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On Yamabe Soliton

SATYABROTA KUNDU

Abstract. The purpose of the paper is to prove that if the metric
of a 3-dimensional α-Sasakian structure on a complete Riemannian
manifold is a Yamabe soliton then it is of constant curvature. We
also derive some properties of the flow vector field U of the Yam-
abe soliton together with an example of an α–Sasakian manifold
admitting Yamabe soliton.

1. INTRODUCTION

A well known question in differential geometry is whether a given
compact connected Riemannian manifold is necessarily conformally
equivalent to one having constant scalar curvature. This problem
was formulated by Yamabe in 1960[13] and is known as the Yamabe
problem. Yamabe gave a purported proof of the affirmative answer,
but Trudinger in 1968[14] found an error, and then was able to cor-
rect the proof of Yamabe for the case when the scalar curvature is
non-positive. Aubin improved Trudinger’s result but the remaining
cases were solved by Schoen using positive mass theorem.

Another motivation for considering the Yamabe problem is con-
formal geometry itself. Riemannian differential geometry attempted
to generalize the highly successful theory of compact surfaces. From
the earliest days, conformal changes of metric played an important
role in surface theory. For instance, it is a consequence of the uni-
formization theorem of complex analysis that one can find a con-
formal change of metric which makes the scalar curvature constant.
This led to the Yamabe problem.

Several years ago, the notion of Yamabe flow was introduced by
Richard Hamilton (see [5],[6]) as a tool for constructing metrics of
constant scalar curvature in a given conformal class of Riemannian
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metrics on (Mn, g)(n ≥ 3). It can also be explained as negative L2-
gradient flow of the (normalized) total scalar curvature, restricted
to a given conformal class it can be interpreted as deforming a Rie-
mannian metric to a conformal metric of constant scalar curvature,
when this flow converges. Complete shrinking gradient Yamabe soli-
tons under the assumptions of suitable scalar curvature (resp. Ricci
tensor) have finite topological type. On a smooth Riemannian mani-
fold, Yamabe flow can be defined as the evolution of the Riemannian
metric g

0
in time t to g = g(t) by means of the equation

∂

∂t
g = −rg, g(0) = g

0
,

where r denotes the scalar curvature corresponds to g. Yamabe
soliton can be defined on a Riemannian manifold by a vector field
U(known as Flow Vector field) satisfying:

£
U
g = (c− r)g, (1.1)

where £
U

denotes the Lie-derivative operator along the direction of
U and the constant c = −σ̇(g

0
) (see Chow et al. [3]). Similar to Ricci

Soliton, Yamabe Soliton can be considered as a special solution of
the Yamabe flow. In Mathematical Physics, Yamabe flow relates to
the fast diffusion case of the plasma equation. Recently, Sharma (re-
fer to [11]) have studied Yamabe soliton on 3-dimensional Sasakian
metric on a complete manifold. Since α-Sasakian is a generalization
of Sasakian manifold, we are interested to study 3-dimensional α-
Sasakian manifold when its metric is a Yamabe soliton. We deduce
some properties of the flow vector field U of the Yamabe soliton.

2. PRELIMINARIES

An odd-dimensional differentiable manifold (Mn, g) may admit an
almost contact metric structure (Φ, ξ, η, g) consisting of a Reeb vec-
tor field ξ, a (1,1)-tensor field Φ and a Riemannian metric g satis-
fying

Φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y ), ∀X, Y ∈ χ(M), (2.2)

where χ(M) represents the collection of all smooth vector fields on
M .
Moreover, if the relation

dη(X, Y ) = g(ΦX, Y ),
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holds for arbitrary smooth vector fields X and Y , then we call such
a structure a contact metric structure and the manifold with that
structure is said to be contact metric manifold. As a consequence
of this, the following relations hold:

Φξ = 0, η ◦ Φ = 0, dη(ξ,X) = 0, g(ΦX, Y ) = −g(X,ΦY ),
(2.3)

∀X ∈ χ(M). For details we refer to Blair [1].
An almost contact structure on M is said to be an α-Sasakian man-
ifold, α being a non-zero constant, if

(∇
X

Φ)Y = α(g(X, Y )ξ − η(Y )X), ∀X, Y ∈ χ(M) (2.4)

holds. As a consequence, it follows that:

∇Xξ = −αΦX, (2.5)

(∇
X
η)Y = −αg(ΦX, Y ), ∀X, Y ∈ χ(M). (2.6)

If α = 1, then the α-Sasakian structure reduces to Sasakian mani-
fold, thus α-Sasakian structure may be considered as a generaliza-
tion of Sasakian one. In other words, Sasakian manifold is a particu-
lar case of α-Sasakian manifold. Also in a 3-dimensional α-Sasakian
manifold the following relations are true:

R(X, Y )ξ = α2{η(Y )X − η(X)Y }, (2.7)

S(X, ξ) = 2α2η(X), (2.8)

Qξ = 2α2ξ, ∀X, Y ∈ χ(M), (2.9)

where R is the Riemannian curvature tensor and Q is the Ricci
operator associated with the (0, 2) Ricci tensor S. For details we
refer to [7].

Definition 2.1. ([1])In an almost contact Riemannian manifold, if
an infinitesimal transformation U satisfies

(£
U
η)(X) = ση(X), ∀ X ∈ χ(M) (2.10)

for a scalar function σ, then we call it an infinitesimal contact trans-
formation. If σ vanishes identically, then it is called an infinitesimal
strict transformation.

Definition 2.2. A vector field U in an n-dimensional Riemannian
manifold (M, g) is said to be conformal if

£
U
g = 2νg, (2.11)
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for some smooth function ν on M . Moreover, a conformal vector
field satisfies

(£
U
S)(X, Y ) = −(n− 2)g(∇XDν, Y ) + (∆ν)g(X, Y ) (2.12)

£
U
r = −2νr + 2(n− 1)∆ν, (2.13)

where D is the gradient operator and ∆ = −div.D is the Laplacian
operator of g. For details, we refer to Yano [12].

Before proceeding for the main results let us state the following
lemmas:

Lemma 2.1. In an α-Sasakian manifold, the following relations are
valid:

(i): η(£
U
ξ) = r−c

2 ,
(ii): (£

U
η)(ξ) = c−r

2 .
(iii): ν = c−r

2 .

Proof. The proof (i) and (ii) readily follows from the definition of the
Yamabe soliton on a Riemannian manifold. Since U is a conformal
vector field, therefore using (2.11) and (i), we have the desired result
(iii). �

Lemma 2.2. In an α-Sasakian 3-Metric, the Ricci tensor S is given
by

S =
(r

2
− α2

)
g +

(
3α2 − r

2

)
η ⊗ η. (2.14)

Proof. We recall that the Riemannian curvature tensor in a 3-dimen-
sional Riemannian manifold is given by

R(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2
{g(Y, Z)X − g(X,Z)Y }, (2.15)

where r is the Ricci scalar curvature and X, Y, Z ∈ χ(M).
Replacing Z with ξ in (3.1) and recalling (2.8), yields

η(Y )QX − η(X)QY +
(
α2 − r

2

)
{η(Y )X − η(X)Y } = 0.

Again, replacing Y with ξ and thereby using (2.9), we get the desired
result. �
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3. MAIN RESULTS

Putting the value of ν in (2.12) and (2.13), one obtains

(£US)(X, Y ) =
1

2

[
g(∇XDr, Y )− (∆r)g(X, Y )

]
, (3.1)

and

£
U
r = −2∆r − r(c− r). (3.2)

Since g is an Yamabe Soliton, taking the Lie-derivative of (2.14) in
the direction of U and using (3.1) and (3.2), yields

g(∇XDr, Y ) = −
[
∆r + 2α2(c− r)

]
g(X, Y )

+
[
2∆r + r(c− r)

]
η(X)η(Y )

+ (6α2 − r)
[
(£

U
η)(X)η(Y ) + (£

U
η)(Y )η(X)

]
.

(3.3)

Since ξ is killing, therefore ξr = 0. Differentiating covariantly along
the direction of an arbitrary vector fieldX, one obtains g(∇XDr, ξ) =
(αΦX)r. Replacing Y with ξ in (3.3) and using the foregoing equa-
tion together with the lemma provides

α(ΦX)r =
{

∆r + (c− r)
(
α2 +

r

2

)}
η(X) + (6α2 − r)(£

U
η)X.

(3.4)

Putting X = ξ, in above and using the lemma(ii) we obtain

∆r = −4α2(c− r). (3.5)

From (3.4) and (3.5), we can deduce

(6α2 − r)(£
U
η)X = α(ΦX)r +

1

2
(r − c)(r − 6α2)η(X). (3.6)

Feeding (3.5) and (3.6) in (3.3), yields

∇
X
Dr = 2α2(c− r)

(
X − η(X)ξ

)
− α

(
(φX)r

)
ξ − αη(X)(ΦDr).

(3.7)
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Differentiating covariantly along the direction of Y , we obtain

∇
Y
∇

X
Dr =

− 2α2(Y r)
(
X − η(X)ξ

)
+ 2α2(c− r)

{
∇YX + αg(ΦY,X)ξ − η(∇YX)ξ + αη(X)(ΦY )

}
+ α

(
∇Y∇ΦX

r
)
ξ

− α2
(
(ΦX)r

)
ΦY

− αη(X)
{
αg(Y,Dr)ξ − αη(X)ΦDr + Φ(∇YDr)

}
− α

{
− αg(ΦY,X) + η(∇YX)

}
(ΦDr). (3.8)

Replacing X and Y in above, one obtains

∇
X
∇

Y
Dr = −2α2(Xr)

(
Y − η(Y )ξ

)
+ 2α2(c− r)

{
∇XY + αg(ΦX, Y )ξ

− η(∇XY )ξ + αη(Y )(ΦX)
}

+ α
(
∇X∇ΦY

r
)
ξ − α2

(
(ΦY )r

)
ΦX

− αη(Y )
{
αg(X,Dr)ξ − αη(Y )ΦDr + Φ(∇XDr)

}
− α

{
− αg(ΦX, Y ) + η(∇XY )

}
(ΦDr). (3.9)

Again from (3.7), we have

∇
[Y,X]

Dr = 2α2(c− r)
{
∇YX −∇XY − η(∇YX)ξ + η(∇XY )ξ

}
+ α

{
(Φ∇YX)r − (Φ∇XY )r

}
ξ

− α
{
η(∇YX)− η(∇XY )

}
(ΦDr). (3.10)

Also, the Riemannian curvature tensor R is given by,

R(X, Y )Dr = [∇
X
,∇

Y
]Dr −∇

[X,Y ]
Dr.

Feeding the equations (3.8), (3.9) and (3.10) in the foregoing for-
mula, then we obtain on contracting the above over X and recalling
the skew-symmetric property of Φ together with ξr = 0 and (3.7),

S(X,Dr) = −αg(Φ∇
ei
Dr, e

i
)η(X). (3.11)

Combining the above with Lemma(2.1) and recalling Lemma(2.3),
one obtains

(r − 2α2)Xr = 0.

which shows the scalar curvature r is constant. Hence appealing to
(3.5), yields r = c. Thus we can state:
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Theorem 3.1. If the metric of a 3-dimensional α-Sasakian mani-
fold is a Yamabe soliton, then it is of constant scalar curvature c.

Hence (1.1) reduces to £
U
g = 0, i.e. U is killing. Differentiating

covariantly along an arbitrary vector field X, we have ∇
X

£
U
g = 0.

The identity

(∇X£
U
g)(Y, Z) = g((£

U
∇)(X, Y ), Z) + g((£

U
∇)(X,Z), Y ),

can be deduced from the formula [for details we refer to [12]],

(£
U
∇

X
g −∇X£

U
g −∇

[U,X]
g)(Y, Z)

= −g((£
U
∇)(X, Y ), Z)− g((£

U
∇)(X,Z), Y ),

which implies,

g((£
U
∇)(Z,X), Y ) + g((£

U
∇)(Z, Y ), X) = 0.

By the combinatorial combination of the above together with the
skew-symmetric property of φ, yields

(£
U
∇)(Y, Z) = 0.

Taking Y = Z = ξ, we obtain (£
U
∇)(ξ, ξ) = 0. Hence, with the

geodesic property of ξ, the following identity

(£U∇)(X, Y ) = ∇X∇YU −∇∇
X
YU +R(U,X)Y,

yields R(U, ξ)ξ + ∇ξ∇ξU = 0, which concludes that U is Jacobi
along the direction of ξ. Since r is constant(= c), from (3.4), we
can say that either r = 6α2 or r 6= 6α2. In the former case, from
Lemma(2.2) we can conclude that S = 2α2g i.e. M is an Einstein
manifold and being of dimension 3 it is of constant curvature α2.
Thus we can state as follows:

Theorem 3.2. If the metric of a 3-dimensional α-Sasakian mani-
fold is a Yamabe soliton, then the flow vector field U is killing and is
Jacobi along the direction of ξ. In particular if c = 6α2, the manifold
reduces to an Einstein manifold.

If c(= r) 6= 6α2, then recalling equation (3.6) we conclude £
U
η =

0. Thus from the definition of an infinitesimal contact transforma-
tion, the scalar function σ vanishes identically and hence we can
state:

Theorem 3.3. If the metric of a 3-dimensional α-Sasakian mani-
fold is a Yamabe soliton, then the infinitesimal contact transforma-
tion of the conformal vector field is strict.
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A brief computation on using the result of for a 3-dimensional α-
Sasakian manifold that the φ-sectional curvature equals 1

2(r− 4α2).
By virtue of theorem (3.1), we get the following:

Theorem 3.4. For a 3-dimensional α-Sasakian manifold the φ-
sectional curvature(sectional curvature with respect to a plane or-
thogonal to ξ) is constant and equals to −α2.

4. EXAMPLE OF AN α-SASAKIAN 3-METRIC AS
YAMABE SOLITON

Let us consider the 3-dimensional Riemannian manifold M = R3

with a rectangular
cartesian coordinate system (x

i
).

Let us choose the vector fields
{
E

1
, E

2
, E

3

}
as

E
1

=
∂

∂x
1

, E
2

= −2α
∂

∂x
2

, E
3

= x
2

∂

∂x
1

+ x
3

∂

∂x
3

, (4.1)

α a non-zero constant. Thus,
{
E

1
, E

2
, E

3

}
forms a basis of χ(M) =

χ(R3).
Let g be the Riemannian metric on χ(R3) defined by{

g(E
1
, E

1
) = g(E

2
, E

2
) = g(E

3
, E

3
) = 1,

g(E
1
, E

2
) = g(E

1
, E

3
) = g(E

2
, E

3
) = 0.

(4.2)

Let ξ = E
1

be the vector field associated with the 1-form η. The
(1,1)-tensor field φ be defined by,

φ(E
1
) = 0, φ(E

2
) = −E

3
, φ(E

3
) = E

2
. (4.3)

Since,
{
E

1
, E

2
, E

3

}
is a basis, any vector fields X and Y in M can

be uniquely expressed as

X = X1E
1

+X2E
2

+X3E
3

and Y = Y 1E
1

+ Y 2E
2

+ Y 3E
3
,

where X i, Y i(i = 1, 2, 3) are smooth functions over M .
Now using the linearity of φ and g, and taking ξ = E

1
we have,

η(ξ) = 1, φ2X = −X+η(X)ξ, g(φX, φY ) = g(X, Y )−η(X)η(Y ),

for any vector fields X and Y in M . Thus (φ, ξ, η, g) defines an
almost contact metric structure on M .
Let∇ be the Levi-Civita connection with respect to the Riemannian
metric g. Then we have,

[E
2
, E

3
] = −2αe1, [E

1
, E

2
] = 0, [E

1
, E

3
] = 0.
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By using Koszul’s formulae (see [9]), we have

∇E
1
E

3
= −αE

2
, ∇E

1
E

2
= αE

3
, ∇E

1
E

1
= 0,

∇E
2
E

3
= −αE

1
, ∇E

2
E

1
= αE

3
, ∇E

2
E

2
= 0,

∇E
3
E

1
= −αE

2
, ∇E

3
E

2
= αE

1
, ∇E

3
E

3
= 0.

Also, the Riemannian curvature tensor R is given by

R(X, Y )Z = ∇
X
∇

Y
Z −∇

Y
∇

X
Z −∇

[X,Y ]
Z.

Then,

R(E
1
, E

2
)E

2
= α2E

1
, R(E

1
, E

3
)E

3
= α2E

1
,

R(E
2
, E

1
)E

1
= α2E

2
, R(E

2
, E

3
)E

3
= −3α2E

2
,

R(E
3
, E

1
)E

1
= α2E

3
, R(E

3
, E

2
)E

2
= −3α2E

3
,

and
R(E

1
, E

2
)E

3
= R(E

2
, E

3
)E

1
= R(E

3
, E

1
)E

2
= 0.

Then, the Ricci tensor S is given by

S(E
1
, E

1
) = 2α2, S(E

2
, E

2
) = −2α2, S(E

3
, E

3
) = −2α2,

S(E
1
, E

2
) = 0, S(E

1
, E

3
) = 0, S(E

2
, E

3
) = 0.

It is easy to verify that the above structure satisfies the conditions
of α–Sasakian manifold. Also, the constructed metric of the α–
Sasakian manifold is Yamabe soliton. It is seen that the scalar
curvature r = −2α2, implies that the infinitesimal contact transfor-
mation of the flow vector field is strict.
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