ2, whereτ1, τ2 ∈ E, l1 ∈ R(τ1), and

l2 ∈ R(τ2).

For example, the constraints of61 given in Section 1 areCUnary
K ,FK constraints over

the DTD D1.
We shall also consider the following types of unary constraints overD:

—inclusion constraint: τ1.l1 ⊆ τ2.l2; unlike a foreign key, it does not require the
presence of a key;

—the negation of an inclusion constraint: φ = τ1.l1 6⊆ τ2.l2; for an XML tree
T , T |= φ iff there is aτ1 elementx in T such that for allτ2 elementy in T ,
x.l1 6= y.l2;

—thenegation of a key: ϕ = τ.l 6→ τ ; T |= ϕ iff there areτ elementsx1, x2 in T
such thatx1.l = x2.l , that is, the value of thel attribute of aτ element cannot
uniquely identify it inext(τ ).
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With these we define two extensions ofCUnary
K ,FK as follows. One isCUnary

K¬,IC, the class
consisting of unary keys, unary inclusion constraints and negations of unary keys.
The other,CUnary

K¬,IC¬ , consists of unary keys, unary inclusion constraints and their
negations. As mentioned earlier, we consider these classes mostly for the study of
the implication problem forCUnary

K ,FK constraints.
Finally, we describe the consistency and implication problems associated with

XML constraints. LetC be one ofCK ,FK, CUnary
K ,FK , CUnary

K¬,IC or CUnary
K¬,IC¬ , D a DTD,6 a

set ofC constraints overD andT an XML tree valid with respect toD. We write
T |= 6 whenT |= φ for all φ ∈ 6. Let ϕ be anotherC constraint. We say that6
impliesϕ overD, denoted by (D, 6) ` ϕ, if for any XML treeT such thatT |= D
andT |= 6, it must be the case thatT |= ϕ. It should be noted whenϕ is a foreign
key,ϕ consists of an inclusion constraintφ1 and a keyφ2. In this case (D, 6) ` ϕ
in fact means that (D, 6) ` φ1 ∧ φ2.

The central technical problem investigated in this article is theconsistency prob-
lem. The consistency problem forC is to determine, given any DTDD and any set
6 of C constraints overD, whether there is an XML treeT such thatT |= 6 and
T |= D.

Theimplication problemfor C is to determine, given any DTDD, any set6 and
ϕ of C constraints overD, whether (D, 6) ` ϕ.

3. General Keys and Foreign Keys

In this section, we studyCK ,FK, the class of multiattribute keys and foreign keys.
We show that the consistency and implication problems forCK ,FK are undecidable,
but we identify several special cases of the problems and show that these cases are
decidable in PTIME.

3.1. UNDECIDABILITY OF CONSISTENCYANALYSIS. Our main result is negative:

THEOREM 3.1. The consistency problem forCK ,FK constraints is undecidable.

PROOF. We first show that an implication problem associated with keys and
foreign keys in relational databases is undecidable, and then present a reduction
from (the complement of) the implication problem to the consistency problem for
CK ,FK constraints.

Let us first review keys, foreign keys and their associated implication problems
in relational databases (cf. [Abiteboul et al. 19985]). LetR= (R1, . . . , Rn) be a
relational schema. For each relation (schema)Ri in R, we writeAtt(Ri ) for the set
of all attributes ofRi , andInst(Ri ) for the set of finite instances ofRi . By database
instances, we meanfinite instances. An instanceI of R has the form (I1, . . . , In),
whereIi ∈ Inst(Ri ) for all i ∈ [1, n]. For an instanceIi ∈ Inst(Ri ), a tuplet ∈ Ii
and an attributel ∈ Att(Ri ), we uset.l to denote thel attribute value oft . Keys and
foreign keys overR are defined as follows:

—Key: R[l1, . . . , lk] → R, whereR ∈ R, and for anyi ∈ [1, k], l i ∈ Att(R). An
instanceI of R satisfiesthe key constraintϕ, denoted byI |= ϕ, if

∀ t1 t2 ∈ I

( ∧
1≤i≤k

(t1.l i = t2.l i )→
∧

l∈Att(R)

(t1.l = t2.l )

)
,

whereI is the instance ofR in I ;
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—Foreign Key: R[l1, . . . , lk] ⊆ R′[l ′1, . . . , l
′
k] and R′[l ′1, . . . , l

′
k] → R′, whereR,

R′ are inR, [l1, . . . , lk] and [l ′1, . . . , l
′
k] are lists of attributes inAtt(R) and in

Att(R′), respectively. In addition, the set consisting ofl ′1, . . . , l
′
k is a key ofR′.

We writeI |= ϕ if I |= R′[l ′1, . . . , l
′
k] → R′ and moreover,

∀ t1 ∈ I ∃ t2 ∈ I ′
( ∧

1≤ j≤k

t1.l j = t2.l
′
j

)
,

whereI and I ′ are the instances ofR andR′ in I , respectively.

Let6 ∪ {ϕ} be a set of keys and foreign keys overR. We use6 ` ϕ to denote that
6 impliesϕ, that is, for any instanceI of R, if I |= 6, thenI |= ϕ.

In relational databases, theimplication problem for keys and foreign keysis the
problem of determining, given a relational schemaR, any set6 andϕ of keys and
foreign keys overR, whether6 ` ϕ. A special case of the problem is theimplication
problem for keys by keys and foreign keys, which is to determine whether6 ` ϕ
whereϕ is a key and6 is a set of keys and foreign keys overR.

It was shown in Fan and Sim´eon [2000] that the implication problem for keys
and foreign keys in relational databases is undecidable. The lemma below shows a
stronger result.

LEMMA 3.2. In relational databases, the implication problem for keys by keys
and foreign keys is undecidable.

PROOF. We prove this by reduction from the implication problem for func-
tional dependencies by functional and inclusion dependencies, which is un-
decidable. Before we give the reduction, we first review functional and in-
clusion dependencies in relational databases. LetR be a relational schema.
Functional dependencies (FDs) and inclusion dependencies (IDs) overR are defined
as follows.

—FD. R : X→ Y, whereR ∈ R, andX andY are subsets of attributes inAtt(R).
An instanceI of R satisfiesthe FDθ , denoted byI |= θ , if ∀ t1 t2 ∈ I (

∧
l∈X(t1.l =

t2.l )→
∧

l ′∈Y(t1.l ′ = t2.l ′)), whereI is the instance ofR in I . Observe that keys
are a special case of FDs in whichY = Att(R).

—ID. R[l1, . . . , lk] ⊆ R′[l ′1, . . . , l
′
k], where R, R′ ∈ R, [l1, . . . , lk] is a list of

attributes inAtt(R), and [l ′1, . . . , l
′
k] is a list of attributes inAtt(R′). In contrast

to foreign keys, the set consisting ofl ′1, . . . , l
′
k is not necessarily a key ofR′.

An instanceI of R satisfiesthe ID θ , denoted byI |= θ , if ∀ t1 ∈ I ∃ t2 ∈
I ′ (
∧

1≤ j≤k t1.l j = t2.l ′j ), whereI , I ′ are the instances ofR, R′ in I , respectively.

Let 6 ∪ {θ} be a set of FDs and IDs overR. We use6 ` θ to denote that6
impliesθ as for keys and foreign keys. Theimplication problem for FDs by FDs
and IDsis the problem to determine, given any relational schemaR, any set6 of
FDs and IDs overR and a FDθ over R, whether6 ` θ . This is a well-known
undecidable problem (see, e.g., Abiteboul et al. [1995] for a proof).

We encode FDs and IDs in terms of keys and foreign keys as follows.

(1) FDψ = R : X→ Y.

Note that every relationR has a key. In particular,Att(R), the set of all attributes
of R, is a key ofR. Let Z be a key forR, that is,R[Z] → R. We define a new
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(fresh) relation schemaRnew such thatAtt(Rnew) = XY Z, that is, the union ofX,
Y and Z. Intuitively, given an instanceI of R, an instanceInew of Rnew is to be
constructed as a subset of5XYZ(I ) such that5XY(I ) = 5XY(Inew) and Inew satisfies
the keyRnew[XY] → Rnew, where5W(I ) denotes the projection ofI on attributes
W. That is, we eliminate tuples in5XYZ(I ) that violate the key. Observe thatXYZ
is a key for bothRnewandRsince it is the set of all attributes ofRnew, and it contains
the keyZ of R (i.e., it is asuperkeyof R). Thus, we encodeψ with:

φ1 = Rnew[X] → Rnew, φ2 = R[XY] ⊆ Rnew[XY],
φ3 = Rnew[XY Z] ⊆ R[XY Z], φ4 = Rnew[XY] → Rnew.

(2) ID ψ = R1[X] ⊆ R2[Y].

Let Z be a key forR2, that is,R2[Z] → R2. We define a new schemaRnewsuch that
Att(Rnew) = Y Z. Intuitively, given an instanceI2 of R2, an instanceInew of Rnew is
to be constructed as a subset of5YZ(I2) by eliminating tuples that violate the key
Rnew[Y] → Rnew, such that5Y(I2) = 5Y(Inew) and Inew satisfies the key. Observe
thatYZ is a key forR2 since it contains the keyZ of R2, that is, it is a superkey of
R2. Thus, we encodeψ with:

φ1 = Rnew[Y] → Rnew, φ2 = R1[X] ⊆ Rnew[Y], φ3 = Rnew[Y Z] ⊆ R2[Y Z].

We next show that the encoding is indeed a reduction from the implication problem
for FDs by FDs and IDs to the implication problem for keys by keys and foreign
keys. Given a relational schemaR, a set6 of FDs and IDs overR, and a FD
θ = Rθ : X → Y overR, as described above we encode6 with a set61 of keys
and foreign keys, and encodeθ with

φ1 = Rθnew[X] → Rθnew, φ2 = Rθ [XY] ⊆ Rθnew[XY],

φ3 = Rθnew[XY Z] ⊆ Rθ [XY Z], φ4 = Rθnew[XY] → Rθnew.

Let6′ = 61 ∪ {φ2, φ3, φ4}. It suffices to show that6 ` θ iff 6′ ` φ1.
Let R′ be the relational schema that includes all relation schemas inR as well as

new relations created in the encoding. We show the claim as follows:

(1) Suppose that there is an instanceI of R such thatI |= ∧6 ∧ ¬θ . We show
that there is an instanceI ′ of R′ such thatI ′ |= ∧6′ ∧ ¬φ1. We constructI ′ such
that for anyR in R, the instance ofR in I ′ is the same as the instance ofR in I .
We populate instances of new relationsRnew created in the encoding as mentioned
above. (a) IfRnew is introduced in the encoding of a FDR : X→ Y then we let the
instanceInew of Rnew in I ′ be a subset of5XYZ(I ) such that5XY(I ) = 5XY(Inew) and
Inew |= Rnew[XY] → Rnew, whereI is the instance ofR in I . (b) If Rnew is introduced
in the encoding of an IDR1[X] ⊆ R2[Y] then let the instanceInew of Rnew in I ′ be a
subset of5YZ(I2) such that5Y(I2) = 5Y(Inew) andInew |= Rnew[Y] → Rnew, where
I2 is the instance ofR2 in I . It is easy to verify thatI ′ |=∧6′ ∧ ¬φ1.

(2) Suppose that there is an instanceI ′ of R′ such thatI ′ |= ∧
6′ ∧ ¬φ1. We

construct an instanceI of R by removing fromI ′ all instances of new relations
introduced in the encoding. It is easy to verify thatI |=∧6 ∧ ¬θ .

Therefore, the encoding is indeed a reduction from the implication problem for
FDs by FDs and IDs. This shows that the implication problem for keys by keys and
foreign keys is undecidable.
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From Lemma 3.2 follows that the complement of the implication problem for
keys by keys and foreign keys is also undecidable. That is to determine, given a
relational schemaR, a set6 of keys and foreign keys overR and a keyϕ overR,
whether there is an instance ofR satisfying

∧
6 ∧ ¬ϕ.

We now continue with the proof of Theorem 3.1, that is, the consistency problem
forCK ,FK constraints is undecidable. Given Lemma 3.2, it suffices to give a reduction
from the complement of the implication problem for keys by keys and foreign keys.
Let R= (R1, . . . , Rn) be a relational schema,2 be a set of keys and foreign keys
overR, andϕ = R[X] → R be a key overR. Let Y = Att(R) \ X. We encodeR,
2 andϕ in terms of a DTDD and a set6 of CK ,FK constraints overD as follows.
Let D = (E, A, P, RA, r ), where

E ={Ri | i ∈ [1, n]} ∪ {ti | i ∈ [1, n]} ∪ {r, DY, EX}
A =

⋃
i∈[1,n]

Att(Ri )

P(r ) = R1, . . . , Rn, DY, DY, EX
P(Ri ) = t∗i for i ∈ [1, n]
P(ti ) = ε for i ∈ [1, n]
P(DY) = P(EX)= ε
RA(ti ) =Att(Ri ) for i ∈ [1, n]
RA(DY)= X ∪ Y
RA(EX)= X
RA(r ) = RA(Ri )=∅ for i ∈ [1, n]

We denoteP(R) = t∗ϕ for the relationR in ϕ. Note thatR= Rs andtϕ = ts for
somes ∈ [1, n].

We encode2 andϕ with 6 = 62 ∪6ϕ, where62 is defined as follows:

—62 includesti [Z] → ti if 2 includes a keyRi [Z] → Ri ;
—62 includesti [Z] ⊆ t j [Z′], t j [Z′] → t j if 2 has a foreign keyRi [Z] ⊆ Rj [Z′],

Rj [Z′] → Rj .

The set6ϕ consists of the following:

DY[Y] → DY, EX[X] → EX, DY[X] ⊆ EX[X], DY[X,Y] ⊆ tϕ[X,Y],
tϕ[XY] → tϕ,

where [X,Y] stands for the concatenation of listX and listY, andtϕ is the grammar
symbol inP(R) = t∗ϕ . Observe thatAtt(R) = X ∪ Y and thusXY is a key oftϕ.

As depicted in Figure 2, in any XML tree valid with respect toD, there are two
distinctDY nodesd1 andd2 that have all the attributes inX ∪Y, and a singleEX node
having all attributes inX. If T |= 6ϕ, then (1)d1[X] = d2[X] by DY[X] ⊆ EX[X]
and the fact|ext(EX)| = 1; and (2)d1[Y] 6= d2[Y] by DY[Y] → DY. These nodes
will serve as a witness for¬ϕ.

Given these, we show that
∧
2∧¬ϕ can be satisfied by an instance ofR if and

only if 6 can be satisfied by an XML tree valid with respect toD. Assume that
there is an instanceI of R satisfying

∧
2∧¬ϕ. We construct an XML treeT from

I as follows. LetT have a root noder and aRi node for eachRi in R. For any
Ri ∈ R and each tuplep in the instance ofRi in I , we create a distinctti nodex
such thatp.l = x.l for all l ∈ Att(Ri ). SinceI |= ¬ϕ, there are two tuplesp andp′
in the instance ofR in I such thatp[X] = p′[X] and p[Y] 6= p′[Y]. We create two
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FIG. 2. A tree used in the proof of Theorem 3.1.

distinct DY nodesd1 andd2 such thatd1.l = p.l andd2.l = p′.l for all l ∈ Att(R).
In addition, we create a singleEX nodee such thate.l = p.l for all l ∈ X. We
define the edge relation ofT such thatT has the form shown in Figure 2. It is easy
to verify thatT |= D. By I |= 2 it is easy to verify thatT |= 62. By the definition
of T , it is also easy to see thatT |= 6ϕ. In particular, sinceAtt(R) = X∪Y and the
set of all attributes of a relation is a key of the relation, we haveT |= tϕ[XY] → tϕ,
wheretϕ is the symbol inP(R) = t∗ϕ . Therefore,T |= 6. Conversely, suppose
that D has a valid XML treeT that satisfies6. We define an instanceI of schema
R as follows. For eachti nodex, let (l1 = x.l1, . . . , lm = x.lm) be a tuple in the
instance ofRi in I , wherel1, . . . , lm are an enumeration ofAtt(Ri ). ObviouslyI
is an instance ofR. By T |= 62, it is easy to verify thatI |= 2. Moreover, by
T |= 6ϕ and the definition ofI , we haveI |= ¬ϕ since there must be two tuples
d1 andd2 in the instance ofR in I such thatd1[X] = d2[X] but d1[Y] 6= d2[Y].
Thus, the encoding is indeed a reduction from the complement of the implication
problem for keys by keys and foreign keys.

This completes the proof of Theorem 3.1.

3.2. UNDECIDABILITY OF IMPLICATION. We next consider the implica-
tion problem.

LEMMA 3.3. The following problems are undecidable: given any DTD D, any
set6 ofCK ,FK constraints over D, any unary keyϕ1 and unary inclusion constraint
ϕ2 over D, whether(1) (D, 6) ` ϕ1; (2) (D, 6) ` ϕ2.

PROOF. It suffices to establish a reduction from the consistency problem for
CK ,FK to the complement of the implication problem forCK ,FK. Let the DTDD be
(E, A, P, R, r ). We define another DTDD′ = (E′, A′, P′, R′, r ), where

E′ = E ∪ {DY, EX} whereDY, EX are fresh element types
A′ = A∪ {K } whereK is a fresh attribute
P′(r ) = P(r ), DY, DY, EX that is,P(r ) followed by twoDY elements

and anEX element
P′(τ ) = P(τ ) for all τ ∈ E \ {r }
P′(DY)= P′(EX)= ε
R′(DY)={K }
R′(EX)={K }
R′(τ ) = R(τ ) for all τ ∈ E
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FIG. 3. A tree used in the proof of Lemma 3.3.

We define a unary keyϕ1, a unary inclusion constraintϕ2 and another keyφ over
D′ as follows:

ϕ1 = DY.K → DY, ϕ2 = DY.K ⊆ EX.K , φ = EX.K → EX.

Clearly,6 is also a set ofCK ,FK constraints overD′. We next show that (1)6 is
satisfiable overD iff

∧
6∧φ∧ϕ2∧¬ϕ1 is satisfiable overD′; (2)6 is satisfiable

over D iff
∧
6 ∧ φ ∧ ϕ1 ∧ ¬ϕ2 is satisfiable overD′. For if these hold, then the

encoding is a reduction from the consistency problem forCK ,FK to the complements
of the implication problems described in Lemma 3.3.

We prove (1) as follows. If there exists a treeT |= D′ andT |= ∧
6 ∧ φ ∧

ϕ2 ∧ ¬ϕ1, then we construct another treeT ′ by removingDY, EX elements from
T . Obviously,T ′ |= D and T ′ |= 6. Conversely, suppose that there is a tree
T |= D andT |= 6. We construct another treeT ′ from T as shown in Figure 3.
Let us refer to the twoDY elements inT ′ as d1, d2, and theEX element ase.
Let d1.K = d2.K = e.K . Then it is easy to see thatT ′ |= D′, T ′ |= 6 and
T ′ |= φ ∧ ϕ2 ∧ ¬ϕ1.

We now prove (2). As above, we can show that if there is a treeT |= D′ and
T |=∧6 ∧ φ ∧ ϕ1∧¬ϕ2, then there exists another treeT ′ such thatT ′ |= D and
T ′ |= 6. Conversely, suppose that there is a treeT |= D andT |= 6. We construct
a treeT ′ from T as shown in Figure 3. Again we refer to the twoDY elements in
T ′ asd1, d2, and theEX element ase. Now letd1.K 6= d2.K . Then it is easy to see
thatT ′ |= D′, T ′ |= 6 andT ′ |= φ ∧ ϕ1 ∧ ¬ϕ2.

From Lemma 3.3, we immediately obtain:

COROLLARY 3.4. For CK ,FK constraints, the implication problem is
undecidable.

3.3. PTIME DECIDABLE CASES. While the general consistency and implication
problems are undecidable, it is possible to identify some decidable cases of low
complexity. The first one is checking whether a DTD has a valid XML tree. This
is a special case of the consistency problem, namely, when the given set ofCK ,FK

constraints is empty. A more interesting special case involves keys only. LetCK
denote the set of all keys inCK ,FK. Theconsistency problem forCK is to determine,
given any DTD D and any set6 of keys in CK over D, whether there exists
an XML tree valid with respect toD and satisfying6. Similarly, we consider
the implication problem forCK ,FK: given any DTDD, any set6 andϕ of keys
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in CK over D, whether (D, 6) ` ϕ. The next theorem tells that all these cases
are decidable.

THEOREM 3.5. The following problems are decidable in linear time:

(1) Given any DTD D, whether there exists an XML tree valid with respect to D.
(2) The consistency problem forCK .

(3) The implication problem forCK .

PROOF
(1) The first problem of the theorem can be reduced to the emptiness problem

for a context free grammar (CFG). Observe that a DTDD = (E, A, P, R, r ) can
be viewed as an extended CFGGD with r as its start symbol,S as a nonterminal
with a production rule, say,S → 0, and with attributes (A and R) ignored. It is
easy to verify thatD has a valid XML tree if and only ifGD is nonempty, that is, it
generates a terminal string (equivalently, a parse tree). Indeed, given an XML tree
T valid with respect toD, one can construct a parse tree ofGD by modifying T ,
that is, by removing attributes fromT and modifying its text nodes. Conversely,
given a parse treeT ′ of GD one can construct a valid XML tree ofD by modifying
T ′, that is, by adding attributes toT ′ and removing children ofS nodes fromT ′. It
is straightforward to convert the extended CFGGD to a CFGG in linear time, by
introducing new nonterminals and their (recursive) production rules to represent
Kleene closures. Moreover,GD is nonempty if and only ifG is nonempty. It is well
known that the emptiness problem for a CFG can be determined in linear time (cf.
[Hopcroft et al. 2000]). Putting everything together, a linear algorithm for checking
the validity ofD works as follows: it first generates in linear time the CFGG from
D, and then checks in linear time whetherG is empty; it concludes thatD has a
valid XML tree if and only if G is nonempty. Thus the validity of DTDs can be
decided in linear time.

(2) We next prove the second statement of Theorem 3.5. That is, the consistency
problem forCK is decidable in linear time. Given any DTDD and any set6
of keys in CK over D, it suffices to show that6 can be satisfied by an XML
tree valid with respect toD if and only if D has a valid XML tree. For if it
holds, then the second statement follows immediately from the first statement of
Theorem 3.5.

We now show the claim. Suppose that there exists an XML tree
T1 = (V, lab, ele, att, val, root) valid with respect toD. We construct another
XML tree T2 by modifying theval function inT1 such that for any keyτ [X] → τ in
6, |ext(τ )| = |ext(τ.l )| in T2 for everyl ∈ X. That is,T2 |= τ.l → τ for all l ∈ X.
More specifically, letT2 = (V, lab, ele, att, val′, root). Observe that the only
difference betweenT1 andT2 is the definition of the functionval′. For anyv1, v2 in
V with lab(v1) = τ andlab(v2) = τ , we can makeval′(att(v1, l )) 6= val′(att(v2, l ))
for any l ∈ X. Let val′(v) = val(v) for all other vertices inV . It is easy to verify
that T2 is valid with respect toD sinceT1 is valid with respect toD. In addition,
T2 |= τ [X] → τ since for anyx, y ∈ ext(τ ), x[X] 6= y[X]. The other direction is
immediate.

(3) Finally, we prove the last statement of Theorem 3.5. That is, the implication
problem forCK is decidable in linear time. To show this, we need the following
lemma:
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LEMMA 3.6. For any DTD D and element typeτ in D, it is decidable in linear
time whether there is an XML tree T such that T|= D and moreover,|ext(τ )| > 1
in T .

PROOF. As in the proof of the first statement of the theorem, it is easy to show
that given a DTDD, one can find in linear time a CFGG such thatD has a valid XML
tree in which|ext(τ )| > 1 if and only if the start symbolr of G derives a terminal
stringw whose parse tree has at least twoτ nodes. This can be transformed in linear
time to the problem of checking if a given CFG derives a string with at least two
occurrences of a given terminal symbol, which in turn can be solved in linear time by
a minor modification of the emptiness test for CFG from Hopcroft et al. [2000].

Let6 be a set of keys inCK over D, andϕ = τ [X] → τ be another key inCK
overD. We say that6 subsumesϕ if there isφ = τ [Y] → τ in6 such thatY ⊆ X,
that is,ϕ is asuperkeyof φ. Using this and Lemma 3.6, we can prove the following:

LEMMA 3.7. Let D be a DTD,6 a set of keys inCK over D, andϕ = τ [X] → τ
another key inCK over D. There is an XML tree T such that T|= D, T |= 6 but
T |= ¬ϕ if and only if6 does not subsumeϕ and moreover, there is an XML tree
T ′ such that T′ |= D and|ext(τ )| > 1 in T ′. In addition, this is decidable in linear
time in the sizes of D and6 ∪ {ϕ}.

PROOF. We first show that there is an XML treeT such thatT |= D, T |= 6
butT |= ¬ϕ iff 6 does not subsumeϕ and moreover, there is an XML treeT ′ such
thatT ′ |= D and|ext(τ )| > 1 in T ′. Suppose that there is an XML treeT such that
T |= D, T |= 6 andT |= ¬ϕ. Then obviously,T is valid with respect toD, and
moreover, there must be at least twoτ elementsd1, d2 in T such thatd1[X] = d2[X]
but d1 6= d2 sinceT |= ¬ϕ. Thus, there must be|ext(τ )| > 1 in T . In addition,6
cannot containτ [Y] → τ with Y ⊆ X, since otherwise it would contradictT |= ¬ϕ
andT |= 6. Conversely, letT ′ be a tree such thatT ′ |= D and|ext(τ )| > 1 in T ′.
Thus, there are at least twoτ elementsd1, d2 in T ′. We construct a new treeT by
modifying the string values associated with the attributes ofT ′, while leaving the
other functions ofT ′ unchanged. More specifically, we letd1[X] = d2[X] in T but
all other attributes have different string values. It is easy to verify thatT |= D and
T |= ¬ϕ by the definition ofT . To showT |= 6, suppose by contradiction that
there wereφ ∈ 6 such thatT |= ¬φ. Thenφ must be of the formτ [Y] → τ where
Y ⊆ X, that is,ϕ is a superkey ofφ, since exceptd1[X] = d2[X], distinct nodes
in T have the different attribute values by the definition ofT . This contradicts the
assumption that6 does not subsumeϕ. Thus, the first statement of the lemma holds.

To show that this can be done in linear time, observe that, by Lemma 3.6, it
can be decided in linear time in the size ofD whether there is a treeT such that
T |= D and|ext(τ )| > 1 in T . In addition, it is decidable in linear time in the size
of 6 ∪ {ϕ} whetherϕ is a superkey of some key in6 (see, e.g., Abiteboul et al.
[1995] for discussions about a linear time algorithm for checking implication of
functional dependencies). Thus, it is decidable in linear time in the sizes ofD and
6 ∪ {ϕ} whether these conditions hold.

This suffices to prove the third statement of Theorem 3.5 because (D, 6) ` ϕ
iff there is no XML treeT such thatT |= D, T |= 6 butT |= ¬ϕ. By Lemma 3.7,
the latter can be decided in linear time.

This completes the proof of Theorem 3.5.
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Given Theorem 3.5, one would be tempted to think that when only foreign
keys are considered, the analyses of consistency and implication could also be
simpler. However, it is not the case. Recall that a foreign key ofCK ,FK consists of
an inclusion constraint and a key. Thus we cannot exclude keys in the presence
of foreign keys. It is not hard to show that consistency and implication of foreign
keys inCK ,FK remain undecidable.

4. Unary Keys and Foreign Keys

The undecidability of the consistency problem for general keys and foreign keys
motivates us to look for restricted classes of constraints. One important class is
CUnary

K ,FK , the class of unary keys and foreign keys. A cursory examination of existing
XML specifications reveals that most keys and foreign keys are single-attribute
constraints, that is, unary. In particular, in XML DTDs, one can only specify unary
constraints with ID and IDREF attributes.

In this section, we first investigate the consistency problem forCUnary
K ,FK . To simplify

the discussion and to establish a (slightly) stronger result, we consider a larger class
of constraints, namely,CUnary

K ,IC , the class of unary keys and unary inclusion
constraints. In contrast toCUnary

K ,FK , CUnary
K ,IC allows the presence of unary

inclusion constraints independent of keys. We develop an encoding of DTDs
andCUnary

K ,IC constraints with linear integer constraints. This enables us to reduce
the consistency problem forCUnary

K ,IC (and thus forCUnary
K ,FK) to the linear integer

programming problem, one of the most studied NP-complete problems. We then
use the same technique to show that the consistency problem remains in NP when
negations of keys are allowed, that is, the problem forCUnary

K¬,IC constraints is also in
NP. Finally, we identify several tractable cases of the consistency problems.

4.1. CODINGDTDS, UNARY CONSTRAINTS. We show thatCUnary
K ,IC constraints and

DTDs can be encoded with linear equalities and inequalities on the integers, called
cardinality constraints. The encoding allows us to reduce the consistency problem
for CUnary

K ,IC constraints in PTIME to thelinear integer programming(LIP) problem:

LINEAR INTEGER PROGRAMMING (LIP)

INPUT: An m× n matrix A of integers and a column vectorEb of m
integers.

QUESTION: Does there exist a column vectorEx of n integers such that
A Ex ≥ Eb?

That is, fori ∈ [1,m], ∑
j∈[1,n]

ai j x j ≥ bi ,

whereai j is the j th element of thei th row of A, xj is the j th entry ofEx andbi is the
i th entry ofEb. It is known that LIP is NP-complete in the strong sense [Garey and
Johnson 1979]. In particular, when nonnegative integer solutions are considered,
Papadimitriou [1981] has shown that if the problem has a solution, then it has
another solution in which for allj ∈ [1, n], xj is no larger thann (ma)2m+1, where
a is the largest absolute value of elements inA andEb.

More specifically, we show the following:
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THEOREM 4.1. There is a polynomial(O(s2 · log s)) time algorithm that, given
a DTD D and a set6 of CUnary

K ,IC constraints, constructs an integer matrix A and
an integer vectorEb such that there exists an XML tree valid with respect to D and
satisfying6 if and only if AEx ≥ Eb has an integer solution.

As an immediate result, we have:

COROLLARY 4.2. The consistency problem forCUnary
K ,FK constraints is in NP.

The proof of Theorem 4.1 is a bit involved. A road map of the proof is as follows:
Given a DTDD and a set6 of CUnary

K ,IC constraints overD, we define inO(s2 · logs)
time (in the sizes ofD and6, denoted by|D| and|6|, respectively) the following:

—another DTDDN , referred to as thesimplified DTD of D, in which regular
expressions are restricted to have at most one operator: either “|” (union) or “,”
(concatenation)2; we reduce the consistency ofD and6 to that of DN and6,
i.e., there exists an XML tree valid with respect toD and satisfying6 if and
only if there exists an XML tree valid with respect toDN and satisfying6;

—a setC6 of linear integer constraints such that there is an XML tree valid with
respect toDN and satisfying6 if and only if there is an XML tree valid with
respect toDN and satisfyingC6;

—a system9DN of linear integer constraints such that there exists an XML tree
valid with respect toDN if and only if 9DN admits an integer solution; the
cardinality constraints in9DN are more complex than those studied in the
context of object-oriented and relational databases [Calvanese and Lenzerini
1994a, 1994b; Kanellakis 1980];

—finally, a system of integer constraints9(D, 6) from C6 and9DN such that
there exists an XML tree valid with respect toD and satisfying6 if and only
if 9(D, 6) admits an integer solution.

Putting everything together, we reduce the consistency problem forCUnary
K ,IC to the

existence of a solution of an instance of LIP, and thus obtain the NP bound.

PROOF OFTHEOREM4.1. We start by describing the process of simplifying
DTDs. We shall then present an encoding of unary constraints and DTDs. Finally,
we develop a characterization of XML specifications with both DTDs and unary
constraints in terms of linear integer constraints.

Simplifying DTDs. We first explain how to reduce the consistency problem
for CUnary

K ,IC to that over simple DTDs. Intuitively, we replace long regular expressions
in P(τ ) by shorter ones. Formally, consider a DTDD = (E, A, P, R, r ). For
eachτ ∈ E, P(τ ) is a regular expressionα. A DTD is basically an extended
regular grammar (cf. [Calvanese et al. 1999; Neven 1999]); thus,τ → α can
be viewed as the production rule forτ . We rewrite the regular expressionα by
introducing a setN of newelement types (nonterminals) such that the production
rules of the new DTD have one of the following forms:

τ → τ1, τ2 τ → τ1 | τ2 τ → τ1 τ → S τ → ε

2 We are grateful to one of the referees for suggesting this simplification of DTDs.
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whereτ, τ1, τ2 are element types inE ∪ N, S is the string type andε denotes the
empty word. More specifically, we conduct the following “simplifying” process
on the production ruleτ → α:

(1) If α = (α1, α2), then we introduce two new element typesτ1, τ2 and replace
τ → α with a new ruleτ → τ1, τ2. We proceed to processτ1 → α1 and
τ2→ α2 in the same way.

(2) If α = (α1 | α2), then we introduce two new element typesτ1, τ2 and replace
τ → α with a new ruleτ → τ1 | τ2. We proceed to processτ1 → α1 and
τ2→ α2 in the same way.

(3) If α = α∗1, then we introduce a new element typeτ1 and replaceτ → α with
τ → τ1. We proceed to processτ1→ ε | α1, τ1 in the same way.

(4) If α is one ofτ ′ ∈ E, S or ε, then the rule forτ remains unchanged.

To avoid introducing unnecessary new element types, in the first two cases
above, ifα1 (respectively,α2) is a symbol ofE ∪ {S}, we do not introduce a new
element type forα1 (respectively,α2).

We refer to the set of new element types introduced when processingτ → P(τ )
asNτ and the set of production rules generated/revised asPτ . Note thatNτ ∩E = ∅
for anyτ ∈ E.

We define a new DTDDN = (EN, A, PN, RN, r ), referred to as thesimplified
DTD of D (or just asimpleDTD if D is clear from the context), where

—EN = E ∪ ⋃τ∈E Nτ , that is,E plus those new element types introduced in the
simplifying process;

—PN =
⋃
τ∈E Pτ , that is, production rules generated/revised in the simplifying

process;
—RN(τ ) = R(τ ) for eachτ ∈ E, andRN(τ ) = ∅ for eachτ ∈ EN\E.

Note that the root element typer and the setA of attributes remain unchanged.
Moreover, elements of any type inEN\E do not have any attribute. Note thatDN
does not contain the Kleene star “∗”.

For example, the simplified DTD ofD1 given in Section 1 isDN
1 = (EN

1 , A1,

PN
1 , RN

1 , r ), where

EN
1 ={teachers, teacher, teach, research, subject, τ 1

t , τ
2
t , τε}

A1={name, taughtby}
PN

1 (teachers)= teacher, τ 1
t

PN
1 (τ 1

t ) = τε | τ 2
t

PN
1 (τε) = ε

PN
1 (τ 2

t ) = teacher, τ 1
t

PN
1 (teacher) = teach, research

PN
1 (teach) = subject, subject

PN
1 (subject) = PN

1 (research)= S
RN

1 (teacher) ={name}
RN

1 (subject) ={taughtby}
RN

1 (teachers)= RN
1 (teach)= RN

1 (research)= RN
1 (τ 1

t )= RN
1 (τ 2

t )
= RN

1 (τε)=∅
r1= teachers
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Hereτ 1
t , τ

2
t , τε are the new element types introduced.

The simplified DTDDN
2 of D2 in Section 1 is the same asD2 itself.

Obviously, any set6 of CUnary
K ,IC constraints overD is also a set ofCUnary

K ,IC constraints
over the simplified DTDDN of D. The next lemma establishes the connection
betweenD andDN , which allows us to consider only simple DTDs from now on.

LEMMA 4.3. Let D be a DTD, DN be the simplified DTD of D and6 be a set
of CUnary

K ,IC constraints over D. Then there exists an XML tree T1 such that T1 |= D
and T1 |= 6 iff there exists an XML tree T2 such that T2 |= DN and T2 |= 6.

PROOF. It suffices to show the following claim. For any XML treeT1 |= D
one can construct an XML treeT2 |= DN , and for anyT2 |= DN one can construct
T1 |= D, such that for any element typeτ in D andl ∈ R(τ ), |ext(τ )| in T2 equals
|ext(τ )| in T1, andext(τ.l ) in T2 equalsext(τ.l ) in T1.

We first prove the lemma assuming that the claim is true. Assume that there exists
an XML treeT1 such thatT1 |= D andT1 |= 6. Find the treeT2 |= DN as in the
claim. Suppose that there isϕ ∈ 6 such thatT2 6|= ϕ. If ϕ is a keyτ.l → β.τ , then
there are two distinct nodesx, y ∈ ext(τ ) in T1 such thatx.l = y.l . Thus,|ext(τ.l )| <
|ext(τ )| in T2 since everyτ element has a singlel attribute. SinceT1 |= ϕ, it must be
the case that|ext(τ.l )| = |ext(τ )| in T1 since the valuex.l of eachx ∈ ext(τ ) uniquely
identifiesx among all the nodes inext(τ ). This contradicts the claim that|ext(τ )| in
T2 equals|ext(τ )| in T1 andext(τ.l ) in T2 equalsext(τ.l ) in T1. If ϕ is an inclusion
constraintτ1.l1 ⊆ τ2.l2, then there isx ∈ ext(τ1) such that for ally ∈ ext(τ2) in T2,
x.l1 6= y.l2. That is,x.l1 6∈ ext(τ2.l2). By the claim,x.l1 ∈ ext(τ1.l1) in T1. Since
T1 |= ϕ, we havex.l1 ∈ ext(τ2.l2) in T1. Again by the claim, we havex.l1 ∈ ext(τ2.l2)
in T2, which contradicts the assumption. The proof for the other direction is similar.

We next verify the claim. Given an XML treeT1 = (V1, lab1, ele1,
att, val, root) such thatT1 |= D, we construct an XML treeT2 by modifying T1
such thatT2 |= DN . Consider aτ elementv in T1. Let ele1(v) = [v1, . . . , vn] and
w = lab1(v1) · · · lab1(vn). RecallNτ and Pτ , the set of nonterminals and the set
of production rules generated when simplifyingτ → P(τ ). Let Qτ be the set of
E symbols that appear inPτ plusS. We can viewG = (Qτ , Nτ ∪ {τ }, Pτ , τ ) as
a context free grammar, whereQτ is the set of terminals,Nτ ∪ {τ } the set of non-
terminals,Pτ the set of production rules andτ the start symbol. SinceT1 |= D, we
havew ∈ P(τ ). By a straightforward induction on the structure ofPN(τ ) it can be
verified thatw is in the language defined byG. Thus, there is a parse treeT(w) of the
grammarG for w, andw is the frontier (the list of leaves from left to right) ofT(w).
Without loss of generality, assume that the root ofT(w) is v, and the leaves are
v1, . . . , vn. Intuitively, we constructT2 by replacing each elementv in T1 by such a
parse tree. More specifically, letT2 = (V2, lab2, ele2, att, val, root). HereV2 con-
sists of nodes inV1 and the internal nodes introduced in the parse trees. For eachx
in V2, let lab2(x) = lab1(x) if x ∈ V1, and otherwise letlab2(x) be the node label of
x in the parse tree wherex belongs. Note that nodes inV2\V1 are elements of some
type inEN \ E. If lab2(x) is an element type, letele2(x) be the list of its children in
the parse tree. Note thatatt andval remain unchanged. By the construction ofT2
it can be verified thatT2 |= DN . Moreover, for anyτ ∈ E andl ∈ R(τ ), |ext(τ )| in
T2 equals|ext(τ )| in T1 andext(τ.l ) in T2 equalsext(τ.l ) in T1 because none of the
new nodes, that is, nodes inV2 \ V1, is labeled with anE type, and the functionatt
remains unchanged.
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Conversely, assume that there isT2 = (V2, lab2, ele2, att, val, root) such that
T2 |= DN . We constructT1 by modifyingT2 such thatT1 |= D. For any nodev ∈ V2
with lab(v) = τ andτ ∈ EN \E, we substitute the subelements ofv for v in ele(v′),
wherev′ is the parent ofv. In addition, we removev from V2, lab2(v) from lab2, and
ele2(v) from ele2. Observe that by the definition ofDN , no attributes are defined
for elements of any type inEN \ E. We repeat the process until there is no node
labeled with element type inEN \ E. Now letT1 = (V1, lab1, ele1, att, val, root),
whereV1, lab1 andele1 areV2, lab2 andele2 at the end of the process, respectively.
Observe thatatt, val and root remain unchanged. By the definition ofT1 it can
be verified thatT1 |= D; and in addition, for anyτ ∈ E andl ∈ R(τ ), |ext(τ )| in
T1 equals|ext(τ )| in T2, andext(τ.l ) in T1 equalsext(τ.l ) in T2, because none of
the nodes removed is labeled with a type ofE and the functionsatt andval are
unchanged.

It is easy to see thatDN is computable in linear time in the size ofD.

Encoding Unary Constraints. We now give a coding ofCUnary
K ,IC constraints.

Let 6 be a set ofCUnary
K ,IC constraints over DTDD and DN be simplified DTD of

D. Referring to an arbitrary XML treeT valid with respect toD, we derive from
6 a class of linear integer constraints onT , denoted byC6 and referred to asthe
cardinality constraints determined by6, as follows. For anyϕ ∈ 6,

—if ϕ is a key constraintτ.l → τ , then|ext(τ.l )| = |ext(τ )| is in C6;
—if ϕ is an inclusion constraintτ1.l1 ⊆ τ2.l2, then|ext(τ1.l1)| ≤ |ext(τ2.l2)| is inC6.
—|ext(τ.l )| ≤ |ext(τ )| and 0≤ |ext(τ.l )| are inC6 for anyτ ∈ E andl ∈ R(τ ).

We useT |= C6 to denote thatT satisfies all constraints ofC6.
For example, recall the set61 of CUnary

K ,FK constraints over the DTDD1 given in
Section 1. The set of cardinality constraints determined by61, denoted byC61,
consists of:

|ext(teacher.name)| = |ext(teacher)|
|ext(subject.taughtby)| = |ext(subject)|
|ext(subject.taughtby)| ≤ |ext(teacher.name)|

0 ≤ |ext(teacher.name)|
0 ≤ |ext(subject.taughtby)|

It is worth mentioning that|ext(τ.l )| = |ext(τ )| characterizes a keyτ.l → τ . Indeed,
for any XML treeT valid with respect toDN , T |= |ext(τ.l )| = |ext(τ )| iff T |=
τ.l → τ . However, things can go wrong when it comes to inclusion constraints. Al-
thoughT |= τ1.l1 ⊆ τ2.l2 impliesT |= |ext(τ1.l1)| ≤ |ext(τ2.l2)|, the other direction
does not necessarily hold. This does not lose generality as we do not intend to capture
negations of inclusion constraints with this coding. Indeed, the lemma below shows
that we are able to considerC6 instead of6 when studying the consistency of6.

LEMMA 4.4. Let DN be a simplified DTD of D,6 be a set ofCUnary
K ,IC constraints

over D, and C6 be the set of cardinality constraints determined by6. Then there
exists an XML tree T1 such that T1 |= DN and T1 |= 6 if and only if there exists
an XML tree T2 such that T2 |= DN and T2 |= C6. In addition, any XML tree valid
with respect to DN and satisfying6 also satisfies C6.
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PROOF. It is easy to see that for any XML treeT1 that satisfies6, it must
be the case thatT1 |= C6. Conversely, we show that if there exists an XML tree
T2 = (V, lab, ele, att, val, root) such thatT2 |= DN andT2 |= C6, then we can
construct an XML treeT1 such thatT1 |= DN andT1 |= 6.

We construct T1 from T2 by modifying the functionval while leaving
V, lab, ele, att and root unchanged. As cardinality constraints ofC6 do not in-
volve text nodes, we changeval for attributes only. More specifically, we modify
val(v) if lab(v) ∈ A, that is, ifv is an attribute, and leaveval(v) unchanged other-
wise. LetS = {τ.l | τ ∈ E, l ∈ R(τ )}. To define the new function, denoted by
val′, we first associate a setVτ.l of string values with eachτ.l in S. Let N be the
maximum cardinality ofext(τ.l ) in T2, that is,N ≥ |ext(τ.l )| in T2 for all τ.l ∈ S.
Let VS = {ai | i ∈ [1, N]} be a set of distinct string values. For eachτ.l ∈ S, let
Vτ.l = {ai | i ∈ [1, |ext(τ.l )|]}, and for eachx ∈ ext(τ ), letval′(att(x, l )) be a string
value inVτ.l such that inT1, ext(τ.l ) = Vτ.l . In addition, for each keyτ.l → τ in6,
let x.l be a distinct string value inVτ.l . This is possible because by the definition of
T1, (1)ext(τ ) in T1 equalsext(τ ) in T2; (2) |ext(τ.l )| in T1 equals|ext(τ.l )| in T2; and
(3) T2 |= C6 and|ext(τ )| = |ext(τ.l )| is in C6. We next show thatT1 is indeed what
we want. It is easy to verify thatT1 |= DN given the construction ofT1 from T2 and
the assumption thatT2 |= DN . To show thatT1 |= 6, we considerϕ ∈ 6 in the fol-
lowing cases. (1) Ifϕ is a keyτ.l → τ , it is immediate from the definition ofT1 that
T1 |= ϕ since for anyx ∈ ext(τ ), x.l is a distinct string value inVτ.l . (2) If ϕ isτ1.l1 ⊆
τ2.l2, thenT2 |= |ext(τ1.l1)| ≤ |ext(τ2.l2)| by T2 |= C6. Recall that by the definition
of val′, for i ∈ [1, 2], Vτi .l i = {ai | i ∈ [1, |ext(τi .l i )|]} and inT1, ext(τi .l i ) = Vτi .l i .
Thus, ext(τ1.l1) ⊆ ext(τ2.l2) in T1. That is, T1 |= ϕ. Therefore,T1 |= DN
andT1 |= 6.

Observe that in the construction ofT1 above, it is possible thatext(τ1.l1) ⊆
ext(τ2.l2) even if6 does not implyτ1.l1 ⊆ τ2.l2. This does not have an impact on
the consistency analysis, as negations of inclusion constraints are not involved in
the analysis.

It is straightforward to verify that given any set6 of CUnary
K ,IC constraints over a

DTD D, the setC6 of cardinality constraints determined by6 can be computed
in linear time in|6| and|D|.

Encoding DTDs. We next move to a coding of DTDs. By Lemma 4.3, we
can consider simple DTDs only. Given any simple DTDD = (E, A, P, R, r ),
we encode it in linear time with a system9D of linear integer constraints such that
D has a valid XML tree if and only if9D has an integer solution.

We first describe the variables used in the system9D. For each symbol
τ ∈ E ∪ {S}, |ext(τ )| is a distinct variable. Intuitively, in an XML treeT
conforming toD, |ext(τ )| keeps track of the number of allτ elements. In addition,
for each occurrence ofτ in the definition P(τ ′) of some element typeτ ′, we
also create a distinct variable. More specifically, we create such variables as
follows: if P(τ ′) = τ1 for τ1 ∈ E ∪ {S}, then we create a distinct variablex1

τ1,τ ′ ;
if P(τ ′) = (τ1, τ2) or P(τ ′) = (τ1 | τ2), then we create two distinct variables
x1
τ1,τ ′ and x2

τ1,τ ′ . Intuitively, for i ∈ [1, 2], xi
τ1,τ ′ keeps track of the number of

τi subelements at positioni under allτ ′ elements inT . For example, given an
element type definitionP(teach) = subject, subject, we create two distinct
variablesx1

(subject, teach) and x2
(subject, teach). Let Xτ be the set of all variables of the

form xi
τ,τ ′ .
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Using these variables, for eachτ ∈ E, we define a setψτ of linear integer
constraints that characterizesP(τ ) quantitatively, as follows:

—If P(τ ) = τ1 for τ1 ∈ E ∪ {S}, thenψτ includes|ext(τ )| = x1
τ1,τ

. Referring to
the XML treeT , this assures that eachτ element has a uniqueτ1 subelement.

—If P(τ ′) = (τ1, τ2), thenψτ includes|ext(τ )| = x1
τ1,τ

and|ext(τ )| = x2
τ2,τ

. These
assure that eachτ element inT must have a uniqueτ1 subelement and a unique
τ2 subelement.

—If P(τ ′) = (τ1 | τ2), thenψτ includes|ext(τ )| = x1
τ1,τ
+ x2

τ2,τ
. These assure

that eachτ element inT must have either aτ1 subelement or aτ2 subelement,
and thus the sum of the number of theseτ1 subelements and the number ofτ2
subelements equals the number ofτ elements inT .

The set of cardinality constraints determined by DTDD, denoted by9D,
consists of the following:

—|ext(r )| = 1; that is, there is a unique root in any XML tree valid with respect toD;
—constraints ofψτ for eachτ ∈ E; these assure thatP(τ ) is satisfied;
—|ext(τ )| = ∑

xi
τ,τ ′ ∈Xτ

xi
τ,τ ′ for eachτ ∈ (E \ {r }) ∪ {S}; this indicates that the

setext(τ ) includes allτ elements no matter where they occur in an XML tree;
—x ≥ 0 for any variablex used above; that is, the number of elements

(subelements) is nonnegative.

We say that9D is consistentif and only if9D admits an integer solution. That
is, there is an integer assignment to the variables of9D such that all the linear
integer constraints in9D are satisfied.

As an example, let us consider the simple DTDsDN
1 andDN

2 given above. The
cardinality constraints determined by these DTDs are given below:
9DN

1
:
ψteachers: |ext(teachers)| = x1

(teacher, teachers)
|ext(teachers)| = x2

(τ 1
t , teachers)

ψτ 1
t
:

∣∣ext
(
τ 1

t

)∣∣= x1
(τε, τ 1

t )
+ x2

(τ 2
t , τ

1
t )

ψτ 2
t
:

∣∣ext
(
τ 2

t

)∣∣= x1
(teacher, τ 2

t )

∣∣ext
(
τ 2

t

)∣∣= x2
(τ 1

t , τ
2
t )

ψteacher: |ext(teacher)| = x1
(teach, teacher)

|ext(teacher)| = x2
(research, teacher)

ψteach: |ext(teach)| = x1
(subject, teach) |ext(teach)|= x2

(subject, teach)
ψsubject: |ext(subject)| = x1

(S, subject)
ψresearch: |ext(research)| = x1

(S, research)

moreover,
|ext(teachers)| =1
|ext(teacher)| = x1

(teacher, teachers) + x1
(teacher, τ 2

t )∣∣ext
(
τ 1

t

)∣∣= x2
(τ 1

t , teachers)
+ x2

(τ 1
t , τ

2
t )

|ext(τ 2
t )| = x2

(τ 2
t , τ

1
t )

|ext(τε)| = x1
(τε, τ 1

t )
|ext(teach)| = x1

(teach, teacher)

|ext(subject)| = x1
(subject, teach) + x2

(subject, teach)
|ext(research)| = x2

(research, teacher) |ext(S)| = x1
(S, subject) + x1

(S, research)
all variables≥ 0.
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For example, x1
(teacher, teachers) indicates the number ofteacher children

of all teachers nodes, andx1
(teacher, τ 2

t )
stands for the number ofteacher

children of nodes labeledτ 2
t . The cardinality ofext(teacher) equals the sum of

x1
(teacher, teachers) andx1

(teacher, τ 2
t )

. Obviously, there is a unique node labeledteachers,
that is, the root. Hence, we havex1

(teacher, teachers)= 1 since the root has a unique
teacher child. Thus,|ext(teacher)| = 1+ x1

(teacher, τ 2
t )

.

9D2:
ψscriptsizedb: |ext(db)| = x1

(foo, db)

ψfoo: |ext(foo)| = x1
(foo, foo)

moreover, |ext(db)| =1 |ext(foo)| = x1
(foo, db)+ x1

(foo, foo)
all variables≥ 0.

It is easy to check that9DN
1

is consistent, whereas9DN
2

is not.
We nextshow that9D indeed characterizes the DTDD.

LEMMA 4.5. Let D be a simple DTD and9D be the set of cardinality
constraints determined by D. Then9D is consistent if and only if there is an XML
tree T such that T|= D. In addition, for eachτ ∈ E, |ext(τ )| in T equals the
value of the variable|ext(τ )| given by the solution of9D.

PROOF. First, assume that there is an XML treeT valid with respect toD. We
define an integer solution of9D as follows. For eachτ ∈ E∪{S}, let the value of the
variable|ext(τ )| be the number ofτ nodes inT . We proceed to assign integer values
(number of certain subelements) to other variables by considering the structure of
P(τ ) for eachτ ∈ E. (1) If P(τ ) = τ1 for someτ1 ∈ E ∪ {S}, then let the value
of the variablex1

τ1,τ
be the number ofτ1 subelements of allτ elements inT . (2) If

P(τ ′) = (τ1, τ2), then let the value of the variablex1
τ1,τ

(respectively,x2
τ2,τ

) be the
number of theτ1 (respectively,τ2) subelements of allτ elements. In particular, if
τ1 = τ2, thenx1

τ1,τ
(respectively,x2

τ2,τ
) has the number of the first (respectively, sec-

ond) subelements of allτ elements. (3) IfP(τ ′) = (τ1 | τ2), then let the value of the
variablex1

τ1,τ
(respectively,x2

τ2,τ
) be the number ofτ1 (respectively,τ2) subelements.

If τ1 = τ2, thenx1
τ1,τ

andx2
τ2,τ

may have any value as long as|ext(τ )| = x1
τ1,τ
+ x2

τ2,τ
.

We nextshow that this assignment is an integer solution of9D. First, the value of
any variable is nonnegative, as it is the number of certain elements (subelements) in
T . Second,|ext(r )| = 1 asT has a unique root. Third, for eachτ ∈ E, by induction
on the structure ofP(τ ), it can be verified that the assignment satisfiesψτ since
T |= D andψτ describesP(τ ) quantitatively. Finally, the value of the variable
|ext(τ )| is equal to the sum of all variables of the formxi

τ, τ ′ (i ∈ [1, 2]) since it
counts all theτ elements inT no matter where they are. This can be easily verified by
contradiction. Thus, the assignment is indeed a solution of9D. Note that by the def-
inition of the solution, the value of the variable|ext(τ )| given by the solution equals
|ext(τ )| in T .

Conversely, assume that9D admits an integer solution. Observe that all these
variables have nonnegative integer values because of the inequalities in9D. We
show that there is an XML treeT = (V, lab, ele, att, val, root) valid with respect
to D. To do so, for eachτ ∈ E∪{S}, we create|ext(τ )|many distinct nodes and label
them withτ . We refer to this set of nodes asext(τ ). In addition, for eachv ∈ ext(τ )
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andl ∈ R(τ ), we create a distinct node, referred to asvl , and label it withl . Let

V =
⋃

τ∈E∪{S}
ext(τ ) ∪

⋃
τ∈E

{vl | v ∈ ext(τ ), l ∈ R(τ )}

lab(v) =
{
τ if v ∈ ext(τ ) andτ ∈ E ∪ {S}
l if v = vl for somevl

att(v, l ) =
{

vl if vl ∈ V
undefined otherwise

val(v) =
{

empty string iflab(v) is S or l , wherel ∈ A
undefined otherwise

It is easy to verify that these functions are well defined. Letroot be the node la-
beledr , which is unique by|ext(r )| = 1 in9D. Finally, to define the functionele, we
first mark nodes inext(τ ) with variables inXτ so that they can be grouped as subele-
ments of certain elements. For each variablexi

τ,τ ′ in Xτ , we choosexi
τ,τ ′ many dis-

tinct nodes labeledτ and mark them withxi
τ,τ ′ . Note that for eachτ ∈ E∪{S}, every

τ node inV\{root} can be marked once and only once by|ext(τ )| = ∑
xi
τ,τ ′ ∈Xτ

xi
τ,τ ′

in 9D. Given these marked elements, starting atroot, for eachτ ∈ E and eachτ
nodev, we defineele(v) as follows. If P(τ ) is τ1 ∈ E ∪ {S}, then we choose a
distinctτ1 nodey marked withx1

τ1,τ
and letele(v) = [y]. If P(τ ) = (τ1, τ2), then

we choose aτ1 nodey1 marked withx1
τ1,τ

and aτ2 nodey2 marked withx2
τ2,τ

, and
let ele(v) = [y1, y2]. If P(τ ) = (τ1|τ2), then we choose a nodey marked with
eitherx1

τ1,τ
or x2

τ2,τ
and letele(y) = [y]. By 9D constraints, each element or text

node inV \ {root} can be chosen once and only once as a subelement of some other
element. By induction on the structure ofP(τ ), one can verify thatT defined in this
way is indeed an XML tree andT |= D. Finally, by the definition ofT , |ext(τ )| in
T equals the value of the variable|ext(τ )| given by the solution of9D.

It is straightforward to show that given any simple DTDD, the set9D of
cardinality constraints determined byD can be computed in linear time. As a
result, the size of9D is linear in|D|.

Characterizing DTDs and Unary Constraints.To complete our characteriza-
tion, given a DTDD = (E, A, P, R, r ) and a finite set6 of CUnary

K ,IC constraints over
D, we define a system9(D, 6) of integer constraints. The system9(D, 6), re-
ferred to asthe set of cardinality constraints determined by D and6, is defined to be:

9DN ∪ C6 ∪ {(|ext(τ )| > 0)→ (|ext(τ.l )| > 0) | τ ∈ E, l ∈ R(τ )},
where DN is the simplified DTD ofD, 9DN andC6 are the sets of cardinality
constraints determined byDN and6, respectively. In9(D, 6) we treat|ext(τ.l )|
as a variable.

We say that9(D, 6) is consistentif and only if 9(D, 6) admits an inte-
ger solution.

For example, recall the DTDsD1 and D2, and the constraint sets61 and62
(the empty set) given in Section 1. It is easy to verify that neither9(D1, 61) nor
9(D2, 62) is consistent. This is consistent with the observations made in Section 1.

Observe that9(D, 6) can be partitioned into two sets:9(D, 6) =
9 l (D, 6) ∪ 9c(D, 6), where9 l (D, 6) consists of linear integer constraints,
and9c(D, 6) consists of constraints of the form (|ext(τ )| > 0→ |ext(τ.l )| > 0),
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which are to ensure that everyτ element has anl attribute. Note that
|ext(τ.l )| ≤ |ext(τ )| is already inC6.

It is easy to verify that9(D, 6) can be computed in linear time in|D| and|6|,
and thus its size is also linear in|D| and|6|.

We next show that9(D, 6) indeed characterizesD and6.

LEMMA 4.6. Let D be a DTD,6 be a finite set ofCUnary
K ,IC constraints over D,

and9(D, 6) be the set of cardinality constraints determined by D and6. Then
9(D, 6) is consistent if and only if there exists an XML tree T such that T|= D
and T |= 6.

PROOF. Let DN be the simplified DTD ofD. By Lemma 4.3, it suffices to
show that9(D, 6) is consistent if and only if there is an XML treeT such that
T |= DN andT |= 6.

Suppose that there exists an XML treeT such thatT |= DN andT |= 6. We
show that9(D, 6) admits an integer solution. By Lemma 4.4, we haveT |= C6,
whereC6 is the set of cardinality constraints determined by6. By Lemma 4.5,
one can define an integer solution of9DN . The assignment assures that for each
τ ∈ E, the value of the variable|ext(τ )| equals the number of all theτ nodes inT .
We extend the assignment as follows: for eachτ ∈ E andl ∈ R(τ ), let the value
of the variable|ext(τ.l )| be the number of distinctl attribute values of all theτ
nodes inT . Thus byT |= C6, this extended assignment satisfiesC6. In addition,
if |ext(τ )| > 0 then|ext(τ.l )| > 0 as everyτ element inT has anl attribute. Hence
the assignment is indeed a solution to9(D, 6). Thus9(D, 6) is consistent.

Conversely, suppose that9(D, 6) admits an integer solution. We show that
there is an XML treeT such thatT |= DN andT |= 6. Observe that an integer
solution to9(D, 6) is also a solution to9DN . Thus by Lemma 4.5, there
is T ′ = (V, lab, ele, att, val, root) such thatT ′ |= DN . Moreover, for each
τ ∈ E, |ext(τ )| in T ′ is equal to the value of the variable|ext(τ )| given by the
assignment. We construct another XML treeT ′′ by modifying the definition of
the functionval of T ′ such that for eachτ ∈ E andl ∈ R(τ ), |ext(τ.l )| in T ′′ equals
the value assigned to the variable|ext(τ.l )| by the assignment. This is possible since
|ext(τ.l )| ≤ |ext(τ )| is inC6, and the assignment is also a solution toC6. Moreover,
by (|ext(τ )| > 0→ |ext(τ.l )| > 0) in 9(D, 6), everyτ element inT ′′ can have
an l attribute. It is straightforward to verify thatT ′′ |= C6 andT ′′ |= DN . Hence
by Lemma 4.4, there exists an XML treeT such thatT |= DN andT |= 6.

Given these lemmas, we proceed to prove Theorem 4.1.

PROOF OFTHEOREM4.1 (CONTINUED). We encode an instance (D, 6) of the
consistency problem forCUnary

K ,FK as an instance of LIP. By Lemma 4.6, it suffices
to encode9(D, 6) as an instance of LIP. Recall that9(D, 6) can be partitioned
into two sets:9 l (D, 6) of linear integer constraints, and9c(D, 6) of constraints
of the form (x > 0 → y > 0). We first encode9(D, 6) with a set of linear
integer constraints. LetS be the set of all the pairs (x, y) for each constraint
(x > 0→ y > 0) in9c(D, 6). For each subsetX of S, we define9X to be

9 l (D, 6) ∪ {x = 0, y = 0 | (x, y) ∈ X} ∪ {x ≥ 1, y ≥ 1 | (x, y) ∈ S\ X}.
It is easy to see that9(D, 6) admits an integer solution if and only if there is some
9X that has an integer solution. Observe that9X can be represented as an instance
of LIP since an equalityF1 = F2 is equivalent to inequalitiesF1 ≥ F2 andF2 ≥ F1.
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In addition, for all variablesx in 9(D, 6), we havex ≥ 0 in9(D, 6). Thus any
solution of9X is nonnegative. Hence we can apply the result of Papadimitriou
[1981] here, which says that if9X has an integer solution, then it has one
in which the values of all variables are no larger thann (ma)2m+1, where a
is the largest absolute value of the constants in9X. In other words,9X has
an integer solution in which the value of each variable has a length in binary
of at most 1+ d logn+ (2m+ 1) · log(ma)e many bits, and the bounds on
solutions for all9X ’s are the same. Letc be a number that in binary notation has
1+ dlogn + (2m+ 1) · log(ma)e many 1’s. Observe thatc can be computed in
O(s logs) time. Thus, we define a new system8 of linear integer constraints that
is the same as9 l (D, 6) except it also includescy≥ x for all (x > 0)→ (y > 0)
in 9c(D, 6). It is easy to verify that9(D, 6) has an integer solution iff8 has
an integer solution. Indeed, if9(D, 6) has an integer solution then it has one
bounded byc. Thus the solution satisfiescy ≥ x, i.e., it is an integer solution to
8. Conversely, if8 has an integer solution, then it is also an integer solution of
9 l (D, 6) and moreover, ifx > 0 theny > 0 by cy ≥ x in 8; that is, it is an
integer solution to9(D, 6). As8 can be represented as an instance of LIP, we can
define an matrixA9 and a vectorEb9 of integers such that9(D, 6) has an integer
solution if and only if A9 Ex ≥ Eb9 has an integer solution. Recall that9(D, 6)
can be computed in linear time and its size, denoted bys, is linear in|D| and|6|.
Thus the instance of LIP can be computed inO(s2 · logs) time in |D| and|6|.

This completes the proof of Theorem 4.1.

The encoding is not only interesting in its own right, but also useful in
the consistency analyses ofCUnary

K ,FK and CUnary
K¬,IC constraints, as well as in resolving

a special case ofCUnary
K ,FK constraint implication.

4.2. CUnary
K ,FK AND CUnary

K¬,IC CONSTRAINTS. We next establish the precise complexity
bound on the consistency problem for unary keys and foreign keys:

THEOREM 4.7. The consistency problem forCUnary
K ,FK constraints is NP-complete.

PROOF. Corollary 4.2 has shown that the problem is in NP. We show that it is
NP-hard by reduction from a variant of LIP, namely,

A Ex = Eb,
where for alli ∈ [1,m], j ∈ [1, n], ai j coefficients are in{0, 1}, all bi elements are
1, and allxj components are binary, that is, in{0, 1}. It is known that the variant
is also NP-complete [Garey and Johnson 1979].

Given such an instanceA Ex = Eb, we define a DTDD and a set6 of CUnary
K ,FK

constraints overD such that there is an XML tree valid with respect toD and
satisfying6 if and only if A Ex = Eb admits a binary solution. Fori ∈ [1,m], we
useFi to denote

∑
j∈[1,n] ai j x j . We defineD to be (E, A, P, R, r ), where

E={r } ∪ {Fi | i ∈ [1,m]} ∪ {bi | i ∈ [1,m]} ∪ {V Fi | i ∈ [1,m]}
∪ {Xi j | i ∈ [1,m], j ∈ [1, n]} ∪ {Zi j | i ∈ [1,m], j ∈ [1, n]}

A={v} ∪ {Ai j | i ∈ [1,m], j ∈ [1, n]}
P(r ) = F1, . . . , Fm, b1, . . . ,bm
P(Fi ) = Xi j1, . . . , Xi j l for i ∈ [1,m], whereXi j1, . . . , Xi jl is a

sub-list ofXi 1, . . . , Xi m such thatXi j is in P(Fi )
iff ai j in A is 1
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FIG. 4. A tree used in the proof of Theorem 4.7.

P(Xi j ) = Zi j | ε for i ∈ [1,m] and j ∈ [1, n]
P(Zi j ) =V Fi for i ∈ [1,m] and j ∈ [1, n]
P(VFi ) = P(bi )= ε for i ∈ [1,m]
R(Zi j ) ={Ai j } for i ∈ [1,m] and j ∈ [1, n]
R(VFi ) = R(bi )={v} for i ∈ [1,m]
R(r ) = R(Fi )= R(Xi j )=∅

An XML tree valid with respect toD has the form shown in Figure 4. Intuitively,
Xi j encodesxj in Fi , andZi j encodes the value ofXi j : Xi j has value 1 if and only
if Xi j has aZi j child. The element typeVFi is to code the value ofFi . Observe that
A Ex = Eb has a solution if and only if for each rowi ∈ [1,m] there is exactly one
column j ∈ [1, n] such thatai j = 1 andxj = 1. In the XML treeT representing
the instance, this means that for everyi there is exactly oneXi j element with a
Zi j child. This is achieved by restrictingFi to have a uniqueVFi descendant, and
thus to have value 1, by means of the attributev of VFi and constraints. More
specifically, we include the following in the set6:

V Fi .v→ V Fi , bi .v→ bi , V Fi .v ⊆ bi .v, bi .v ⊆ V Fi .v.

These ensure thatFi = bi = 1 asT has a uniquebi node. In addition, to ensure that
all occurrences ofxj have the same value, the following are in6: for j ∈ [1, n]
andi, l ∈ [1,m],

Zi j .Ai j → Zi j , Zi j .Ai j ⊆ Zl j .Al j .

These assert thatXi j has value 1 if and only ifXl j equals 1. It is easy to see that the
encoding can be done in PTIME inm andn. Moreover,A Ex = Eb admits a binary
solution if and only ifD has a valid XML tree satisfying6. Thus, this is indeed
a PTIME reduction from the variant of LIP.

Recall that in relational databases, it is common to consider primary keys. That
is, for each relation one can specify at most one key, namely, the primary key of
the relation. In the XML setting, theprimary key restrictionrequires that for each
element type one can specify at most one key. This is the case for “keys” specified
with ID attributes, since in a DTD, at most one ID attribute can be specified for
each element type. Under the primary key restriction, the consistency problem for
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a classC of XML constraints is to determine, given any DTDD and finite set6 of
C constraints in which there is at most one key for each element type (given either
as keys or as part of foreign keys), whether there is an XML tree valid with respect
to D and satisfying6; similarly for implication.

One might think that the primary key restriction would simplify the consistency
analysis ofCUnary

K ,FK constraints. However, it is not the case.

COROLLARY 4.8. Under the primary key restriction, the consistency problem
for CUnary

K ,FK remains NP-complete.

PROOF. The reduction from LIP given in the proof of Theorem 4.7 defines at
most one key for each element type.

A mild generalization of the encoding above can establish the complexity of
the consistency problem forCUnary

K¬,IC, the class of unary keys, inclusion constraints
and negations of keys. As we shall see shortly, the result forCUnary

K¬,IC helps us
study implication ofCUnary

K ,FK constraints.

COROLLARY 4.9. The consistency problem forCUnary
K¬,IC constraints is NP-

complete.

PROOF. SinceCUnary
K ,FK is a sublanguage ofCUnary

K¬,IC, from Theorem 4.7 it fol-
lows immediately that the consistency problem forCUnary

K¬,IC is NP-hard. We
next show that the problem remains in NP. LetD be a DTD and6 be a set ofCUnary

K¬,IC
constraints overD. We write6 as61∪62, where61 is a set of unary keys and unary
inclusion constraints overD, and62 is a set of negations of unary keys overD. Let
9(D, 61) be the system of linear inequalities determined byD and61, as defined in
the proof of Theorem 4.1. It admits an integer solution iff there exists an XML tree
T such thatT |= 61 andT |= D. We define another system of linear inequalities,
denoted by9(D, 6) and referred to asthe system determined by D and6, to be

9(D, 6) = 9(D, 61) ∪ {|ext(τ.l )| < |ext(τ )| | ¬(τ.l → τ ) ∈ 62}.
As9(D, 6) can be computed in PTIME, it suffices to show the following claim.

Claim. There is an XML treeT such thatT |= 6 andT |= D iff 9(D, 6) has
an integer solution.

For if it holds, then the problem is in NP by reduction to LIP as in the proof of
Theorem 4.1.

We show the claim as follows: Assume that there exists a treeT such thatT |= 6
andT |= D. SinceT |= 61, by Lemmas 4.5 and 4.6 and Theorem 4.1, it can be ver-
ified that there is an integer solution to9(D, 61), the system of linear inequalities
determined byD and61, such that the values of the variables|ext(τ )| and|ext(τ.l )|
in 9(D, 61) given by the solution are the cardinalities|ext(τ )| and|ext(τ.l )| in T .
Note that for all element typeτ and attributel of τ in D, |ext(τ )| and|ext(τ.l )| are
variables in9(D, 61). Thus for eachτ.l 6→ τ , the solution also assigns values to
|ext(τ )| and|ext(τ.l )|. We claim that it is also a solution to9(D, 6). To see this,
observe that it is always true that|ext(τ )| ≥ |ext(τ.l )| in T since everyτ element in
T contributes at most one distinctτ.l value. Thus, byT |= 62, there must be two
distinctτ elementsd1 andd2 in T such thatd1.l = d2.l . Thus,|ext(τ )| > |ext(τ.l )|.
Therefore, all inequalities in9(D, 6) are satisfied by the solution.
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Conversely, assume that9(D, 6) has an integer solution. Since it is also a
solution to9(D, 61), again by Lemma 4.5 and 4.6 and Theorem 4.1, it can be
verified that there is a treeT such thatT |= D, T |= 61 and moreover, the
cardinalities|ext(τ )| and|ext(τ.l )| in T are the values of the variables|ext(τ )| and
|ext(τ.l )| in 9(D, 61) given by the solution. We claim thatT |= 6. Indeed, for
any τ.l 6→ τ in 62, we have|ext(τ )| > |ext(τ.l )| in T . Thus, there must be two
distinct τ elementsd1 andd2 in T such thatd1.l = d2.l . That is,T |= τ.l 6→ τ .
Hence,T |= D andT |= 6.

It should be mentioned that the problem remains NP-hard under the primary key
restriction. This can be verified along the same lines as the proof of Corollary 4.8.

Corollary 4.9 also tells us the complexity of a special case of the implication
problem forCUnary

K ,FK , referred to as theimplication problem for unary keys byCUnary
K ,FK

constraints:

THEOREM 4.10. The following is coNP-complete, even under the primary key
restriction: given any DTD D, any set6 of CUnary

K ,FK constraints and any unary key
ϕ over D, whether(D, 6) ` ϕ.

PROOF. Observe that (D, 6) ` ϕ iff 6∪{¬ϕ} andD are not consistent, that is,
there exists no XML treeT such thatT |= D, T |= 6 andT |= ¬ϕ. Since6∪{¬ϕ}
is a set ofCUnary

K¬,IC constraints, the implication problem for unary keys byCUnary
K ,FK

constraints is in coNP by Corollary 4.9. To see that the problem is coNP-hard, recall
the encoding given in the proof of Lemma 3.3. If the set6 of constraints given
is a set ofCUnary

K ,FK constraints, then that encoding also serves as a reduction from
the consistency problem forCUnary

K ,FK to the complement of (D, 6) ` ϕ. Thus, from
Theorem 4.1 it follows that the implication problem for unary keys byCUnary

K ,FK
constraints is coNP-hard. Observe that the reduction in the proof of Lemma 3.3
defines at most one key for each element type. Thus, given a set6 of constraints,
if 6 satisfies the primary key restriction, then so does the set of all constraints
used in the reduction. Hence, it remains coNP-hard even under the primary key
restriction.

Finally, we identify some PTIME decidable cases of the consistency and impli-
cation problems. First, these problems for unary keys only are decidable in linear
time, by Theorem 3.5. We next show that given a fixed DTDD, the consistency
and implication analyses become simpler. The motivation for considering a fixed
DTD is because in practice, one often defines the DTD of a specification at one
time, but writes constraints in stages: constraints are added incrementally when
new requirements are discovered.

COROLLARY 4.11. For a fixed DTD, the following problems are decidable in
PTIME:

—The consistency problems forCUnary
K ,FK andCUnary

K¬,IC.
—Implication of unary keys byCUnary

K ,FK constraints.

PROOF. By Theorems 4.1, 4.10 and Corollary 4.9, an instance (D, 6) of these
problems can be encoded as a system8 of linear integer constraints. That is,
these problems can be reduced to checking whether8 admits an integer solution.
The system8 consists of constraints ofC6 (derived from6) and9DN (derived
from the simplified DTDDN of D), and can be computed in PTIME in|D|.



400 W. FAN AND L. LIBKIN

Given a fixed DTDD, the number of variables inC6 is bounded by the size of
D (O(|D|2)), and the number of variables in9DN is also fixed. Thus, the number
of variables in8 is bounded. It is known that when the number of variables in
a system of linear integer constraints is bounded, checking whether the system
admits an integer solution can be done in PTIME [Lenstra 1983]. Putting these
together, we have Corollary 4.11.

5. Unary Keys, Inclusion Constraints and Negations

In Section 4, we have shown that the consistency problem for unary keys and
foreign keys is NP-complete. In this section, we extend the result by showing
that the problem remains in NP when negations of these unary constraints are
allowed. That is, the problem is NP-complete forCUnary

K¬,IC¬ , the class of unary keys,
inclusion constraints and their negations. This helps us settle the implication
problems forCUnary

K ,FK and the more generalCUnary
K ,IC , the class of unary keys and

foreign keys, and the class of unary keys and inclusion constraints, respectively.
This is one of the reasons that we are interested in the consistency problem
for CUnary

K¬,IC¬ .

THEOREM 5.1. The consistency problem forCUnary
K¬,IC¬ is NP-complete.

While this theorem subsumes Theorem 4.7, the reduction is quite different
from the nice encoding with instances of LIP that we used forCUnary

K ,FK . In fact,
while typically NP-complete problems are easily shown to be in NP, and only
the reduction from a known NP-complete problem is difficult, for the consistency
problem forCUnary

K¬,IC¬ , the opposite is the case, and the proof of membership in NP
is a little involved (even assuming the encoding of keys and inclusion constraints
by instances of LIP given in the previous section). We cannot reduce the problem
directly to LIP as before, because there is no direct connection betweenτi .l i 6⊆ τ j .l j
and the cardinalities|ext(τi )|, |ext(τ j )|, |ext(τi .l i )| and|ext(τ j .l j )| in an XML tree.

PROOF. We develop an NP algorithm for determining the consistency of
CUnary

K¬,IC¬ constraints. The algorithm takes advantage of another encoding ofCUnary
K¬,IC¬

constraints with linear integer constraints, which characterizes a set interpretation
of unary inclusion constraints and their negations. LetD be a DTD and6 be a set of
CUnary

K¬,IC¬ constraints overD. We partition6 into61 and62, where61 is a set ofCUnary
K¬,IC

constraints, and62 consists of negations of unary inclusion constraints overD.
Let 9(D, 61) be the system of linear inequalities determined byD and61, as
described in the proof of Corollary 4.9. Letl1, . . . , ln be an enumeration of all
attributes inD. Without loss of generality, assume thatl i is an attribute of element
typeτi (note thatτi ’s need not be distinct). LetU = (uij )n

i, j=1 andV = (vij )n
i, j=1 be

two matrices whose elements are nonnegative integers. We say that they admit a
set representationif there is a family of finite setsA1, . . . , An such that

uij = | Ai ∩ Aj |, vij = | Ai \Aj | .
We extend9(D, 61) with new variablesuij , vij , and equalities:

—|ext(τi .l i )| = uii = uij + vij for all i, j ∈ [1, n];
—vij = 0 for all τi .l i ⊆ τ j .l j in 61, and moreover,vii = 0;
—vi j > 0 for all τi .l i 6⊆ τ j .l j in 62.
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Let us denote the new system by9(D, 6) and refer to it asthe system determined
by D and6. Observe that9(D, 6) can be simply converted to a system of linear
inequalities (by treating an equality as two inequalities).

The intended interpretation for the variableuij is |ext(τi .l i ) ∩ ext(τ j .l j )|, and
|ext(τi .l i )\ext(τ j .l j )| for vij . Thus, vi j > 0 in 9(D, 6) says thatext(τi .l j ) 6⊆
ext(τ j .l j ) for all τi .l i 6⊆ τ j .l j in 62.

The lemma below reveals the connection between the encoding and the
consistency problem we are investigating.

LEMMA 5.2. The linear system9(D, 6) determined by DTD D and con-
straints6 has an integer solution withU,V having a set representation if and
only if there is an XML tree T such that T|= D and T |= 6.

PROOF. Let D be a DTD,61 be a set ofCUnary
K¬,IC constraints overD,62 be a set

of negations of unary inclusion constraints overD, 6 = 61 ∪ 62, and9(D, 6)
be the system of linear inequalities determined byD and6 as described above. We
show that9(D, 6) has an integer solution withU,V having a set representation
iff there is an XML treeT such thatT |= 6 andT |= D.

Assume that there exists an XML treeT such thatT |= 6 andT |= D. SinceT |=
61, as in the proof of Corollary 4.9 we can define an integer solution to9(D, 61),
the system of linear inequalities determined byD and61. We extend the solution as
follows: letuij be|ext(τi .l i )∩ ext(τ j .l j ) |, andvij be|ext(τi .l i )\ext(τ j .l j ) |. It is easy to
verify that this is indeed a solution to9(D, 6) with U,V having a set representation.

Conversely, assume that9(D, 6) has an integer solution withU,V having a
set representation. Then, there are finite setsA1, . . . , An such that

uij = | Ai ∩ Aj |, vij = | Ai \Aj | .
Again, as in the proof of Corollary 4.9, we create a treeT such thatT |= 61 and
T |= D. In addition, we define theval function inT such thatext(τi .l i ) = Ai for
i ∈ [1, n]. This is possible since|ext(τi .l i )| = uii = uij + vij is in 9(D, 6) for
all i, j ∈ [1, n]. Becausevi j > 0 is in 9(D, 6) for all τi .l i 6⊆ τ j .l j in 62, we
have| ext(τi .l i )\ext(τ j .l j ) |> 0. That is,T |= τi .l i 6⊆ τ j .l j . ThusT |= 62. This
completes the proof of the lemma.

It remains to show that one can check in NP whether the system9(D, 6) has
an integer solution withU,V having a set representation. We start with a lemma.

LEMMA 5.3. Given9(D, 6), one can compute, in polynomial time, a number
M such that9(D, 6) has an integer solution withU,V having a set representation
if and only if it admits such a solution with all variables being bounded by M.

PROOF. To prove the lemma, we need to extend9(D, 6). Let 2 be the set
of functionsθ : {1, . . . ,n} → {0, 1} which are not identically 0, wheren is the
number of attributes inD. For everyθ , we introduce a new variablezθ (note
that the number of variables is now exponential in the size of the problem). The
intended interpretation ofzθ is the cardinality of⋂

i :θ (i )=1

ext(τi .l i )\
⋃

j :θ ( j )=0

ext(τ j .l j ).
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We now extend9(D, 6) to9 ′(D, 6) by adding the following equalities:

uij =
∑

θ :θ (i )=θ ( j )=1

zθ , vij =
∑

θ :θ (i )=1,θ ( j )=0

zθ .

Clearly,9(D, 6) has an integer solution withU,V having a set representation
iff 9 ′(D, 6) has an integer solution, as the variableszθ describe all possible
intersections ofext(τi .l i ) and their complements, and the equalities above show
how to reconstructuij and vij from them. We thus must show that if9 ′(D, 6)
has an integer solution then it must have one with a bound onuij , vij , which is
polynomial (in terms of the size of9(D, 6)). For that, recall [Papadimitriou
1981] that if a system ofk linear inequalities withl variables and all coefficients at
mostc has an integer solution, then it has an integer solution in which none of the
variables exceedsl (ck)2k+1. Thus,M can be taken to be a number that in binary
notation has 1+d log l + (2k+ 1) · log (ck) e many 1’s. Note that the number of
variables,l , of 9 ′(D, 6) is at most exponential in the size of9(D, 6), and the
number of equalities,k, is at most polynomial. This shows thatM can be found in
polynomial time, and thus proves the lemma.

Given Lemmas 5.2 and 5.3, let us go back to the proof of that consistency analysis
of 6 overD is in NP. We present an NP algorithm for determining the consistency
of 6 over D. Our nondeterministic machine computesM given by Lemma 5.3,
and then guesses a solution with all the components bounded byM . It then tests if
theU,V part has a set representation. To do so, we transformU,V, in polynomial
time, into another matrixW, and then run a nondeterministic polynomial time
machine onW. If it returns ‘yes’, thenU,V have a set representation, and thus by
Lemma 5.2 the answer to whether6 is consistent overD is ‘yes’.

Let K = M · n, wheren is the number of all attributes inD. We now define the
matrixW. It is a 2n× 2n matrix, with

wij =


uij if i, j ≤ n
vi, j−n if i ≤ n, j > n
vi−n, j if i > n, j ≤ n
K − ui−n, j−n − vi−n, j−n − v j−n,i−n if i, j > n

Recall the Intersection Pattern problem: Given anm×m matrix A, are there sets
Y1, . . . ,Ym such thataij = |Yi ∩ Yj |? This problem is known to be NP-complete
(see, e.g., Garey and Johnson [1979]).

We now show the following: The INTERSECTION PATTERN problem returns
‘yes’ on inputW iff U,V have a set representation.

First, assumeU,V have a set representation. That is, there are finite sets
A1, . . . , An such that

uij = | Ai ∩ Aj |, vij = | Ai \ Aj | .
By the assumption, all entries inU,V are bounded byM , and hence we may
assume that all sets in the representation are subsets of a setU of cardinality K .
Let m = 2n and defineYi to be Ai for i ≤ n, andU \ Ai−n for i > n. ThenW
is the intersection pattern for this family of sets, and thus the INTERSECTION
PATTERN problem returns ‘yes’ onW.

Next, assume that the INTERSECTION PATTERN returns ‘yes’ onW, so we
have a family of setsY1, . . . ,Y2n for whichW is the intersection pattern. LetU be
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the union of allYj ’s. We showYn+i = U \Yi for all i ≤ n. We havewi,n+i = vii = 0,
and thusYn+i ⊆ U \Yi . Moreover, we have|Yi ∪Yn+i | = wii +wn+i,n+i = K . We
next show that for everyi, j ≤ n it is the case thatYi ∪Yn+i = Yj ∪Yn+ j (and thus
equalsU ). Note that bothYi ∪Yn+i andYj ∪Yn+ j areK -element sets. Furthermore,

(Yi ∪Yn+i )∩ (Yj ∪Yn+ j ) = (Yi ∩Yj )∪ (Yi ∩Yn+ j ) ∪ (Yn+i ∩Yj )∪ (Yn+i ∩Yn+ j ).

Observe that these four sets are pairwise disjoint, and their cardinalities are
wij = uij ,wi, j+n = vij ,wi+n, j = vji andwi+n, j+n = K −uij −vij −vji , respectively.
Thus, the cardinality of the set (Yi ∪ Yn+i ) ∩ (Yj ∪ Yn+ j ) is K , and since the
cardinality of eachYi ∪Yn+i andYj ∪Yn+ j is K , we concludeYi ∪Yn+i = Yj ∪Yn+ j .
This finally shows thatU has cardinalityK , and thus eachYn+i is U \ Yi for all
i ≤ n. This immediately gives us a set representation forU,V.

To conclude, once we guessed a bounded solution to9(D, 6) (all components
are at mostM), we proceed to compute in polynomial time the matrixW from
U and V, and then run a nondeterministic polynomial time algorithm on it to
check ifW is an intersection pattern. Putting everything together, we see that this
nondeterministic polynomial time algorithm returns ‘yes’ iff there is a bounded
solution (and thus, there is a solution) to9(D, 6) for which U,V have a set
representation. By Lemma 5.2, this happens if and only if there exists an XML
treeT such thatT |= D andT |= 6.

This completes the proof of Theorem 5.1.

We next investigate implication problems.

THEOREM 5.4. For each of CUnary
K ,IC and CUnary

K ,FK, the implication problem is
coNP-complete, even under the primary key restriction.

PROOF. The implication problem forCUnary
K ,IC is to determine, for a DTDD,

a set6 of CUnary
K ,IC constraints, and a constraintϕ (unary key or unary inclusion

constraint), whether (D, 6) ` ϕ. Note that (D, 6) ` ϕ iff there is no XML tree
T with T |= D ∧∧6 ∧ ¬ϕ, and6 ∪ {¬ϕ} is a set ofCUnary

K¬,IC¬ constraints. Thus
by Theorem 5.1, the implication problem forCUnary

K ,IC is in coNP. One can show that
it is coNP-hard under the primary key restriction using an argument similar to the
proof of Theorem 4.10. Similarly for the implication problem forCUnary

K ,FK .

Finally, along the same lines as Corollary 4.11, we show the following:

COROLLARY 5.5. For a fixed DTD, the following problems can be determined
in PTIME:

—The implication problem forCUnary
K ,FK.

—The consistency problem forCUnary
K¬,IC¬ .

PROOF. Let D be a DTD and6 be a set ofCUnary
K¬,IC¬ constraints overD. Let

9 ′(D, 6) be the system of linear inequalities determined byD and6, as defined
in the proof of Theorem 5.1. As in the proof of Corollary 4.11, one can show that
the number of variables in9 ′(D, 6) is bounded by a function on the size ofD.
Therefore, whenD is fixed, the number of variables in9 ′(D, 6) is bounded by
a constant. It is known that when the number of variables in a system of linear
inequalities is bounded, it can be determined in PTIME whether the system admits
an integer solution [Lenstra 1983]. By the proofs of Lemma 5.2 and Theorem 5.1,
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multi-attribute unary primary, unary DTD fixed, unary multi-attribute
keys, foreign keys keys, foreign keys keys, foreign keys keys, foreign keys keys only

consistency undecidable NP-complete NP-complete PTIME linear time

implication undecidable coNP-complete coNP-complete PTIME linear time

FIG. 5. The main results of this article.

9 ′(D, 6) admits an integer solution if and only if there is an XML treeT such that
T |= D andT |= 6. Thus, Corollary 5.5 follows from Theorems 5.1 and 5.4.

6. Conclusion

We have studied the consistency problems associated with four classes of integrity
constraints for XML. We have shown that in contrast to its trivial counterpart in
relational databases, the consistency problem is undecidable forCK ,FK, the class
of multi-attribute keys and foreign keys. This demonstrates that the interaction
between DTDs and key/foreign key constraints is rather intricate. This neg-
ative result motivated us to studyCUnary

K ,FK , the class of unary keys and foreign keys,
which are commonly used in practice. We have developed a characterization of
DTDs and unary constraints in terms of linear integer constraints. This establishes
a connection between DTDs, unary constraints and linear integer programming,
and allows us to use techniques from combinatorial optimization in the study
of XML constraints. We have shown that the consistency problem forCUnary

K ,FK is
NP-complete. Furthermore, the problem remains in NP forCUnary

K¬,IC¬ , the class of
unary keys, unary inclusion constraints and their negations.

We have also investigated the implication problems for XML keys and foreign
keys. In particular, we have shown that the problem is undecidable forCK ,FK and
it is coNP-complete forCUnary

K ,FK constraints. Several PTIME decidable cases of the
implication and consistency problems have also been identified. The main results
of the article are summarized in Figure 5.

It is worth remarking that the undecidability and NP-hardness results also
hold for other schema specifications beyond DTDs, such as XML Data [Layman
et al. 1998], XML Schema [Thompson et al. 2001], and the generalization of
DTDs proposed in Papakonstantinou and Vianu [2000]. It remains open, however,
whether the upper bounds (i.e., the decidability and NP membership results) are
still intact in these settings.

This work is a first step towards understanding the interaction between DTDs
and integrity constraints. A number of questions remain open. First, we have
only considered keys and foreign keys defined with XML attributes. We expect
to extend techniques developed here for more general schema and constraint
specifications. Second, other constraints commonly found in databases, for
example, inverse constraints, deserve further investigation. Third, a lot of work
remains to be done on identifying tractable yet practical classes of constraints and
on developing heuristics for consistency analysis. Finally, a related project is
to use integrity constraints to distinguish good XML design (specification)
from bad design, along the same lines as normalization of relational schemas.
Coding with linear integer constraints gives us decidability for some implication
problems for XML constraints, which is a first step towards a design theory for
XML specifications.
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