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On XML Integrity Constraints in the Presence of DTDs

WENFEI FAN

Bell Laboratories, Murray Hill, New Jersey
AND
LEONID LIBKIN

University of Toronto, Toronto, Ontario, Canada

Abstract. The article investigates XML document specifications with DTDs and integrity constraints,
such as keys and foreign keys. We study the consistency problem of checking whether a given
specification is meaningful: that is, whether there exists an XML document that both conforms to the
DTD and satisfies the constraints. We show that DTDs interact with constraints in a highly intricate
way and as a result, the consistency problem in general is undecidable. When it comes to unary keys
and foreign keys, the consistency problem is shown to be NP-complete. This is done by coding DTDs
and integrity constraints with linear constraints on the integers. We consider the variations of the
problem (by both restricting and enlarging the class of constraints), and identify a number of tractable
cases, as well as a number of additional NP-complete ones. By incorporating negations of constraints,
we establish complexity bounds on the implication problem, which is shown to be coNP-complete
for unary keys and foreign keys.

Categories and Subject Descriptors: F.ABfhematical Logic and Formal Language$: Formal
Languages-decision problemsH.2.1 [Database Managemerjt Logical Design—elata models
1.7.2 [Document and Text Processing Document Preparationsarkup languages

General Terms: Algorithms, Design, Languages, Theory
Additional Key Words and Phrases: Consistency, DTDs, implication, integrity constraints, XML

1. Introduction

Although a number of dependency formalisms were developed for relational
databases, functional and inclusion dependencies are the ones used most often.
More precisely, only two subclasses of functional and inclusion dependencies,

W. Fanwas on leave from Temple University and was supported in part by National Science Foundation
(NSF) Career Award 11S-0093168.

L. Libkin was supported in part by National Sciences and Engineering Research Council of Canada.
Authors’ addresses: W. Fan, 600 Mountain Avenue, Murray Hill, NJ 07974, e-mail: wenfei@research.
bell-labs.com; L. Libkin, Department of Computer Science, University of Toronto, Toronto, Ont., M5S
3H5, Canada, e-mail: libkin@cs.toronto.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this worked owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
afee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1(212) 869-0481, or permissions@acm.org.

© 2002 ACM 0004-5411/02/0500-0368 $5.00

Journal of the ACM, Vol. 49, No. 3, May 2002, pp. 368—406.



On XML Integrity Constraints in the Presence of DTDs 369

namely, keys and foreign keys, are commonly found in practice. Both are fun-
damental to conceptual database design, and are supported by the SQL standard
[Melton and Simon 1993]. They provide a mechanism by which one can uniquely
identify a tuple in a relation and refer to a tuple from another relation. They have
proved useful in update anomaly prevention, query optimization and index design
[Abiteboul et al. 1995; Uliman 1988].

XML (eXtensible Markup Language [Bray et al. 1998]) has become the prime
standard for data exchange on the Web. XML data typically originates in databases.
If XML is to represent data currently residing in databases, it should support keys
and foreign keys, which are an essential part of the semantics of the data. A number
of key and foreign key specifications have been proposed for XML, for example,
the XML standard (DTD) [Bray et al. 1998], XML Data [Layman et al. 1998],
and XML Schema [Thompson et al. 2001]. Keys and foreign keys for XML are
important in, among other things, query optimization [Popa 2000], data integration
[Florescu et al. 1996], and in data transformations between XML and database
formats [Lee and Chu 2000].

XML data usually comes with a DTRhat specifies how adocument is organized.
Thus, a specification of an XML document may consist of both a DTD and a set
of integrity constraints, such as keys and foreign keys. A legitimate question then
is whether such a specificationdensistentor meaningful: that is, whether there
exists a (finite) XML document that both satisfies the constraints and conforms to
the DTD.

In the relational database setting, such a question would have a trivial answer:
one can write arbitrarypfrimary) key andforeign key specifications in SQL,
without worrying about consistency. However, DTDs (and other schema specifica-
tions for XML) are more complex than relational schema: in fact, XML documents
are typically modeled as node-labeled trees, for example, in XSL [Clark 1999],
XQL [Robie et al. 1998], XML Schema [Thompson et al. 2001], XPath [Clark and
DeRose 1999], and DOM [Apparao et al. 1998]. Consequently, DTDs may interact
with keys and foreign keys in a rather nontrivial way, as will be seen shortly. Thus,
we shall study the following family of problems, wheferanges over classes of
integrity constraints:

XML SPECIFICATION CONSISTENCY ()

INPUT: A DTD D, a setz of C-constraints.
QUESTION: Isthere an XML document that conformslaand satisfiex ?

In other words, we want to validate XML specifications statically. The main reason
is twofold: first, complex interactions between DTDs and constraints are likely to
result in inconsistent specifications, and second, an alternative dynamic approach
to validation (simply check a document to see if it conforms to the DTD and
satisfies the constraints) would not tell us whether repeated failures are due to a bad
specification, or problems with the documents.

! Throughout this article, by a DTD we mean its type specification; we ignore its ID/IDREF constraints
since their limitations have been well recognized [Buneman et al. 2001; Fan ardrS20600]. We
shall only considefinite XML documents (trees).



370 W. FAN AND L. LIBKIN

The concept of consistency of specifications was studied for other data models,
such as object-oriented [Calvanese and Lenzerini 1994a, 1994b] and extended
relational (e.g., with support for cardinality constraints [Kanellakis 1980]).

We shall study the following four classes of constraints defined in terms of XML
attributes:

—Ck rx: @ class of keys and foreign keys;

—Cy g2 unary keys and foreign keys @k e, that is, those defined in terms of a
single attribute;

Unary , : : : R .
—Cy - - unary keys, unary inclusion constraints and negations of unary keys;

—Cznaféﬁ unary keys, unary inclusion constraints and their negations.

Keys and foreign keys ofk r« are a natural generalization of their relational
counterpart, and are capable of capturing those relational constraints. A foreign
key is a combination of two constraints: an inclusion constraint and a key. The
Ck'5 constraints are a special case(gfr« constraints, which involve a single
attribute. These unary keys and foreign keys are similar to but more general than
XML ID and IDREF specifications. The study on simple constraints defined with
XML attributes is a first step towards understanding the interaction between in-
tegrity constraints and schema specifications for XML. As will be seen shortly,
the analyses of these simple constraints are already very intricate in the presence
of DTDs.

As generalizations af, 7y constraintsC ™. andC, ... both allow the pres-
ence of unary inclusion constraints mdependent of keys In addﬁjj&?ﬁ: includes
negations of unary keys, ar&li“a:éﬁ further permits negations of unary inclusion
constraints. Negation is considered mainly for the studymgdlication of Ce
constraints, which is the complement of a special case of the consistency prob-
lem forCK”afé (respectivelyC,>¥._): given any DTDD and any finite sek of
unary keys and inclusion constraints, is it the case that all XML trees satisfying
and conforming taD also satisfy some other unary key (respectively, unary key
or inclusion constraint)? This question is important in, among other things, data
integration. For example, one may want to know whether a constaiaids in
a mediator interface, which may use XML as a uniform data format [Baru et al.
1999; Papakonstantinou and Vianu 2000]. This cannot be verified directly since the
mediator interface does not contain data. One way to verif/to show that it is
implied by constraints that are known to hold [Florescu et al. 1996].

These problems, however, turn out to be far more intriguing than their counter-
parts in relational databases. In the XML setting, DTDs do interact with keys and

foreign keys, and this interaction may lead to problems with XML specifications.

Examples. Toillustrate the interaction between XML DTDs and key/foreign
key constraints, consider a DTD,, which specifies a (nonempty) collection of
teachers:

<!ELEMENT teachers (teacher')>
<!ELEMENT teacher (teach, research)>
<!ELEMENT teach (subject, subject)>

It says that ateacher teaches two subjects. Here we omit the descriptions of elements
whose type is string (e.g., PCDATA in XML).
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teachers

T

teacher © ©® ® teacher

@name teach research

"Joe" /\ J/

subject subject  "Web DB"

d

"DB"  @taught_by "XML"  @taught_by
"Joe" "Joe"

FiG. 1. An XML tree conforming taD;.

Assume that each teacher has an attribhate: and each subject has an attribute
taught_by. Attributes are single-valued. That is, if an attribuie defined for an
elementtype ina DTD, then in a document conforming to the DTD, each element
of typer must have a uniqueattribute with a string value. Consider a set of unary
key and foreign key constraintx;:

teacher.name— teacher
subject.taughby — subject
subject.taughby C teacher.name.

That is,name iS a key ofteacher elements;taught by iS a key ofsubject
elements and it is also a foreign key referenaiage of teacher elements. More
specifically, referring to an XML tre&, the first constraint asserts that two distinct
teacher nodes inT cannot have the samme attribute value: the (string) value
of name attribute uniquely identifies aeacher node. It should be mentioned
that two notions of equality are used in the definition of keys: we assume string
value equality when comparingame attribute values, andodeidentity when it
comes to comparingeacher elements. The second key states thaight by
attribute uniquely identifies saubject node inT. The third constraint asserts that
for anysubject nodex, there is a&eacher nodey in T such that theaught by
attribute value ofx equals thename attribute value ofy. Sincename is a key

of teacher, the taught by attribute of anysubject node refers to a unique
teacher node.

Obviously, there exists an XML tree conforming la, as shown in Figure 1.
However, there is no XML tree that both conformsg and satisfies;. To see
this, let us first define some notations. Given an XML tfeand an element type
7, we useexi(r) to denote the set of all the nodes labeteith T. Similarly, given
an attributd of r, we useexi(z.l) to denote the set df attribute values of alt
elements. Then, immediately froly follows a set of dependencies:

|exi{teacher.namg = |ex{teache}]|,
|exi(subject.taughby)| = |exi{(subjec}|,
|exi(subject.taughby)| < |ex{teacher.nampg,
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where| - | is the cardinality of a set. Therefore, we have
|exi{(subjec}| < |ex{teache}]. Q)

On the other hand, the DTD, requires that each teacher must teach two subjects.
Since no sharing of nodes is allowed in XML trees and the collectiareaéher
elements is nonempty, from; follows:

1 < 2 |ex{teache}| = |exisubjec}|. (2)

Thus |ex{{teache}| < |exisubjec}|. Obviously, (1) and (2) contradict with each
other and therefore, there exists no XML tree that both satisfiesind con-
forms toD;. In particular, the XML tree in Figure 1 violates the kaybject.taught
by — subject

This example demonstrates that a DTD may impose dependencies on the cardi-
nalities of certain sets of objects in XML trees. Theardinality constraintsnteract
with keys and foreign keys. More specifically, keys and foreign keys also enforce
cardinality constraints that interact with those imposed by DTD. This makes the
consistency analysis of keys and foreign keys for XML far more intriguing than
that for relational databases. Because of the interaction, simple key and foreign key
constraints (e.g.x1) may not be satisfiable by XML trees conforming to certain
DTDs (e.g.,Dj).

As another example, consider the DT given below:

<!ELEMENT db (foo)>
<IELEMENT foo (foo)>

Observe that there exists no finite XML tree conformindto This demonstrates
thatthere is need for studying consistency of XML specifications eveninthe absence
of integrity constraints.

Contributions  The main contributions of the article are the following:

(1) Forthe clas€k g« of keys and foreign keys, we show that both the consistency
and the implication problems are undecidable.

(2) These negative results suggest thatwe look atthe restr{dﬂéﬁfnof unarykeys
and foreign keys (which are most typical in XML documents). We provide a
coding of DTDs and these unary constraints by linear constraints on the integers.
This enables us to show that the consistency probleltffiﬂ‘?,‘iﬁy (even under the
restriction to primary keys, that is, at most one key for each element type) is
NP-complete. We further show that the problem is still in NP for an extension
C™ % which also allows negations of key constraints.

(3) Using a different coding of constraints, we show that the consistency problem
remains in NP foc, />, the class of unary keys, unary inclusion constraints

and their negations. Among other things, this shows that the implication prob-

lem for unary keys and foreign keys is coNP-complete.

(4) We also identify several tractable cases of the consistency problem, that is,
practical situations where the consistency problem is decidable in PTIME.

The undecidability of the consistency problem contrasts sharply with its trivial
counterpart in relational databases. The coding of DTDs and unary constraints with
linear integer constraints reveals some insight into the interaction between DTDs
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and unary constraints. Moreover, it allows us to use the techniques from linear
integer programming in the study of XML constraints.

It should be mentioned that as XML Schema and XML Data both subsume
DTDs and they support keys and foreign keys which are more general than those
considered here, the undecidability and NP-hardness results carry over to these
schema specifications and constraint languages for XML.

Related Work Keys, foreign keys and the more general inclusion and func-
tional dependencies have been well studied for relational databases (cf. [Abiteboul
et al. 1995]). In particular, the implication problem for unary inclusion and func-
tional dependencies isin linear time [Cosmadakis et al. 1990]. In contrast, we shall
show that the XML counterpart of this problem is coNP-complete.

The interaction between cardinality constraints and database schemas has been
studied for object-oriented [Calvanese and Lenzerini 1994a, 1994b] and extended
relational data models [Kanellakis 1980]. These interactions are quite different from
what we explore in this article because XML DTDs are defined in terms of extended
context free grammars and they yield cardinality constraints more complex than
those studied for databases.

Key and foreign key specifications for XML have been proposed in the XML stan-
dard [Bray et al. 1998], XML Data [Layman et al. 1998], XML Schema [Thompson
etal. 2001], and in arecent proposal for XML keys [Buneman et al. 2001]. The need
for studying XML constraints has also been advocated in Widom [1999]. DTDs in
the XML standard allow one to specify limited (primary) unary keys and foreign
keys with ID and IDREF attributes. However, they are not scoped: one has no con-
trol over what IDREF attributes point to. XML Data and XML Schema support
more expressive specifications for keys and foreign keys with, for example, XPath
expressions. However, the consistency problems associated with constraints de-
fined in these languages have not been studied. We consider simple XML keys and
foreign keys in this paper to focus on the nature of the interaction between DTDs
and constraints. The implication problem for a class of keys and foreign keys was
investigated in Fan and Senh [2001], but in the absence of DTDs (in a graph
model for XML), which trivializes the consistency analysis. For keys of [Buneman
et al. 2001a], the implication problem was studied [Buneman et al. 2001b] in the
tree model for XML, but DTDs were not considered there. To the best of our knowl-
edge, no previous work has considered the interaction between DTDs and keys and
foreign keys for XML (in the tree model). This article is a full version of Fan and
Libkin [2001], providing the details and the proofs omitted there.

A variety of constraints have been studied for semistructured data [Abiteboul and
Vianu 1999; Buneman et al. 2002; Fernandez et al. 1999]. In particular, Fernandez
et al. [1999] also studies the consistency problem; the special form of constraints
used there makes it possible to encode consistency as an instance of conjunctive
query containment. The interaction between path constraints and database schemas
was investigated in [Buneman et al. 1999]. These constraints typically specify in-
clusions among certain sets of objects in edge-labeled graphs, and are not capable
of expressing keys. Various generalizations of functional dependencies have also
been studied [Hara and Davidson 1999; Ito and Weddell 1995 ]. But these gen-
eralizations were investigated in database settings, which are quite different from
the tree model for XML data. Moreover, they cannot express foreign keys. Appli-
cation of constraints in data transformations was studied in Lee and Chu [2000];
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usefulness of keys and foreign keys in query optimization has also been recognized
[Popa 2000].

Organization Therestofthe article is organized as foIIows Section 2 defines
four classes of XML constraints, namef, «, Cy g Cye~ e @ndC, ™. Section 3
establishes the undecidability of the consistency problen&tq;K, the class of
keys and foreign keys. Section 4 provides an encoding for DTDs and unary con-
straints with linear integer constraints, and shows that the consistency problems are
NP-complete fo€,"e¢ andC, .. Section 5 further shows that the problem remains
in NP forC ”ary_, the class of | unary keys, inclusion constraints and their negations.
Section 6 summanzes the main results of the article and identifies directions for

further work.

2. DTDs, Keys and Foreign Keys

In this section, we first present a formalism of XML DTDs [Bray er al. 1998] and
the XML tree model. We then define four classes of XML constraints.

2.1. DTDs AND XML TREeES We extend the usual formalism of DTDs (as
extended context free grammars [Beeri and Milo 1999; Calvanese et al. 1999;
Neven 1999]) by incorporating attributes.

Definition 2.1. A DTD (Document Type Definitignis defined to beD =
(E, A, P, R, r), where:

—E is afinite set oklement types
—Ais a finite set ofattributes disjoint fromE;

—P is a mapping fromE to element type definitiongor eachr € E, P(z) is a
regular expressioa defined as follows:

a = S|t |€e| aao]| aa | a

wheres denote$tnngtype 7’ € E, € is the empty word, and|*, “,” and “x”
denote union, concatenation, and the Kleene closure, respectlvely,

—Ris a mapping fronE to P(A), the power-set of\; if | € R(z), then we say
is defined forr;

—r € E and is calledhe element type of the raot

We normally denote element types byand attributes by. Without loss of gen-
erality, assume that does not occur irP(r) for anyt € E. We also assume that
eachr in E \ {r} is connected to rthat is, either occurs inP(r), or it appears in
P(z’) for somer’ that is connected to.

As an example, let us consider theacher DTD D, given in Section 1. In our
formalism, D1 can be represented a8,( Ai, P1, Ry, r1), where

E; = {teachers teacher teach research subjec}
A; = {name taughtby}

P:(teachery}=teacher teachef

Pi(teachej =teach research

Pi(teacH =subject subject

Pi(subjecy = Py(research=5s
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Ri(teache} = {namg

Ri(subjecy = {taughtby}

Ry (teachery= R;(teach = Ry(research=0
r, =teachers

Similarly, we represent the DT, given in Section 1 asH,, Ay, P., Ry, r)),
where

E, = {db, foo}

A =0

P,(db) = P,(foo)=foo
Rx(db) = Ry(foo)=¢
r,=db

An XML document is typically modeled as a node-labeled ordered tree. Given
a DTD, we define the notion of its valid documents as follows.

Definition 2.2. LetD = (E, A, P, R, r)beaDTD. AnXML tree T valid with
respect to D(conforming to D is defined to bd = (V, lab, ele att, val, root),
where

—V is afinite set ohodeg(vertice3;

—labis a function that maps each nodévro a label inE U AU {S}; anodev € V
is called arelement of if lab(v) = r andt € E, anattributeif lab(v) € A, and
atext noddf lab(v) = S;

—eleis a partial function defined on elements\in for any t € E, it maps each
elementv of type t to a (possibly empty) list, . . ., vn] of elements and text
nodes inV such thatiab(vy) - - - lab(vy) is in the regular language defined by
P(r);

—att is a partial function fronV x Ato V such that for anw € V andl € A,
att(v, 1) is defined ifflab(v) = 7, T € E andl € R(7);

—val is a partial function fronV to string values such that for any nodes V,
val(v) is defined ifflab(v) = S orlab(v) € A,

—rootis the unique node iV such thatab(root) = r, calledthe root of T.

For any element € V, the nodes’ in elg(v) are called thesubelementsf v. For
anyl € A, if att(v, I) = v’ thenv’ is calledan attributeof v. In either case we say
that there is g@arent—child edgé&rom v to v'. The subelements and attributessof
are called itcchildren An XML tree has a tree structure, that is, for each V,
there is a unique path of parent-child edges froot to v. We write T &= D when
T is valid with respect tdD.

Intuitively, V is the set of nodes of the trée The mappindab labels every
node ofV with a symbol fromE U A U {S}. Text nodes and attributes are leaves.
For an elemenk of type t, the functionsele and att define the children ok,
which are partitioned intsubelementandattributesaccording toP(tr) and R(t)
inthe DTDD. The subelements ofare ordered and their labels satisfy the regular
expressiorP (). In contrast, its attributes are unordered and are identified by their
labels (names). The functioral assigns string values to attributes and text nodes.
We consider single-valued attributes. That i,4f R(7) then every element of type
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7 has a uniqu¢ attribute with a string value. Since has a tree structure, sharing
of nodes is not allowed it .

For example, Figure 1 depicts an XML tree valid with respect to the D
given in Section 1.

Our model is simpler than the models of XQuery [Chamberlin et al. 2001]
and XML Schema [Thompson et al. 2001] as DTDs support only one basic type
(PCDATA or string) and do not have complex type constructs. Furthermore, we do
not have nodes representing namespaces, processing instructions and references.
These simplifications allow us to concentrate on the essence of the DTD/constraint
interaction. It should further be noticed that they do not affect the lower bounds
results in this article.

We need the following notations throughout this article: for ang E U {S},
exi{(t) denotes the set of all the nodesTiHabeledr. For any nodec in T labeled
by ¢ and for any attributé € R(z), we write x.I for val(att(x, 1)), that is, the
value of the attributel of nodex. We defineex{z.l) to be {x.I | x € ex{t)},

which is a set of strings. For eaehelementx in T and a listX = [l4, ..., 1] of
attributes inR(t), we usex[ X] to denote the list oX-attribute values o, that is,
X[X] = [X.l4, ..., X.I]. For a setS, | S| denotes its cardinality.

2.2. XML CONSTRAINTS We next define our constraint languages for XML.

We consider three types of constraints. Bet= (E, A, P, R, r) be a DTD,
andT be an XML tree valid with respect tD. A constrainty over D has one of
the following forms:

—Key. t[X] — 7, wherer € E andX is a set of attributes iR(z). The XML tree
T satisfiesp, denoted byl = ¢, iffin T,

v xy € exi(t) (/\(x.l =yl) > x= y) .
leX

—Inclusion Constraintty[ X] C 1,[Y], wherety, 7, € E, andX, Y are nonempty
lists of attributes inR(z;), R(z2) of the same length. We wrif€ = ¢ iffin T,

VX € exi(ty) 3y € exi(t2) (X[X] = y[Y]).

—Foreign Key A combination of two constraints, namely, an inclusion constraint
71[X] € 1o[Y] and a keyro[Y] — 1. We write T |= ¢ iff T satisfies both the
key and the inclusion constraint.

Thatis, a keyt[ X] — t indicates that the sé& of attributes is a key of elements
of 7, that is, two distinct nodes inT cannot have the sam¢-attribute values; an
inclusion constraint,[ X] C 15[ Y] says that the list oK-attribute values of every
71 hode inT must match the list oY -attribute values of some& node inT; and
an foreign keyr;[ X] C 1o[Y], 12[Y] — 12 indicates thaiX is a foreign key ofr;
elements referencing key of r, elements.

Over a DTDD, the clas€k g« of constraints consists of all the keys and foreign
keys overD. They are callednulti-attributekeys and foreign keys as they may be
defined in terms of multiple attributes.
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To illustrate keys and foreign keys @k r«, let us consider a DTID3 =
(Es, As, P3, Rs, r3), where

Es = {school student course enroll, name subject
Az = {studentid, courseno, depf
Ps(schoo) = coursé, student, enroll*
Ps(coursg = subject

Ps(student=name

Ps(enroll) = P3(namg = P3(subjeci=S
Rs(coursg = {dept courseno}
Rs(student= {studentid}

Rs(enroll) = {studentid, dept courseno}
Rs(schoo) = R3(nameg = Rs(subjecj =@
rs =school

Typical Ck g« constraints oveDg include:

(1) studentstudentid] — student

(2) coursg¢dept courseno] — course

(3) enroll[studentid, dept courseno] — enroll,

(4) enroll[studentid] C studenfistudentid],

(5) enroll[dept courseng] € coursgdept coursenq.

The first three constraints are key€ing«, and the pairs (4, 1) and (5, 2) are foreign
keys inCk k. The last two constraints are inclusion constraints.
Itis worth mentioning that two notions of equality are used to define keys: string
value equality is assumed il = y.I (when comparing attribute values), and
X = yis true if and only ifx andy are the same node (when comparing elements).
This is different from the semantics of keys in relational databases. Note that a
foreign key requires the presence of a key in addition to an inclusion constraint.
The class of unary keys and foreign keys for XML, denotedchiEY, is a
sublanguage afx r«. A CK,FQ/ constraintis &g g« constraint defined with a single

attribute. More specifically, eonstrainty of C"¢ over the DTDD is either

—key 7.l — 1, wherer € E andl € R(z); or
—foreign key 1.1 C 1.1, and 1,1, — 15, wherety, 1, € E, |1 € R(r1), and
|2 (S R(‘L’z).

For example, the constraints Bf given in Section 1 aréz?ﬁ[{ constraints over
the DTD D;.
We shall also consider the following types of unary constraints Buver

—inclusion constraintzy.l; € 1,.15; unlike a foreign key, it does not require the
presence of a key;

—the negation of an inclusion constraing = 71.l1 € .15, for an XML tree
T, T & ¢ iff there is ar; elementx in T such that for alk, elementy in T,
X1 # yly;

—thenegation of akeyy = 7.l 4 1; T = ¢ iff there arer elements, xo in T
such thatx;.]| = x,.I, that is, the value of theattribute of ar element cannot
uniquely identify it inexi{(t).
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With these we define two extensions@fs; as follows. One i€, >, the class
consisting of unary keys, unary inclusion constraints and negations of unary keys.
The other,C,Li'la[(y:_, consists of unary keys, unary inclusion constraints and their
negations. As' mentioned earlier, we consider these classes mostly for the study of
the implication problem fo€,"7 constraints.

Finally, we describe the consistency and implication problems associated with
XML constraints. LeC be one ofCk r«, Cg'ges Cyre OF Cyre.., D @a DTD, T a
set ofC constraints oveb andT an XML tree valid with respect t®. We write
T &= X whenT = ¢ forall ¢ € X. Let g be anothe€ constraint. We say that
impliesg overD, denoted by D, X) F ¢, if for any XML tree T such thafl = D
andT & X, it must be the case that = ¢. It should be noted whep is a foreign
key, ¢ consists of an inclusion constraipt and a keyp,. In this case D, X) - ¢
in fact means thatl, ) F ¢1 A ¢».

The central technical problem investigated in this article ictvesistency prob-
lem The consistency problem f@ris to determine, given any DTD and any set
Y. of C constraints oveD, whether there is an XML tre€ such thafl = ¥ and
T =D.

Theimplication problenfor C is to determine, given any DTD, any setz and
¢ of C constraints oveD, whether D, X) F ¢.

3. General Keys and Foreign Keys

In this section, we stud¥x r«, the class of multiattribute keys and foreign keys.

We show that the consistency and implication problemg&§og are undecidable,

but we identify several special cases of the problems and show that these cases are
decidable in PTIME.

3.1. UNDECIDABILITY OF CONSISTENCYANALYSIS. Ourmainresultis negative:
THEOREM 3.1. The consistency problem fGk g« constraints is undecidable.

PrROOF We first show that an implication problem associated with keys and
foreign keys in relational databases is undecidable, and then present a reduction
from (the complement of) the implication problem to the consistency problem for
Ck rk COnstraints.

Let us first review keys, foreign keys and their associated implication problems
in relational databases (cf. [Abiteboul et al. 19985]). Ret (Ry, ..., R)) be a
relational schema. For each relation (scheRah R, we write Att(R;) for the set
of all attributes ofR;, andIinst(R;) for the set of finite instances & . By database
instances, we medinite instances. An instandeof R has the form iy, ..., I,),
wherel; € Inst(R;) for all i € [1, n]. For an instancé; € Ins{R;), a tuplet € I
and an attributé € Att(R), we uset.| to denote thé attribute value of. Keys and
foreign keys oveR are defined as follows:

—Key. R[l1,...,lIk] &> R, whereR € R, and for anyi € [1,K], i € Attf(R). An
instancd of R satisfieghe key constrainp, denoted by = o, if

Vit € | ( N\ @hi=th)—> A (tl =t2.I)),

1<i<k leAtt(R)

wherel is the instance oRin |;
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—Foreign Key R[l1, ..., Ik] € Rl3,....[]andRT[l}, ..., [}]] = R, whereR,
R areinR, [l1,..., k] and [}, ..., I] are lists of attributes irAtt(R) and in
Att(R'), respectively. In addition, the set consistindof. . ., I, is a key ofR".
We writel = ¢ if | = R[l3, ..., ;] — R and moreover,

Vipel dtpel’ ( N tal] :tz.lg),
1<j<k

wherel andl’ are the instances @& and R’ in |, respectively.

Let ¥ U {p} be a set of keys and foreign keys owrerWe useX + ¢ to denote that
¥ impliesg, that is, for any instanceof R, if | = Z, thenl = ¢.

In relational databases, tivaplication problem for keys and foreign kdgghe
problem of determining, given a relational scheRaany set andg of keys and
foreign keys oveR, whetherZ + ¢. A special case of the problem s tingplication
problem for keys by keys and foreign kewhich is to determine wheth& + ¢
whereg is a key andX is a set of keys and foreign keys ovr

It was shown in Fan and Simoh [2000] that the implication problem for keys
and foreign keys in relational databases is undecidable. The lemma below shows a
stronger result.

LEmmA 3.2. Inrelational databases, the implication problem for keys by keys
and foreign keys is undecidable.

PROOFE.  We prove this by reduction from the implication problem for func-
tional dependencies by functional and inclusion dependencies, which is un-
decidable. Before we give the reduction, we first review functional and in-
clusion dependencies in relational databases. Rebbe a relational schema.
Functional dependencies (FDs) and inclusion dependencies (ID$} avedefined
as follows.

—FD. R: X — Y, whereR € R, andX andY are subsets of attributes Ait(R).
Aninstance of R satisfiegshe FDg, denoted by = 6,if Vit € | (/A cx(t1] =
t2.1) = Ay oy(tel” = t21)), wherel is the instance oR in |. Observe that keys
are a special case of FDs in whi¥h= Att(R).

—ID. R[l1,....Ik] € R}, ..., ], whereR, R" € R, [l1,....l] is a list of
attributes inAtt(R), and [, ..., 1] is a list of attributes inAtt(R’). In contrast
to foreign keys, the set consisting 4f . .., I} is not necessarily a key dv'.

An instancel of R satisfiesthe ID 0, denoted byl = 0, if Vt; € | 3t €
1" (A1<j<ctrlj = t21}), wherel, 1" are the instances &, R'in |, respectively.

Let X U {6} be a set of FDs and IDs ov&. We useX + 6 to denote that:
impliesé as for keys and foreign keys. Thmplication problem for FDs by FDs
and IDsis the problem to determine, given any relational sch@&nany set of
FDs and IDs oveR and a FD8 over R, whetherX F 6. This is a well-known
undecidable problem (see, e.g., Abiteboul et al. [1995] for a proof).

We encode FDs and IDs in terms of keys and foreign keys as follows.

(1)FDy =R: X — Y.

Note that every relatioRR has a key. In particulaAtt(R), the set of all attributes
of R, is a key ofR. Let Z be a key forR, that is,R[Z] — R. We define a new
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(fresh) relation schemR,e,, such thatAtt(R.e,) = XY Z that is, the union ok,
Y and Z. Intuitively, given an instancé of R, an instancd e, 0f Ry iS t0 be
constructed as a subsetldfyA 1) such thafllxy(l) = Mxy(lhew) andl e, Satisfies
the keyR,el XY] — Rnew, WhereIly /(1) denotes the projection df on attributes
W. That is, we eliminate tuples ifixyA 1) that violate the key. Observe thdyZ
is a key for bothR,¢,andR since it is the set of all attributes &, and it contains
the keyZ of R (i.e., itis asuperkeyf R). Thus, we encodé with:

$1 = Ruell X] = Roew ¢2 = RIXY] S Rieu[ XY],
¢3 = Riel XY Z S RIXY 2, ¢4 = Rie XY] = Reew

(2) ID ¢ = Ry[X] € Ro[Y].

Let Z be a key forR,, that is,R;[Z] — R,. We define a new scheni.,, such that
Att(R.ew) = Y Z. Intuitively, given an instance of Ry, an instance,e,, of R.ewiS
to be constructed as a subsetidf(l,) by eliminating tuples that violate the key
Rienl Y] = Rnew such thatily(l,) = Ty (lnew) andl ey Satisfies the key. Observe
thatYZis a key forR; since it contains the ke¥ of Ry, that is, it is a superkey of
R,. Thus, we encod¢ with:

#1 = Riell Y] = Riew @2 = Ri[X] € Rie[Y], ¢3= Rl Y Z] € Ro[Y Z].

We next show that the encoding is indeed a reduction from the implication problem
for FDs by FDs and IDs to the implication problem for keys by keys and foreign
keys. Given a relational scheni® a setx of FDs and IDs oveR, and a FD

0 = Ry : X — Y overR, as described above we encafevith a setX; of keys

and foreign keys, and encodewith

¢ = Rgew[x] - Rgew’ ¢2 = RG[XY] - Rgev\,[XY]a
¢3= RLIXYZA C RIXYZ, ¢s=RIXY] > R,

Let X' = X1 U {¢2, @3, ¢4}. It suffices to show thaE F 6 iff T’ + ¢;.
Let R’ be the relational schema that includes all relation schemfasimwell as
new relations created in the encoding. We show the claim as follows:

(1) Suppose that there is an instahad R such that = /A £ A —6. We show
that there is an instandéof R’ such that’ = /\ £’ A —¢1. We construct’ such
that for anyR in R, the instance oR in I is the same as the instanceRfin I.

We populate instances of new relatidRg,, created in the encoding as mentioned
above. (a) IfR.yis introduced in the encoding of a AR: X — Y then we let the
instancel pew Of Ryewin I’ be a subset dilxyA1) such thafTyy(l) = Mxy(lhew) and
Ihew = Rield XY] = Riews Wherel is the instance oRin I. (b) If Reyis introduced

in the encoding of an IR [ X] € Ry[Y] then let the instanck,e, Of R, in 1’ be a
subset of Ty 1) such thatly(l2) = Iy (lhew) aNdloew = Rienl Y] = Riews Where

I, is the instance oR; in |. It is easy to verify that’ = A\ T/ A —¢.

(2) Suppose that there is an instaricef R’ such that’ = A\ £’ A —¢1. We
construct an instanceof R by removing froml’ all instances of new relations
introduced in the encoding. It is easy to verify that /\ £ A —6.

Therefore, the encoding is indeed a reduction from the implication problem for
FDs by FDs and IDs. This shows that the implication problem for keys by keys and
foreign keys is undecidable[]
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From Lemma 3.2 follows that the complement of the implication problem for
keys by keys and foreign keys is also undecidable. That is to determine, given a
relational schem®, a setx of keys and foreign keys ovét and a keyy overR,
whether there is an instance Rfsatisfying/\ ~ A —g.

We now continue with the proof of Theorem 3.1, that is, the consistency problem
for Ck rx constraints is undecidable. Given Lemma 3.2, it suffices to give areduction
from the complement of the implication problem for keys by keys and foreign keys.
LetR=(Ry,..., R)) be a relational schem& be a set of keys and foreign keys
overR, andy = R[X] — Rbe akey oveR. LetY = Att(R) \ X. We encoder,
® andg in terms of a DTDD and a se® of Ck g« constraints oveD as follows.
LetD = (E, A, P, Ra, r), where

E :{Ri || E[l,n]}U{ti || E[l,n]}U{r, DY’ EX}

A= ] At(R)

ieLn]
P(r) =Ry, ..., Ry, Dy, Dy, Ex
P(R) =t fori € [1,n]
Pti) =c¢ fori € [1,n]
P(Dy) =P(Ex)=¢
Ra(ti) =At(R) fori € [1,n]
Ra(Dy)=XUY
Ra(Ex) =X
Ra(r) =Ra(R)=9 fori € [1,n]

We denoteP(R) = t; for the relationR in ¢. Note thatR = Rs andt, = ts for
somes € [1, n].
We encode® andy with ¥ = Xg U X, whereXg is defined as follows:

—Xg includest;[Z] — t; if ® includes akeyR[Z] - R;
—2Xg includesti[Z] C t;[Z'], t;[Z'] — t; if ® has aforeign keR [Z] € R;[Z'],
Ri[Z] - R;.

The set®,, consists of the following:
Dy[Y] — Dy, Ex[X] — Ex, Dy[X] - Ex[X], Dy[X, Y] - t(p[X, Y],
t,[XY] — t,,

where [X, Y] stands for the concatenation of listand listY, andt,, is the grammar
symbol inP(R) = ty. Observe thaftt(R) = X U'Y and thusXY is a key oft,.

As depicted in Figure 2, in any XML tree valid with respectothere are two
distinctDy nodedd; andd, that have all the attributes KU Y, and a singlécx node
having all attributes irX. If T = X, then (1)di[ X] = dy[ X] by Dy[X] € Ex[X]
and the factex{Ex)| = 1; and (2)d1[Y] # d2[Y] by Dy[Y] — Dy. These nodes
will serve as a witness forg.

Given these, we show th#{ ® A —¢ can be satisfied by an instanceRff and
only if ¥ can be satisfied by an XML tree valid with respectllo Assume that
there is an instandeof R satisfying/\ ® A —¢. We construct an XML tre& from
| as follows. LetT have a root node and aR; node for eachR; in R. For any
R € R and each tuplg in the instance oR in |, we create a distindt hodex
such thatp.l = x.| foralll € Att(R,). Sincel = —¢, there are two tuplep and p’
in the instance oRin | such thatp[ X] = p'[X] and p[Y] # p'[Y]. We create two
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r
R1 Ri Rn Dy Dy Ex
ti ti ti /\ /\ A
DY A DY @XY @XY @X

@At(Ri)

Fic. 2. Atree used in the proof of Theorem 3.1.

distinct Dy nodesd; andd, such that;.| = p.l andd,.| = p'.l foralll € Att(R).
In addition, we create a singEEx nodee such thate.l = p.l for alll € X. We
define the edge relation df such thafl has the form shown in Figure 2. It is easy
to verify thatT = D.By| = @ itis easy to verify thal = X¢. By the definition
of T, itis also easy to see thlit|= X, In particular, sincétt(R) = X UY and the
set of all attributes of a relation is a key of the relation, we have t, [ XY] — t,,
wheret, is the symbol inP(R) = t}. Therefore,T = X. Conversely, suppose
thatD has a valid XML treeTl that satisfies. We define an instandeof schema
R as follows. For each nodex, let I = X.I4,...,In = X.Iy) be a tuple in the
instance ofR in |, wherely, ..., |, are an enumeration &tt(R;). Obviouslyl
is an instance oR. By T & X, it is easy to verify that = ®. Moreover, by
T = %, and the definition of, we havel = —¢ since there must be two tuples
d; andd; in the instance oR in | such thatd;[ X] = dy[ X] but di[Y] # dy[Y].
Thus, the encoding is indeed a reduction from the complement of the implication
problem for keys by keys and foreign keys.

This completes the proof of Theorem 3.1.]

3.2. INDECIDABILITY OF IMPLICATION. We next consider the implica-
tion problem.

LeEmMA 3.3. The following problems are undecidable: given any DTD D, any
setX of Ck gk constraints over D, any unary key and unary inclusion constraint
@2 over D, whethe(l1) (D, X) F ¢1; (2) (D, X) - ¢2.

PrOOF. It suffices to establish a reduction from the consistency problem for
Ck rx to the complement of the implication problem td¢ r«. Let the DTDD be
(E, A, P, R, r). We define another DT’ = (E’, A, P/, R, r), where

E' = EU{Dy, Ex} whereDy, Ex are fresh element types

A =AU{K} whereK is a fresh attribute

P'(r) =P(r), Dy, Dy, Ex thatis,P(r) followed by twoDy elements
and anEyx element

P'(r) =P(1) forallz € E\ {r}
P'(Dy)=P'(Ex)=¢

R(Dy)={K}

R'(Ex)={K}

R(z) =R() forallz e E
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@K @K @K

Fic. 3. Atree used in the proof of Lemma 3.3.

We define a unary key1, a unary inclusion constraigb and another key over
D’ as follows:

91 = Dy.K — Dy, @2 = Dy.K C Ex.K, ¢ = Ex.K - Ex.

Clearly, ¥ is also a set ofk g« constraints oveD’. We next show that (1E is
satisfiable oveD iff A\ X A ¢ A g2 A ¢y is satisfiable oveD’; (2) T is satisfiable
overD iff \ £ A ¢ A @1 A —gy is satisfiable oveD’. For if these hold, then the
encoding is a reduction from the consistency problengfog, to the complements
of the implication problems described in Lemma 3.3.

We prove (1) as follows. If there exists a trée= D’ andT = AZ A ¢ A
@2 A @1, then we construct another tré@é by removingDy, Ex elements from
T. Obviously,T" = D andT’ = X. Conversely, suppose that there is a tree
T = D andT = . We construct another tré€ from T as shown in Figure 3.
Let us refer to the twdy elements inT’ asd;, dy, and theEx element as.
Letd;.K = db.K = eK. Then it is easy to see that = D', T" & ¥ and
T E¢ApA =g

We now prove (2). As above, we can show that if there is aTrge D’ and
T E /\ Z A ¢ A @1 A -z, then there exists another tréésuch thafl’ = D and
T’ &= X. Conversely, suppose thatthereisaffele- D andT = X. We construct
atreeT’ from T as shown in Figure 3. Again we refer to the tl)g elements in
T’ asd,, dy, and theEx element a€. Now letd;.K # d,.K. Theniitis easy to see
thatT' =D, T =T andT = ¢ A @1 A —go. [

From Lemma 3.3, we immediately obtain:

COROLLARY 3.4. For Ck gk constraints, the implication problem is
undecidable.

3.3. PTIME CecibABLE CASES  While the general consistency and implication
problems are undecidable, it is possible to identify some decidable cases of low
complexity. The first one is checking whether a DTD has a valid XML tree. This
is a special case of the consistency problem, namely, when the givenetof
constraints is empty. A more interesting special case involves keys onlgxLet
denote the set of all keys @k r«. Theconsistency problem faix is to determine,
given any DTDD and any se® of keys inCx over D, whether there exists
an XML tree valid with respect t® and satisfyingX. Similarly, we consider
the implication problem forCk r«: given any DTDD, any setx and¢ of keys
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in Ckx over D, whether D, X) F ¢. The next theorem tells that all these cases
are decidable.

THEOREM 3.5. The following problems are decidable in linear time:

(1) Given any DTD D, whether there exists an XML tree valid with respect to D.
(2) The consistency problem fGk .
(3) The implication problem fo€ .

PROOF

(1) The first problem of the theorem can be reduced to the emptiness problem
for a context free grammar (CFG). Observe that a DDB= (E, A, P, R,r) can
be viewed as an extended CK&p with r as its start symbok as a nonterminal
with a production rule, say§ — 0, and with attributesA and R) ignored. It is
easy to verify thaD has a valid XML tree if and only i5p is nonempty, that is, it
generates a terminal string (equivalently, a parse tree). Indeed, given an XML tree
T valid with respect td, one can construct a parse treeGy by modifying T,
that is, by removing attributes froffi and modifying its text nodes. Conversely,
given a parse tre€’ of Gp one can construct a valid XML tree &f by modifying
T’, that is, by adding attributes f' and removing children & nodes fromr”’. It
is straightforward to convert the extended CEBG@ to a CFGG in linear time, by
introducing new nonterminals and their (recursive) production rules to represent
Kleene closures. Moreoves, is nonempty if and only i is nonempty. Itis well
known that the emptiness problem for a CFG can be determined in linear time (cf.
[Hopcroft et al. 2000]). Putting everything together, a linear algorithm for checking
the validity of D works as follows: it first generates in linear time the CE&om
D, and then checks in linear time wheth@ris empty; it concludes thdD has a
valid XML tree if and only if G is nonempty. Thus the validity of DTDs can be
decided in linear time.

(2) We next prove the second statement of Theorem 3.5. That is, the consistency
problem forCk is decidable in linear time. Given any DTD and any sei®
of keys inCk over D, it suffices to show thak can be satisfied by an XML
tree valid with respect td if and only if D has a valid XML tree. For if it
holds, then the second statement follows immediately from the first statement of
Theorem 3.5.

We now show the claim. Suppose that there exists an XML tree
T, = (V, lab, ele att, val, root) valid with respect toD. We construct another
XML tree T, by modifying theval function inT; such that for any key[ X] — tin
%, |exi(t)| = |ex{(z.1)| in T, for everyl € X. Thatis,T, = t.l — t foralll € X.

More specifically, letT, = (V, lab, ele att, val, root). Observe that the only
difference betweeil; andT; is the definition of the functiomal. For anyvy, v, in
V with lab(v,) = t andlab(v,) = 7, we can makeal (att(vy, 1)) # val (att(vy, 1))
for anyl € X. Letval'(v) = val(v) for all other vertices irV. It is easy to verify
that T, is valid with respect td sinceT; is valid with respect tdD. In addition,
T, = t[X] — 7 since for anyx, y € ext(r), X[ X] # y[X]. The other direction is
immediate.

(3) Finally, we prove the last statement of Theorem 3.5. That is, the implication
problem forCy is decidable in linear time. To show this, we need the following
lemma:
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LEMMA 3.6. Forany DTD D and element typein D, it is decidable in linear
time whether there is an XML tree T such thaiET D and moreovenexi{t)| > 1
inT.

PROOF.  As in the proof of the first statement of the theorem, it is easy to show
thatgivenaDTID, one canfindinlineartime a CFGsuch thaD has a valid XML
tree in whichlex{(z)| > 1 if and only if the start symbal of G derives a terminal
stringw whose parse tree has at least tweodes. This can be transformed in linear
time to the problem of checking if a given CFG derives a string with at least two
occurrences of a given terminal symbol, which in turn can be solved inlinear time by
a minor modification of the emptiness test for CFG from Hopcroft et al. [2000].

Let X be a set of keys i@k over D, andg = t[X] — t be another key i€k
overD. We say thak subsumeg if there isp = 7[Y] — 7 in ¥ suchthaly C X,
thatis,p is asuperkeyf ¢. Using this and Lemma 3.6, we can prove the following:

LEmMmMA 3.7. LetDbeaDTDX asetofkeysifk over D,andp = t[X] —> 7
another key irCx over D. There is an XML tree T such that D, T = X but
T | —¢ if and only if X does not subsumeand moreover, there is an XML tree
T’suchthat T = D and|ex{r)| > 1in T’. In addition, this is decidable in linear
time in the sizes of D an® U {¢}.

PrROOF We first show that there is an XML tréesuchthafl =D, T = X
butT & —¢ iff X does not subsumeand moreover, there is an XML trdé such
thatT’ = D and|ex{(t)| > 1in T’. Suppose that there is an XML tr@esuch that
T ED, T E X andT = —¢. Then obviouslyT is valid with respect td, and
moreover, there must be at least twelementsl;, d, in T such that;[ X] = dy[ X]
butd; # d, sinceT = —¢. Thus, there must bex{(z)| > 1in T. In addition,Z
cannotcontair[Y] — t withY C X, since otherwise it would contradi€t = —¢
andT = X. Conversely, lef’ be a tree such that’ = D and|ex{(t)| > 1inT’.
Thus, there are at least twoelementd;, d, in T'. We construct a new treg by
modifying the string values associated with the attribute$’oivhile leaving the
other functions off ’ unchanged. More specifically, we I X] = do[ X]in T but
all other attributes have different string values. It is easy to verifyThat D and
T = —¢ by the definition ofT. To showT = X, suppose by contradiction that
there werep € T such thafl = —¢. Theng must be of the form[Y] — t where
Y C X, that is,¢ is a superkey op, since exceptl;[ X] = d,[ X], distinct nodes
in T have the different attribute values by the definitionTofThis contradicts the
assumption thal does not subsume Thus, the first statement of the lemma holds.

To show that this can be done in linear time, observe that, by Lemma 3.6, it
can be decided in linear time in the size@fwhether there is a tre€ such that
T = D and|ex{z)| > 1in T. In addition, it is decidable in linear time in the size
of ¥ U {¢} whethery is a superkey of some key A (see, e.g., Abiteboul et al.
[1995] for discussions about a linear time algorithm for checking implication of
functional dependencies). Thus, it is decidable in linear time in the sizBsanfd
> U {¢} whether these conditions hold(]

This suffices to prove the third statement of Theorem 3.5 becdlsE) + ¢
iff there is no XML treeT suchthafl = D, T = X butT & —¢. By Lemma 3.7,
the latter can be decided in linear time.

This completes the proof of Theorem 3.5.]
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Given Theorem 3.5, one would be tempted to think that when only foreign
keys are considered, the analyses of consistency and implication could also be
simpler. However, it is not the case. Recall that a foreign kegxofc consists of
an inclusion constraint and a key. Thus we cannot exclude keys in the presence
of foreign keys. It is not hard to show that consistency and implication of foreign
keys inCk e« remain undecidable.

4. Unary Keys and Foreign Keys

The undecidability of the consistency problem for general keys and foreign keys
motivates us to look for restricted classes of constraints. One important class is
CE“?E’, the class of unary keys and foreign keys. A cursory examination of existing
XML specifications reveals that most keys and foreign keys are single-attribute
constraints, that is, unary. In particular, in XML DTDs, one can only specify unary
constraints with ID and IDREF attributes.

In this section, we first investigate the consistency problerufi,Lfcl,i'i}er To simplify
the discussion and to establlsh a (slightly) stronger result, we consider a larger class
of constraints, namerCK c. the class of unary keys and unary inclusion
constraints. In contrast’ toC, 5y, Cg' allows the presence of unary
inclusion constraints independent of keys. We develop an encoding of DTDs
and CK”f‘Cry constraints with linear integer constraints. This enables us to reduce
the consistency problem fag,\~’ (and thus forC,7) to the linear integer
programming problem, one of the most studied NP-complete problems We then
use the same technique to show that the consistency problem remains in NP when
negations of keys are allowed, that is, the problenf‘fé? constraints is also in
NP. Finally, we identify several tractable cases of the conS|stency problems.

4.1. GDINGDTDS, UNARY CONSTRAINTS  We show thaf, "1’ constraints and

DTDs can be encoded with linear equalities and inequalities on the integers, called
cardlnallty constraintsThe encoding allows us to reduce the consistency problem
for CK”fgy constraints in PTIME to thénear integer programmingLIP) problem:

LINEAR INTEGER PROGRAMMING (LIP)

INPUT: Anm x n matrix A of integers and a column vectbof m
integers.

QUESTION: Does there exist a column veckoof n integers such that
AX > b?

That is, fori € [1, m],

> ajx =b,

jell.n]

wherea;; is the j th element of théth row of A, x; is the jth entry ofX andb; is the

ith entry ofb. It is known that LIP is NP-complete in the strong sense [Garey and
Johnson 1979]. In particular, when nonnegative integer solutions are considered,
Papadimitriou [1981] has shown that if the problem has a solution, then it has
another solution in which for alj € [1, n], x; is no larger tham (ma)>™1, where
a is the largest absolute value of elementiandb.

More specifically, we show the following:
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THEOREM 4.1. There is a polynomiglO(s? - log s)) time algorithm that, given
a DTD D and a set of CK”FCW constraints, constructs an integer matrix A and
an integer vectob such that there exists an XML tree valid with respect to D and
satisfyingX if and only if AX > b has an integer solution.

As an immediate result, we have:
COROLLARY 4.2. The consistency problem f6"sY constraints is in NP.

The proof of Theorem 4.1 is a bit involved. A road map of the proof is as follows:

Given a DTDD and a sek of ¢’ constraints oveD, we define inO(s? - logs)
time (in the sizes oD andx, denoted byD| and|%|, respectively) the following:

—another DTDDy, referred to as thaimplified DTD of D in which regular
expressions are restricted to have at most one operator: ejti{enion) or “”
(concatenatiorf) we reduce the consistency Bf and X to that of Dy and X,
i.e., there exists an XML tree valid with respect@oand satisfying> if and
only if there exists an XML tree valid with respect iy and satisfying>;

—a setCy, of linear integer constraints such that there is an XML tree valid with
respect toDy and satisfyingz if and only if there is an XML tree valid with
respect tadDy and satisfyingCs;

—a systemWp,, of linear integer constraints such that there exists an XML tree
valid with respect toDy if and only if W, admits an integer solution; the
cardinality constraints inlp, are more complex than those studied in the
context of object-oriented and relational databases [Calvanese and Lenzerini
19944, 1994b; Kanellakis 1980];

—finally, a system of integer constrainds(D, ¥) from Cx and Wp, such that
there exists an XML tree valid with respect b and satisfyingz if and only
if ¥(D, X) admits an integer solution.

Putting everything together, we reduce the consistency problecﬁi‘l’@‘ to the
existence of a solution of an instance of LIP, and thus obtain the NP bound.

PROOF OFTHEOREM4.1. We start by describing the process of simplifying
DTDs. We shall then present an encoding of unary constraints and DTDs. Finally,
we develop a characterization of XML specifications with both DTDs and unary
constraints in terms of linear integer constraints.

Simplifying DTDs. We first explain how to reduce the consistency problem
for Cf(’”f‘éy to that over simple DTDs. Intuitively, we replace long regular expressions
in P(z) by shorter ones. Formally, consider a DTD = (E, A, P, R, r). For
eacht € E, P(r) is a regular expressiom. A DTD is basically an extended
regular grammar (cf. [Calvanese et al. 1999; Neven 1999]); thus; « can
be viewed as the production rule for We rewrite the regular expressionby
introducing a selN of newelement types (nonterminals) such that the production
rules of the new DTD have one of the following forms:

T—>1T, T T—>Tl|ll, T—17T1 T— 8 T—>c¢€

2 We are grateful to one of the referees for suggesting this simplification of DTDs.
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wherer, 11, 7, are element types ik U N, S is the string type and denotes the
empty word. More specifically, we conduct the following “simplifying” process
on the production rule — «:

Q) f @« = (a1, a2), then we introduce two new element typgst, and replace
T — o with a new rulet — 14, 7. We proceed to process — «; and
7, — a3 in the same way.

(2) If @ = (a1 | @2), then we introduce two new element typgst, and replace
T — o With a new rulet — 1, | .. We proceed to process — o1 and
7, — a3 in the same way.

(3) If « = «f, then we introduce a new element typeand replace — o with
T — 11. We proceed to process — ¢ | a1, 11 in the same way.

(4) If « is one oft’ € E, S or ¢, then the rule for remains unchanged.

To avoid introducing unnecessary new element types, in the first two cases
above, ifa; (respectivelyws) is a symbol ofE U {S}, we do not introduce a new
element type for; (respectivelyws).

We refer to the set of new element types introduced when processingP(z)
asN; and the set of production rules generated/revisde} alote thatN, NE = ¢
foranyr € E.

We define anew DTy = (En, A, Pn, Ry, 1), referred to as theimplified
DTD of D (or just asimpleDTD if D is clear from the context), where

—ENn = E U [U,ce N;, that is,E plus those new element types introduced in the
simplifying process;

—Pn = U, e P, that is, production rules generated/revised in the simplifying
process;

—RN(7) = R(z) for eachr € E, andRy(tr) = @ for eachr € En\E.

Note that the root element typeand the sefA of attributes remain unchanged.
Moreover, elements of any type Ey\ E do not have any attribute. Note thag
does not contain the Kleene sta#

For example, the simplified DTD db; given in Section 1iD) = (EJ, Ay,
PN, RN, r), where

E) = {teachersteacher teach researchsubject 7}, 72, 7.}
A; = {name taughtby}
P\ (teacher3=teacher 7}

PlN (Ttl) =T | th

PlN (Te) =€

PN (z?) =teacher 7}

PlN (teachej =teach research
PN(teach) = subject subject

PN (subjecy = PN(research=s

RN (teache} = {name

RI'(subjecy = {taughtby}

R} (teachery= R}'(teach = R} (research = R} (z}) = R} (z?)
= R{\I (te)=0

r; =teachers
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Heret!, 2, 7. are the new element types introduced.

The simplified DTDD2N of D, in Section 1 is the same & itself.

Obviously, any seE of ;" constraints oveD is also a set of "%’ constraints
over the simplified DTDDy of D. The next lemma establishes the connection
betweenD and Dy, which allows us to consider only simple DTDs from now on.

LEMMA 4.3. Let D be a DTD, [y be the simplified DTD of D anil be a set

of Cﬁ’ff‘éy constraints over D. Then there exists an XML treesiich that T = D
and T, = X iff there exists an XML tree;Buchthat 7 =Dy and © = 2.

ProoFR. It suffices to show the following claim. For any XML tréle = D
one can construct an XML trée &= Dy, and for anyT, = Dy one can construct
T, & D, such that for any element typein D andl € R(z), |ex{(t)| in T, equals
lexi(t)| in Ty, andexi(z.l) in T, equalsexi{z.l) in T.

We first prove the lemma assuming that the claimis true. Assume that there exists
an XML treeT; such thafl; = D andT; = X. Find the tre€l, = Dy as in the
claim. Suppose that theregse X such thafl, [~ ¢. If ¢ is a keyz.| — .7, then
there are two distinctnodesy e ex{z)in T; suchthak.l = y.I. Thus,ex{(z.l)| <
lex{(r)| in T, since every element has a singlattribute. Sincd; = ¢, it must be
the case thaexiz.l)| = |ex{(t)|in T; since the valug.l of eachx € exi{(t) uniquely
identifiesx among all the nodes iexi{(t). This contradicts the claim th&x{(z)| in
T, equalslexi(t)| in T; andex{(z.l) in T, equalsexiz.l) in T;. If ¢ is an inclusion
constraintr;.l; C 1.5, then there ix € exi(r1) such that for ally € ex{(z,) in Ty,
x.l1 # y.l,. Thatis,x.l1 € ex{(r2.12). By the claim,x.l; € ex{(r;.11) in T;. Since
T1 E ¢, we havex.l; € ex{(tz.12) in T;. Again by the claim, we havel; € exi(t2.l5)
in T, which contradicts the assumption. The proof for the other direction is similar.

We next verify the claim. Given an XML tred; = (Vi, laby, eley,
att, val, root) such thatl; = D, we construct an XML tred, by modifying Ty
such thafl, = Dy. Consider a elementv in T;. Letele)(v) = [vi, ..., Vvs] and

w = laby(v1) - - - laby(vn). RecallN, and P, the set of nonterminals and the set
of production rules generated when simplifying— P(t). Let Q. be the set of
E symbols that appear iR, plusS. We can viewG = (Q., N, U {r}, P., t) as

a context free grammar, whee€g, is the set of terminald\, U {r} the set of non-
terminals,P; the set of production rules andthe start symbol. Sincg, = D, we
havew € P(r). By a straightforward induction on the structureRy{(z) it can be
verified thatv is in the language defined I6y. Thus, there is a parse trééw) of the
grammaiG for w, andw is the frontier (the list of leaves from left to right) ®f{w).
Without loss of generality, assume that the rooff@#v) is v, and the leaves are
V1, ..., Vp. Intuitively, we construct, by replacing each elemewin T; by such a
parse tree. More specifically, [€& = (V,, lab,, ele, att, val, root). HereV, con-
sists of nodes i¥; and the internal nodes introduced in the parse trees. Foreach
in Vy, letlaby(x) = lab,(x) if X € V1, and otherwise ldab,(x) be the node label of
x inthe parse tree whesebelongs. Note that nodes¥s \ V; are elements of some
type inEn \ E. If laby(X) is an element type, lelle;(x) be the list of its children in
the parse tree. Note thatt andval remain unchanged. By the constructionTef

it can be verified thal, = Dy. Moreover, for anyt € E andl € R(z), |ex{z)| in

T, equalsjexi(t)| in T, andex{z.l) in T, equalsex{z.l) in T, because none of the
new nodes, that is, nodesVa \ Vi, is labeled with arE type, and the functioatt
remains unchanged.
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Conversely, assume that therelis= (V,, lab,, ele, att, val, root) such that
T, = Dn. We construct; by modifying T, such thafl; = D. For any node € V,
with lab(v) = T andr € Ey \ E, we substitute the subelementdbr v in ele(v’),
wherev’ is the parent of. In addition, we remove from V,, lab,(v) fromlab,, and
ele(v) from ele,. Observe that by the definition &y, no attributes are defined
for elements of any type iy \ E. We repeat the process until there is no node
labeled with element type iBy \ E. Now letT; = (V1, laby, eley, att, val, root),
whereVs, lab; andele areV,, lab, andele, at the end of the process, respectively.
Observe thattt, val androot remain unchanged. By the definition of it can
be verified thail; &= D; and in addition, for any € E andl € R(z), |ex{z)| in
T1 equals|ex{(t)| in T,, andex{z.l) in T; equalsex{z.l) in T,, because none of
the nodes removed is labeled with a typeebfand the functionstt andval are
unchanged. [

It is easy to see thddy is computable in linear time in the size Df

Encoding Unary Constraints. We now give a coding of,"s’ constraints.
Let X be a set o\’ constraints over DTLD and Dy be simplified DTD of
D. Referring to an arbitrary XML tre@ valid with respect td, we derive from
% a class of linear integer constraints ®ndenoted byCys, and referred to athe
cardinality constraints determined 13y, as follows. For any € %,

—if ¢ is a key constraint.l — 1, then|ex{(z.l)| = |ex{z)| isinCg;
—if g isaninclusion constraint.l; C .15, thenjex{(zi.l1)| < |ex{(zz.12)]isinCs.
—lex{(t.l)|] < |ext(zr)| and 0< |ex{z.l)| are inCx for anyt € E andl € R(7).
We useT | Cy to denote thal satisfies all constraints @y..
For example, recall the s&t; of Cg"t constraints over the DTID; given in
Section 1. The set of cardinality constraints determinedhydenoted byCs,,
consists of:

|ex{teacher.namg = |exiteache)]
|exi(subject.taughby)| = |exi{subjec]|
|exi(subject.taughby)| < |ex{teacher.namg
0 < |exf{teacher.namg
0 < |ex{(subject.taughby)|

Itis worth mentioning thaexi(z.l)| = |ex{(t)| characterizes akeyl — t.Indeed,

for any XML treeT valid with respect tdDy, T & |ex{(z.l)| = |exi{(z)| iff T &

7.l — 1. However, things can go wrong when it comes to inclusion constraints. Al-
thoughT = 11.11 C to.loimpliesT = |ex{(t1.11)] < |ex{(12.12)], the other direction

does not necessarily hold. This does notlose generality as we do notintend to capture
negations of inclusion constraints with this coding. Indeed, the lemma below shows
that we are able to consid€x; instead ofx when studying the consistency bf

LEMMA 4.4. Let Dy be a simplified DTD of DT be a set o constraints
over D, and G be the set of cardinality constraints determinedshyThen there
exists an XML tree iTsuch that T = Dy and T, = X if and only if there exists
an XML tree F suchthat 3 = Dy and T, = Cy. In addition, any XML tree valid
with respect to [} and satisfyingz also satisfies €.
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PrROOF. It is easy to see that for any XML treB that satisfies:, it must
be the case thal; = Cy. Conversely, we show that if there exists an XML tree
= (V, lab, ele att, val, root) such thafl, = Dy andT, & Cg, then we can

construct an XML tred; such thafl; = Dy andT; = X.

We constructT; from T, by modifying the functionval while leaving
V, lab, elg att androot unchanged. As cardinality constraints@f do not in-
volve text nodes, we changal for attributes only. More specifically, we modify
val(v) if lab(v) € A, that is, ifv is an attribute, and leawel(v) unchanged other-
wise. LetS = {r.l | r € E, | € R(r)}. To define the new function, denoted by
val, we first associate a s¥t, of string values with each.l in S. Let N be the
maximum cardinality oex{z.l) in Ty, that is,N > |ex{(z.l)| in T, forall . € S.
LetVs = {a |i € [1, N]} be a set of distinct string values. For eache S, let

V. ={a | i €[1,|ex{(z.l)[]}, and for eaclx € exi{(z), letval (att(x, |)) beastring
value inV,, such that irily, exi(z.l1) = V,,. In addition, for each key.l| — 7in X,
let x.I be a distinct string value i¥;,. This is possible because by the definition of
Ty, (1) ext(z) in Ty equalsext(t) in Ty; (2) |exi(z.l)| in T, equalgex{z.l)| in T,; and
(3) T, = Cyx and|ex{(t)| = |ex{(z.1)|isin Cs. We next show that; is indeed what
we want. Itis easy to verify tha, = Dy given the construction of; from T, and
the assumption thdt &= Dy. To show thafl; = X, we considep € X in the fol-
lowing cases. (1) Ip isa keyr.l — t,itisimmediate from the definition df; that
T, &= ¢ since forany e ex{(t), x.| isadistinctstring value i, ;. (2) Ifpisty.l1 C
72.l5, thenT, = |ex{(t1.]1)] < |ex(r2 2)| by T, = Cs. Recall that by the definition
ofval, fori € [1,2], V), = {& | i €[1, [ex(.li)[]} and inTy, ex(zi.li) = Vs,
Thus, ex{t1.]1) € ex{{t2.l2) in Ty. That is, T &= ¢. Therefore,T; = Dy
andT, = X. O

Observe that in the construction @f above, it is possible thax{{z;.l1) <
exi(t.l15) even if ¥ does not implyry.l1 € 15.15. This does not have an impact on
the consistency analysis, as negations of inclusion constraints are not involved in
the analysis.

It is straightforward to verify that given any s&t of Cﬁnf‘cry constraints over a
DTD D, the setCy. of cardinality constraints determined By can be computed
in linear time in|X| and|D]|.

Encoding DTDs. We next move to a coding of DTDs. By Lemma 4.3, we
can consider simple DTDs only. Given any simple DDD= (E, A, P, R, r),
we encode it in linear time with a systedn, of linear integer constraints such that
D has a valid XML tree if and only iftp has an integer solution.

We first describe the variables used in the systém For each symbol
T € E U {8}, |ex{(t)| is a distinct variable. Intuitively, in an XML tred
conforming toD, |ex{(z)| keeps track of the number of allelements. In addition,
for each occurrence of in the definition P(z’) of some element type’, we
also create a distinct variable. More specifically, we create such variables as
follows: if P(t’) = 71 for 11 € E U {S}, then we create a distinct varlabté
if P(") = (rl, 72) or P(7') = (71 | 2), then we create two distinct varlables
xf1 _ and x2 2 o Intuitively, fori e [1,2], x; .. keeps track of the number of
Tj subelements at positianunder allt’ eIements inT. For example, given an
element type defInItIOB(teach) = subject, subject, we create two distinct
varlablesx(SLIIDJeCI reacyy 2N x(SLIIDJeCt eac- L€t X; be the set of all variables of the
form x;.
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Using these variables, for eaghe E, we define a set/, of linear integer
constraints that characterizB¢r) quantitatively, as follows:

—If P(r) = t1 for r1 € E U {8}, theny, includes|exi{(t)| = x . Referring to
the XML treeT, this assures that eachelement has a umqu@ subelement

—If P(z") = (11, 2), theny, includes|ex{z)| = xm and|exi(t)| = XTN. These
assure that eachelement inT must have a unique, subelement and a unique
72 Subelement.

—If P(t') = (11 | 12), theny, includes|ex{(t)| = xrll,r + fo. These assure
that eachr element inT must have either & subelement or @, subelement,
and thus the sum of the number of thesesubelements and the numberwf
subelements equals the numberaflements inT .

The set of cardinality constraints determined by DTD denoted byVp,
consists of the following:

—|ex{(r)| = 1;thatis, there is a unique rootin any XML tree valid with respe@to
—constraints oty for eachr € E; these assure th&(z) is satisfied;

—lext(t)] = ZX. , for eacht € (E \ {r}) U {S}; this indicates that the
setex{(t) includés ailr elements no matter where they occur in an XML tree;

—x > 0 for any variablex used above; that is, the number of elements
(subelements) is nonnegative.

We say thaW is consistentf and only if ¥, admits an integer solution. That
is, there is an integer assignment to the variable¥gfsuch that all the linear
integer constraints i are satisfied.

As an example, let us consider the simple DTI¥ and D) given above. The
cardinality constraints determined by these DTDs are given below:

\PD?Z

Wteachers' |ex1(teacher$| = X(Zeacher teacher$
|ex{teachery| = x( 1 teachers
W.[tl: |eXt('L'tl)| = Xiré’ ) + X(Zrtz’ )
/% lext(z?)| = X teacher 12) lext(z?)| = x(rt 2
‘/fteacher: |eX(teaChe’| éeach teache)
|ex1(teache)| = X(research teache)
T/fteach' |ex1(teacf)| - X(sub]ect teach |ex1(teach|: X(Zsubject teach
wsubject. |eX(SUbJeC)| - X(S subjec)
Wresearcﬁ |ex1(researcl)| - X(s research

moreover,
|exi(teachery| =
lex{(teache}| = X(teacher teacher$ + X (teacher )
‘eXt(Tt )} = X(rt teacher} + X (rt , ) |ex(ft2)| = X(thz, ')
lexq(z)| = (lr % ) lex(teact)| = X(lteach teache)
|eX(SUbjeCl| X(subject teach + X (subject teach
lex{research)| _X(Zresearch teache) ex(S)] _X(S subjeg T X(S researct)

all variables> 0.
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For example, x(teache[ weachery INiCates the number ofteacher children
of all teachers nodes, andx1 2 stands for the number ofeacher
chlldren of nodes Iabelee{2 The cardlnallty ofext(teachey equals the sum of
x(teacher teachery & Obviously, there is a unique node labetethchers,
that is, the root IQence elve haYe, . e teachery = 1 SiNCE the root has a unique
teacher child. Thus,|ex{{teache)| = 1+ af

(teache[ )"
LI—’Dz: .
Yscriptsizelo lex(db)] = X(foo db)
Wfoo: |eXKfOO)| - X(foo foo)
moreover, lexi(db)| = |€XUfO0)| = X{ion aty + X(ioo, fo0)

all variablesz 0.

Itis easy to check thabpw is consistent, whereaBpy is not.
We rextshow that¥p indeed characterizes the DTD.

LEMMA 4.5. Let D be a simple DTD andlp be the set of cardinality
constraints determined by D. Thdn, is consistent if and only if there is an XML
tree T such that T= D. In addition, for eachr € E, |ex{(t)| in T equals the
value of the variablgexiz)| given by the solution o¥p.

PrROOF.  First, assume that there is an XML tréevalid with respect td. We
define an integer solution df; as follows. For each € EU{S}, let the value of the
variable|ex{(z)| be the number of nodes inT . We proceed to assign integer values
(number of certain subelements) to other variables by considering the structure of
P(z) for eacht € E. (1) If P(r) = 7, for somer; € E U {8}, then let the value
of the varlable<11 be the number of; subelements of alt elements irT. (2) If
P(t") = (11, 12), then let the value of the varlabié (respectlvelyx .) be the
number of therl (respectively;r,) subelements of alt elements. In partlcular if
71 = 12, thenx} e (respectlvelyxfz,t) has the number of the first (respectively, sec-
ond) subelements of atlelements. (3) IP(z’) = (t1 | 12), then let the value of the
varlablexl1 (respectlvelyx ) bethe number of; (respectivelyr,) subelements
If 11 = 1o, thenx1 andx may have any value as long [@{(t)| = X;, , +X f .

We rextshow that this aSS|gnment is an integer solutiodgf First, the value of

any variable is nonnegative, as it is the number of certain elements (subelements) in
T. Second|ex{(r)| = 1 asT has a unique root. Third, for eache E, by induction

on the structure oP(z), it can be verified that the assignment satisfiessince

T & D andy, describesP(z) quantitatively. Finally, the value of the variable
lex{(z)| is equal to the sum of all variables of the fovrh (i €[1,2]) since it
counts all the elementsim no matter where they are. ThIS can be easily verified by
contradiction. Thus, the assignment is indeed a solutidnpiNote that by the def-
inition of the solution, the value of the varialix{(t)| given by the solution equals
lex{(z)|inT.

Conversely, assume thétp, admits an integer solution. Observe that all these
variables have nonnegative integer values because of the inequalitigs We
show that there is an XML tre€ = (V, lab, elg att, val, root) valid with respect
toD. Todo so, foreach € EU{S}, we creatgexir)| many distinct nodes and label
them withz. We refer to this set of nodes asi(z). In addition, for eaclv € exi(t)
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andl € R(z), we create a distinct node, referred tovgsand label it with . Let

V= J etr)u [ JvIveex(). | eRx)

teEU{S} teE

|t ifveex{r)andr € EU{S}
lab(v) = [ if v =v, for somey,
Y if vieV
a(v, ) = undefined otherwise
val(v) = empty string iflab(v) is S orl, wherel € A
~ | undefined otherwise

It is easy to verify that these functions are well defined.robet be the node la-
beledr, whichis unique byexir)| = 1inWp. Finally, to define the functioele, we
first mark nodes iex{t) with variables inX; so that they can be grouped as subele-
ments of certain elements. For each vana&jlg in X;, we choose! _, many dis-
tinct nodes labeled and mark them witkx! .. Note that for each e EU{S} every
T node inV \ {root} can be marked once and onlyonce®f(z)| = > i x Xi.
in Wp. Given these marked elements, startingoat, for eachr € E dnd eachr
nodev, we defineelg(v) as follows. If P(7) is 71 € E U {S}, then we choose a
distinctz; nodey marked withx? ... and letelg(v) = [y]. If P(z) = (z1, 1'2) then
we choose a; hodey; marked Wlthx . and ar, nodey, marked WItth »and
let elg(v) = [y1, ¥2]. If P(z) = (1'1|1'2) then we choose a no@emarked with
eitherx’, . or x2 . and letelg(y) = [y]. By ¥p constraints, each element or text
node inV \ {root} ‘can be chosen once and only once as a subelement of some other
element. By induction on the structure®fz), one can verify thal defined in this
way is indeed an XML tree an@ = D. Finally, by the definition ofl, |ex{(t)| in
T equals the value of the variabjlex{t)| given by the solution of'p. [J

It is straightforward to show that given any simple DTD, the set¥p of
cardinality constraints determined iy can be computed in linear time. As a
result, the size o¥p is linear in|D|.

Charactenzmg DTDs and Unary Constraints.To complete our characteriza-
tion,givenaDTDD = (E, A, P, R, r)and afinite seE och“fgy constraints over
D, we define a systen¥(D, %) of integer constraints. The systei(D, %), re-
ferred to ashe set of cardinality constraints determined by D ahds defined to be:

Vp, U Cy U {(lexi(t)] > 0) — (lexi(z.l)] > 0) | r € E, | € R(7)},

where Dy is the simplified DTD ofD, W¥p, andCy are the sets of cardinality
constraints determined Yy and X, respectively. Ink(D, X) we treatex{z.l)|
as a variable.
We say that¥(D, X) is consistentif and only if ¥(D, X) admits an inte-
ger solution.
For example, recall the DTDB; and D,, and the constraint sets; and X,
(the empty set) given in Section 1. It is easy to verify that neith@D;, ;) nor
W (D,, X,)isconsistent. This is consistent with the observations made in Section 1.
Observe that¥(D, X) can be partitioned into two sets¥(D, X) =
(D, £) U ¥¢D, %), wherew!(D, X) consists of linear integer constraints,
and¥¢(D, X) consists of constraints of the forrfek{z)| > 0 — |ex{(z.l)| > 0),
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which are to ensure that every element has arl attribute. Note that
lext(z.l)| < |ex{t)| is already inCs.

It is easy to verify thatv(D, X) can be computed in linear time j©| and|X|,
and thus its size is also linear jB| and|Z|.

We next show tha#' (D, X) indeed characterizd3 andX.

LEMMA 4.6. Let D be a DTD,X be a finite set otﬁ?f‘cry constraints over D,
and ¥ (D, X) be the set of cardinality constraints determined by D ahdrhen
W (D, X) is consistent if and only if there exists an XML tree T such that D
and T X.

PROOF. Let Dy be the simplified DTD ofD. By Lemma 4.3, it suffices to
show that¥(D, X) is consistent if and only if there is an XML tréle such that
T &= Dy andT E X.

Suppose that there exists an XML tréesuch thafT = Dy andT & X. We
show that¥' (D, X) admits an integer solution. By Lemma 4.4, we have- Cy,
whereCy is the set of cardinality constraints determined®yBy Lemma 4.5,
one can define an integer solutionp,,. The assignment assures that for each
T € E, the value of the variablgx{t)| equals the number of all thenodes inT .
We extend the assignment as follows: for each E andl € R(), let the value
of the variable|ex{(z.l)| be the number of distindt attribute values of all the
nodes inT. Thus byT & Cg, this extended assignment satisfigs. In addition,
if |lexi(z)| > 0then|ex{z.l)| > 0 as everyr elementinT has an attribute. Hence
the assignment is indeed a solutionit¢D, X). ThusW (D, X) is consistent.

Conversely, suppose that(D, X) admits an integer solution. We show that
there is an XML tre€l such thafl &= Dy andT = X. Observe that an integer
solution to ¥(D, X) is also a solution to¥p,. Thus by Lemma 4.5, there
is T = (V, lab, elg att, val, root) such thatT’ &= Dy. Moreover, for each
T € E, |ex{(t)| in T is equal to the value of the variablexi(t)| given by the
assignment. We construct another XML tr€é by modifying the definition of
the functionval of T’ such that for each € E andl € R(z), |ex{(z.l)| in T” equals
the value assigned to the varialdei(z.l)| by the assignment. This is possible since
lext(z.])] < |ex{(t)|isinCg, and the assignment s also a solutio€ta Moreover,
by (lex{(z)] > 0 — |ex{(z.l)] > 0) in ¥(D, X), everyt element inT” can have
anl attribute. It is straightforward to verify that” = Cy andT” = Dy. Hence
by Lemma 4.4, there exists an XML trdesuch thafl = Dy andT &= 2. [

Given these lemmas, we proceed to prove Theorem 4.1.

PROOF OFTHEOREM4.1 (CONTINUED). We encode an instanc®( X) of the
consistency problem faf,' & as an instance of LIP. By Lemma 4.6, it suffices
to encodel (D, X) as an instance of LIP. Recall th&(D, %) can be partitioned
into two setsW' (D, %) of linear integer constraints, arkef(D, %) of constraints
of the form k > 0 — y > 0). We first encodel(D, X) with a set of linear
integer constraints. Le§ be the set of all the pairsx(y) for each constraint

X>0—y>0)invD, ). For each subset of S, we define¥y to be
WD, B) U (x=0,y=0[(x,)eX} U x=1 y=1](xy)eS\X)

Itis easy to see thalt(D, X)admits an integer solution if and only if there is some
Wy that has an integer solution. Observe tirgtcan be represented as an instance
of LIP since an equalit{r; = F, is equivalentto inequalities, > F, andF, > F;.
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In addition, for all variablex in (D, X), we havex > 0in ¥(D, X). Thus any
solution of Wy is nonnegative. Hence we can apply the result of Papadimitriou
[1981] here, which says that #'x has an integer solution, then it has one
in which the values of all variables are no larger thafma)?™!, wherea
is the largest absolute value of the constantsbin. In other words, Wy has
an integer solution in which the value of each variable has a length in binary
of at most 14+ [logh+ (2m+ 1)- log(ma)] many bits, and the bounds on
solutions for all¥x’s are the same. Lat be a humber that in binary notation has
1+ [logn + (2m + 1) - log(ma)] many 1's. Observe that can be computed in
O(s logg time. Thus, we define a new systabof linear integer constraints that
is the same a¥'(D, %) except it also includesy > x for all (x > 0) — (y > 0)
in ¥¢(D, X). Itis easy to verify thatV(D, X) has an integer solution i has
an integer solution. Indeed, (D, X) has an integer solution then it has one
bounded byc. Thus the solution satisfiesy > X, i.e., it is an integer solution to
®. Conversely, if® has an integer solution, then it is also an integer solution of
\Il'(D, %) and moreover, ik > 0theny > 0 bycy > x in @; that is, it is an
integer solution tol (D, X). As® can be represented as an instance of LIP, we can
define an matriXAy and a vectoby of integers such thab(D, X) has an integer
solution if and only if Ay X > by has an integer solution. Recall th&{(D, X)
can be computed in linear time and its size, denotesd, lylinear in|D| and|X|.
Thus the instance of LIP can be computedi(s? - logs) time in|D| and|X|.

This completes the proof of Theorem 4.1

The encoding is not onl mterestlng in its own right, but also useful in
the consistency analyses "8¢ and ¢, constraints, as well as in resolving

K,IC
a special case @'z constraint implication.

4.2.C¢ 7 AND C." CONSTRAINTS  We next establish the precise complexity

bound on the consistency problem for unary keys and foreign keys:
THEOREM 4.7.  The consistency problem 6}y constraints is NP-complete.

ProOF.  Corollary 4.2 has shown that the problem is in NP. We show that it is
NP-hard by reduction from a variant of LIP, namely,

AX = Db,
where foralli € [1, m], j € [1, n], &; coefficients are if0, 1}, all b; elements are
1, and allx; components are binary, that is, {i, 1}. It is known that the variant
is also NP-complete [Garey and Johnson 1979].
Given such an instancAX = b, we define a DTDD and a sett of C,"7Y
constraints oveD such that there is an XML tree valid with respect@oand

satisfyingX if and only if AX = b admits a binary solution. Fare [1, m], we
useF; to denote) ., ; ,; &; X;. We defineD to be E, A, P, R, 1), where

E={r}U{R liell,m]}uUfb|iellm]}uU({VF]iell m]}
U{Xijliell,m], jel[ln]} U{Zjliel[lm]jelln]}
A={vl U {A;lie[l,m], je[ln]}
P(r) :Fl,...,Fm,bl,...,bm
P(F) =Xj,,....X; foriel[l, m],whereX,...,X;jisa
sub-list of X4, ..., Xim such thatXj; is in P(F;)
iff &;inAis1
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FIG. 4. Atree used in the proof of Theorem 4.7.

P(Xij)) =Zj € fori e[1l,mlandj € [1, n]
P(zZij;) =VH fori e [1,mlandj € [1,n]
P(VF) =P(b)=¢ fori € [1, m]

R(Zij) ={Aj} fori e [1,mlandj € [1,n]

R(VF) =R(b)={v} fori e [1, m]
R(r) =R(F)=R(Xij)=9

An XML tree valid with respect td has the form shown in Figure 4. Intuitively,
Xi; encodey; in F;, andZ;; encodes the value ofj;: X;; has value 1 if and only
if Xi; has aZ;; child. The element typ¥F; is to code the value df;. Observe that

AX = b has a solution if and only if for each rowe [1, m] there is exactly one
columnj € [1, n] such thata;; = 1 andx; = 1. In the XML treeT representing

the instance, this means that for everthere is exactly onej; element with a

Zj; child. This is achieved by restricting to have a uniqu&/F descendant, and
thus to have value 1, by means of the attributef VF and constraints. More
specifically, we include the following in the sEt

VEv—-VEF, bv—=b, VFEvVvCbh.v, b.vCVFK.v.

These ensure thé& = by = 1 asT has a uniqué; node. In addition, to ensure that
all occurrences ok; have the same value, the following areXnfor j e [1,n]
andi, | € [1, m],

Zij'Aii g Zija Zij-Aij c Z|j.A|j.

These assert that;; has value 1 if and only iX|; equals 1. Itis easy to see that the
encoding can be done in PTIME im andn. Moreover,AX = b admits a binary
solution if and only ifD has a valid XML tree satisfyin@. Thus, this is indeed
a PTIME reduction from the variant of LIP.[]

Recall that in relational databases, it is common to consider primary keys. That
is, for each relation one can specify at most one key, namely, the primary key of
the relation. In the XML setting, therimary key restrictiorrequires that for each
element type one can specify at most one key. This is the case for “keys” specified
with ID attributes, since in a DTD, at most one ID attribute can be specified for
each element type. Under the primary key restriction, the consistency problem for
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a clasg of XML constraints is to determine, given any DTDand finite se& of
C constraints in which there is at most one key for each element type (given either
as keys or as part of foreign keys), whether there is an XML tree valid with respect
to D and satisfyingxz; similarly for implication.

One might think that the primary key restriction would simplify the consistency
analysis ofCy"a constraints. However, it is not the case.

CoOROLLARY 4.8. Under the primary key restriction, the consistency problem
for Cg"s¢ remains NP-complete.

PROOF  The reduction from LIP given in the proof of Theorem 4.7 defines at
most one key for each element typée.]

A mild generalization of the encoding above can establish the complexity of
the consistency problem f«i}ﬁ'la:é, the class of unary keys, inclusion constraints
and negations of keys. As we shall see shortly, the resulC{ﬁBﬁ“{: helps us

nary

study implication ofCy ¢, constraints.

COROLLARY 4.9. The consistency problem fag,"*Y. constraints is NP-
complete.

PROOF.  SinceCy'a is a sublanguage o™, from Theorem 4.7 it fol-

lows immediately that the consistency prgblgm oY is NP-hard. We
next show that the problem remains in NP. Debe a DTD and® be a set o€ ;"%
constraints oveD. We writeX asX;UX,, whereX; is a set of unary keys and unary
inclusion constraints ovdd, andX, is a set of negations of unary keys o¥&rLet

Y (D, X1) be the system of linear inequalities determined®mgndX,, as defined in

the proof of Theorem 4.1. It admits an integer solution iff there exists an XML tree
T such thafl = ¥; andT = D. We define another system of linear inequalities,
denoted by¥’(D, X¥) and referred to athe system determined by D aRdto be

v(D, %) = ¥(D, %) U {|lexi(z.)| < |ex{(t)| | =(z.| — 1) € 25}
As ¥(D, X) can be computed in PTIME, it suffices to show the following claim.

Claim. There is an XML tre€l such thafl = X andT k& D iff ¥(D, X) has
an integer solution.

For if it holds, then the problem is in NP by reduction to LIP as in the proof of
Theorem 4.1.

We show the claim as follows: Assume that there exists altragch thaill = =
andT = D. SinceT = X3, by Lemmas 4.5 and 4.6 and Theorem 4.1, it can be ver-
ified that there is an integer solutiondd D, X;), the system of linear inequalities
determined byD andX;, such that the values of the variablegi{(z)| and|ex{z.l)|
in ¥(D, X,) given by the solution are the cardinalitiexi(z)| and|ex{z.l)| in T.
Note that for all element type and attributd of t in D, |ex{(t)| and|ex{z.l)| are
variables in¥(D, X,). Thus for eachr.l 4 t, the solution also assigns values to
lexi(t)| and|ex{z.l)|. We claim that it is also a solution t&(D, ). To see this,
observe that it is always true thaxi{(z)| > |ex{(z.l)| in T since everytr elementin
T contributes at most one distinef value. Thus, byl & ., there must be two
distinctr elementsd; andd, in T such thatl;.| = d,.I. Thus,|ex{(t)| > |exi{(z.l)|.
Therefore, all inequalities i (D, ) are satisfied by the solution.
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Conversely, assume thadt(D, X) has an integer solution. Since it is also a
solution tow (D, ¥1), again by Lemma 4.5 and 4.6 and Theorem 4.1, it can be
verified that there is a tre& such thatT = D, T = ¥; and moreover, the
cardinalitiesexi(t)| and|ex{z.l)| in T are the values of the variablgsxi{(z)| and
lex{z.l)| in ¥(D, X,) given by the solution. We claim thdt &= X. Indeed, for
anyz.l 4 tin X,, we havelexi{(t)| > |ex{z.l)] in T. Thus, there must be two
distinctt elementd; andd, in T such thatd;.| = d,.I. Thatis, T = .l 4 r.
Hence,T E DandT = . O

It should be mentioned that the problem remains NP-hard under the primary key
restriction. This can be verified along the same lines as the proof of Corollary 4.8.
Corollary éb.9 also tells us the complexity of a special case of the implication
nary nary

problem forCy -/, referred to as themplication problem for unary keys tﬁ{inK
constraints

THEOREM 4.10. The following is coNP-complete, even under the primary key
restriction: given any DTD D, any se&f of Cy'qy constraints and any unary key

@ over D, whethe(D, X) F ¢.

PROOF Observe thatlD, X) F ¢ iff ¥ U{—¢}andD are not consistent, that is,
there exists no XML tre& suchthall = D, T &= X andT E —¢. Sincex U{—gp}
is a set ofC;™Y. constraints, the implication problem for unary keys @Yz
constraints is in coNP by Corollary 4.9. To see that the problem is coNP-hard, recall
the encodinLg given in the proof of Lemma 3.3. If the ebf constraints given
is a set ofCy 7! constraints, then that encoding also serves as a reduction from
the consistency problem fdk "y to the complement of, £) - ¢. Thus, from
Theorem 4.1 it follows that the implication problem for unary keysabé?ﬁ[g’
constraints is coNP-hard. Observe that the reduction in the proof of Lemma 3.3
defines at most one key for each element type. Thus, givenX seétonstraints,
if X satisfies the primary key restriction, then so does the set of all constraints
used in the reduction. Hence, it remains coNP-hard even under the primary key

restriction. [

Finally, we identify some PTIME decidable cases of the consistency and impli-
cation problems. First, these problems for unary keys only are decidable in linear
time, by Theorem 3.5. We next show that given a fixed DDDthe consistency
and implication analyses become simpler. The motivation for considering a fixed
DTD is because in practice, one often defines the DTD of a specification at one
time, but writes constraints in stages: constraints are added incrementally when
new requirements are discovered.

COROLLARY 4.11. For afixed DTD, the following problems are decidable in
PTIME:

—The consistency problemﬁ”ﬁ[{ andC""

K=,IC*
—Implication of unary keys b§."2Y constraints.

PrRoOOF By Theorems 4.1, 4.10 and Corollary 4.9, an instaizeX) of these
problems can be encoded as a systenof linear integer constraints. That is,
these problems can be reduced to checking whebhadmits an integer solution.
The system® consists of constraints &y (derived from%) and ¥p,, (derived
from the simplified DTDDy of D), and can be computed in PTIME iD|.
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Given a fixed DTDD, the number of variables i€y is bounded by the size of

D (O(|D|?)), and the number of variables Wp, is also fixed. Thus, the number

of variables in® is bounded. It is known that when the number of variables in

a system of linear integer constraints is bounded, checking whether the system
admits an integer solution can be done in PTIME [Lenstra 1983]. Putting these
together, we have Corollary 4.11[]

5. Unary Keys, Inclusion Constraints and Negations

In Section 4, we have shown that the consistency problem for unary keys and
foreign keys is NP-complete. In this section, we extend the result by showing
that the problem remains in NP when negations of these unary constraints are
allowed. That is, the problem is NP-complete (ﬂil”a:é the class of unary keys,
inclusion constraints and their negatlons This 'helps us settle the implication
problems forCy"sY and the more generaly", the class of unary keys and
foreign keys, and the class of unary keys and inclusion constraints, respectively.
This is one of the reasons that we are interested in the consistency problem

Unary
forC,- Ic-

THEOREM 5.1. The consistency problem fdﬁ”a'l“éﬁ is NP-complete.

While this theorem subsumes Theorem 4.7, the reduction is quite different
from the nice encoding with instances of LIP that we useddgly. In fact,
while typically NP-complete problems are easily shown to be in NP, and only
the reduction from a known NP- complete problem is difficult, for the conS|stency
problem forC 'la%ﬁ, the opposﬂe is the case, and the proof of membership in NP
is a little mvolved (even assumlng the encoding of keys and inclusion constraints
by instances of LIP given in the previous section). We cannot reduce the problem
directly to LIP as before, because there is no direct connection betwkef 7;.1;

and the cardinalitiegex{(z;)|, |ext(t;), |ex{(z.li)| and|exi(z;.1;)| in an XML tree.

PROOF We develop an NP algorithm for determining the consistency of
CE”a% constraints. The algorithm takes advantage of another encodﬂfﬂi
constraints with linear integer constraints, which characterizes a set mterpretation
of unary inclusion constraints and their negations.ée a DTD and® be a set of
CE”a:éﬁ constraints oveD. We partition® into £1 andX,, whereX; is a set o ”a'(y:
constraints, an&, consists of negations of unary inclusion constraints der
Let (D, ;) be the system of linear inequalities determinedbyand X;, as
described in the proof of Corollary 4.9. Lkt ..., I, be an enumeration of all
attributes inD. Without loss of generality, assume tlhails an attribute of element
typet; (note thatr;'s need not be distinct). Léd = (u;);’ j—1 andV = (v j—1 be
two matrices whose elements are nonnegative mtegers We say that they admit a
set representatioif there is a family of finite setg\s, ..., A, such that

uj =IANAL vy =1ANAL.
We extend¥ (D, X1) with new variablesy;, v;, and equalities:
—lex(z li)| = uj = uy +v; foralli, j € [1,n];
—v; = 0forall7.l; € 7.l in ¥4, and moreover; = 0;
—vi; > Oforallg.li € 7j.lj in 2.
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Letus denote the new systemyD, ) and refer to it athe system determined
by D andX. Observe thatv (D, X) can be simply converted to a system of linear
inequalities (by treating an equality as two inequalities).

The intended interpretation for the variahlg is |ex{(z;.I;) N exi{z;.1;)|, and
lexi(z; li)\ex(z;.lI;)| for vj. Thus,v;; > 0 in W(D, X) says thatex(z.l;) &
eXK‘EJ' .|j) for all 7 .l; Z Tj .|j in Xo.

The lemma below reveals the connection between the encoding and the
consistency problem we are investigating.

LEMMA 5.2. The linear system¥(D, X) determined by DTD D and con-
straints ¥ has an integer solution with, V having a set representation if and
only if there isan XML tree T suchthatfE Dand T = X.

PROOF. LetD be a DTD,X; be a set ofj’ﬁrlalré constraints oveb, ¥, be a set
of negations of unary inclusion constraints orx = 1 U =5, and¥(D, )
be the system of linear inequalities determinedbgndX as described above. We
show that¥(D, ¥) has an integer solution witt, V having a set representation
iff there is an XML treeT such thafl &= X andT = D.

Assume thatthere exists an XML tréesuchtha = X andT = D.SinceT =
>1, as in the proof of Corollary 4.9 we can define an integer solutioh(id, X,),
the system of linear inequalities determineddgnd;. We extend the solution as
follows: letu; be|ex{(z; .Ii) Nex{(z;.1;) [, andv; be|ex(z lI;)\ex{(z;.I;)|. Itiseasy to
verify that thisisindeed a solutiont®(D, ) with U, V having a setrepresentation.

Conversely, assume that(D, ¥) has an integer solution with, V having a
set representation. Then, there are finite #gts .., A, such that

ui =1ANAjl, Vi =[A\A].

Again, as in the proof of Corollary 4.9, we create a tfesuch thafl = X; and
T &= D. In addition, we define theal function in T such thaex{z;.lj) = A for
i € [1,n]. This is possible sincgex(z.li)| = ui = uj + v; is in ¥(D, X) for
alli, j € [1,n]. Becausev;; > O isin¥(D, X) for all 7.l € 7j.1; in X5, we
have| ex{(z .li)\ex{(r;.l;) |> 0. Thatis,T = r.li € tj.l;. ThusT |= %5. This
completes the proof of the lemmal

It remains to show that one can check in NP whether the systéin ¥) has
an integer solution withJ, V having a set representation. We start with a lemma.

LEMMA 5.3. Given¥ (D, X), one can compute, in polynomial time, a number
M such that (D, X¥) has an integer solution withl, VV having a set representation
if and only if it admits such a solution with all variables being bounded by M.

PrROOF.  To prove the lemma, we need to extew@dD, X). Let ® be the set
of functionsé : {1,...,n} — {0, 1} which are not identically 0, whene is the
number of attributes irD. For everyf, we introduce a new variable, (note
that the number of variables is now exponential in the size of the problem). The
intended interpretation & is the cardinality of

() extmhn ) extrl)).

i:6()=1 i:0())=0
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We now extendl(D, X) to ¥'(D, X) by adding the following equalities:

Uj = Z Zy, Vi = Z Zy.
0:0(1)=0(j)=1 6:0(1)=1.6(j)=0

Clearly, ¥(D, X) has an integer solution withl, V having a set representation
iff ¥/(D, X) has an integer solution, as the variablgsdescribe all possible
intersections okxi(z;.l;) and their complements, and the equalities above show
how to reconstructi; andv; from them. We thus must show thatdf' (D, X)

has an integer solution then it must have one with a bound;om;, which is
polynomial (in terms of the size o¥/(D, X)). For that, recall [Papadimitriou
1981] that if a system df linear inequalities witt variables and all coefficients at
mostc has an integer solution, then it has an integer solution in which none of the
variables exceedgck)?+1. Thus,M can be taken to be a number that in binary
notation has % [logl + (2k+1)-log (ck) 1 many 1's. Note that the number of
variables/|, of ¥/(D, X) is at most exponential in the size &(D, X), and the
number of equalitiess, is at most polynomial. This shows thislt can be found in
polynomial time, and thus proves the lemmal

GivenLemmas 5.2 and 5.3, let us go back to the proof of that consistency analysis
of ¥ overD is in NP. We present an NP algorithm for determining the consistency
of X over D. Our nondeterministic machine computielsgiven by Lemma 5.3,
and then guesses a solution with all the components boundktl kythen tests if
theU, V part has a set representation. To do so, we transthra, in polynomial
time, into another matrixV, and then run a nondeterministic polynomial time
machine orW. If it returns ‘yes’, therlJ, V have a set representation, and thus by
Lemma 5.2 the answer to whethBris consistent oveb is ‘yes’.

Let K = M . n, wheren is the number of all attributes iD. We now define the
matrix W. It is a 2n x 2n matrix, with

Ui if I, j <n
we — 1 Vii-n if i<nj>n
! Vi_n,j if i>nj<n
K —Ui—n,j—n — Vi—n,j—n — Vj—n,i-n if i,j>n

Recall the Intersection Pattern problem: Givematx m matrix A, are there sets
Y1, ..., Ym such that; = |Y; NY;|? This problem is known to be NP-complete
(see, e.g., Garey and Johnson [1979]).

We now show the following: The INTERSECTION PATTERN problem returns
‘yes’ on inputW iff U, V have a set representation.

First, assumeJ,V have a set representation. That is, there are finite sets
A4, ..., A, such that

ui =lANAL Vi =IA\Al.

By the assumption, all entries id, V are bounded byM, and hence we may
assume that all sets in the representation are subsets ofJacfetardinality K.
Let m = 2n and defineY; to be A fori < n, andU \ A_, fori > n. ThenW
is the intersection pattern for this family of sets, and thus the INTERSECTION
PATTERN problem returns ‘yes’ ow.

Next, assume that the INTERSECTION PATTERN returns ‘yesV¥nso we
have a family of set¥;, ..., Y,, for whichW is the intersection pattern. L&t be
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the union of allYj’s. We showy,,; = U \Y; foralli < n.We havew; n;i =V; =0,
and thusy,;; € U\ Y;. Moreover, we haveY; U Yo | = Wi +Wniinei = K. We
next show that for every j < nitis the case that; U Y,; = Y; UY,;; (and thus
equaldJ). Note that bothy; UY,,;; andY; UY,,; areK-element sets. Furthermore,

i UYni)N(YjUYngj) = (PNY) UM N Yaig) U (Yngi DY) U Yngi 0 Yo ).

Observe that these four sets are pairwise disjoint, and their cardinalities are
Wi = Ujj, Wi j4n = Vijj, Witn,j = Vji andWi+n’j+n =K- Ui — Vij — Vi, reSpeCtiver.
Thus, the cardinality of the setij(U Yn.i) N (Y; U Ynyj) is K, and since the
cardinality of eachy; UY,,; andY;UY,,; is K, we concluder; UYni = Y;UYnyj.

This finally shows thatl has cardinalityk, and thus eaclt,,; isU \ ; for all
i < n. This immediately gives us a set representatiorilfoy.

To conclude, once we guessed a bounded solutioin(d, X) (all components
are at mostM), we proceed to compute in polynomial time the matfixfrom
U andV, and then run a nondeterministic polynomial time algorithm on it to
check ifW is an intersection pattern. Putting everything together, we see that this
nondeterministic polynomial time algorithm returns ‘yes’ iff there is a bounded
solution (and thus, there is a solution) ¥o(D, ¥) for which U,V have a set
representation. By Lemma 5.2, this happens if and only if there exists an XML
treeT suchthafl = D andT = X.

This completes the proof of Theorem 5.1

We next investigate implication problems.

THEOREM 5.4. For each of "’ and Cy'z, the implication problem is
coNP-complete, even under the primary key restriction.

PROOF. The implication problem forj,‘i”fgy is to determine, for a DTLD,

a setx of C"i constraints, and a constraipt(unary key or unary inclusion
constraint), whetherld, ) + ¢. Note that D ) + ¢ iff there is no XML tree
TwithT =EDAAZA—gp, andX U {—g} is a set ofCK“a[é constraints. Thus

by Theorem 5.1, the implication problem 6" is in cONP. One can show that

it is coNP-hard under the primary key restriction using an argument S|m|Iar to the

proof of Theorem 4.10. Similarly for the implication problem &f"sY. O
Finally, along the same lines as Corollary 4.11, we show the following:

COROLLARY 5.5. For afixed DTD, the following problems can be determined
in PTIME:
Unary

—The implication problem fafy ..

—The consistency problem f@ﬁ”a%ﬁ.

PROOF Let D be a DTD andXx be a set OCE””‘%_ constraints oveD. Let

¥’(D, X) be the system of linear inequalities determineddband X, as defined

in the proof of Theorem 5.1. As in the proof of Corollary 4.11, one can show that
the number of variables i#'(D, ¥) is bounded by a function on the size bf
Therefore, wherD is fixed, the number of variables #'(D, ) is bounded by

a constant. It is known that when the number of variables in a system of linear
inequalities is bounded, it can be determined in PTIME whether the system admits
an integer solution [Lenstra 1983]. By the proofs of Lemma 5.2 and Theorem 5.1,
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multi-attribute
keys, foreign keys

unary
keys, foreign keys

primary, unary
keys, foreign keys

DTD fixed, unary
keys, foreign keys

multi-attribute
keys only

consistency

undecidable

NP-complete

NP-complete

PTIME

linear time

implication

undecidable

coNP-complete

coNP-complete

PTIME

linear time

Fic. 5. The main results of this article.

v'(D, ¥) admits an integer solution if and only if there is an XML tfesuch that
T &= D andT = X. Thus, Corollary 5.5 follows from Theorems 5.1 and 5.4]

6. Conclusion

We have studied the consistency problems associated with four classes of integrity
constraints for XML. We have shown that in contrast to its trivial counterpart in
relational databases, the consistency problem is undecidabi¥ fq; the class

of multi-attribute keys and foreign keys. This demonstrates that the interaction
between DTDs and key/foreign key constraints is rather intricate. This neg-
ative result motivated us to study,"=, the class of unary keys and foreign keys,
which are commonly used in practice. We have developed a characterization of
DTDs and unary constraints in terms of linear integer constraints. This establishes
a connection between DTDs, unary constraints and linear integer programming,
and allows us to use techniques from combinatorial optimization in the study
of XML constraints. We have shown that the consistenc problenCtﬂ&j’Ky is
NP-complete. Furthermore, the problem remains in N Téﬁ the class of
unary keys, unary inclusion constraints and their negations.’

We have also investigated the implication problems for XML keys and foreign
keys. In particular, we have shown that the problem is undecidabléfer and
it is coONP-complete fo€"& constraints. Several PTIME decidable cases of the
implication and consistency problems have also been identified. The main results
of the article are summarized in Figure 5.

It is worth remarking that the undecidability and NP-hardness results also
hold for other schema specifications beyond DTDs, such as XML Data [Layman
et al. 1998], XML Schema [Thompson et al. 2001], and the generalization of
DTDs proposed in Papakonstantinou and Vianu [2000]. It remains open, however,
whether the upper bounds (i.e., the decidability and NP membership results) are
still intact in these settings.

This work is a first step towards understanding the interaction between DTDs
and integrity constraints. A number of questions remain open. First, we have
only considered keys and foreign keys defined with XML attributes. We expect
to extend techniques developed here for more general schema and constraint
specifications. Second, other constraints commonly found in databases, for
example, inverse constraints, deserve further investigation. Third, a lot of work
remains to be done on identifying tractable yet practical classes of constraints and
on developing heuristics for consistency analysis. Finally, a related project is
to use integrity constraints to distinguish good XML design (specification)
from bad design, along the same lines as normalization of relational schemas.
Coding with linear integer constraints gives us decidability for some implication
problems for XML constraints, which is a first step towards a design theory for
XML specifications.
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