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Abstract. In [13], Yen defines a class of formulas for paths in Petri raetd
claims that its satisfiability problem isxpspACEcomplete. In this paper, we
show that in fact the satisfiability problem for this classaimulas is as hard as
the reachability problem for Petri nets. Moreover, we sgévalmost all of Yen’'s
results by defining a fragment of this class of formulas forollthe satisfiability
problem isexpspPACEcomplete by adapting his proof.

1 Introduction

Petri nets (or equivalently, vector addition systems) are af the most popular mathe-
matical model for the representation and analysis of ganatbcesses [2]. The reacha-
bility problem for Petri nets is one of the key problems in éinea of automatic verifica-
tion since many other problems (e.qg. the liveness probleang whown to be recursively
equivalent to the reachability problem (see [4, 6]). It idlweown that the reachabil-
ity problem for Petri nets is decidable [11, 10, 7, 8]. Howevtlee precise complexity
of the reachability problem for Petri nets remains openkadiwn algorithms require
non-primitive recursive space). The best known lower bderckponential space given
by Lipton in [9].

On the other hand, to obtain a uniform approach for decidimg) studying the
complexity of many Petri nets problems, Yen has defined ihgl3ass of formulas for
paths in Petri nets, each of them is of the form:

I, Mn301, ., On (Ho =5 p1 =25+ -1 " o) A @K, -, Mn, O1, -, On) )

wheregpbelongs to a certain set of predicates (constraining th&inmgs and transitions
sequence occurring in the formula) amglis the initial marking of the given Petri net.
The above formula means that any markingan be reached from_1 (1 <i <n)in
the Petri net through the firing sequence of transitionand such that the predicate
o(Ha,--.,Un,01,.-.,0n) holds. In [13], Yen claims that the satisfiability problenr fo
such class of formulas (i.e., the problem of, given a Petrand a formula, determining
whether there exists a path in the Petri net satisfying thengiormula) is complete for
exponential space. This class of formulas is a useful andtaneisting one since it is
powerful enough to express many Petri nets properties.rticptar, Petri nets problems
such ashoundednessoverability, fair-nontermination and regularity detectionare
reducible to the satisfiability problem for this class ofrfadas [13]. Moreover, Yen's
result has been cited and used in several papers [1, 15,34, 5,



In this paper, we prove that the reachability problem forifPets is in fact as hard as
the satisfiability problem for this class of formulas. Howewve can salvage almost all
of Yen’s results by defining an interesting and useful fragneé this class of formulas
of paths in Petri nets for which the satisfiability probleneisPspacecomplete. In
proving the upper bound for this fragment, we correct anrerrdhe proof given in
[13]. Essentially, the fragment requires the markindo be bigger thap allowing the
path satisfying the formula to be repeated.

Theregularity detectiorproblem can not be expressed using our fragment and there-
fore to the best of our knowledge it's complexity (givensas SPACEIN [13]) remains
unclear.

2 Preliminaries

LetZ (resp.N) denote the set of ( resp. nonnegative) integers Zngesp.NK) the set
of vectors ofk (resp. nonnegative) integers.

Let X be a finite alphabet. We denote By (resp.Z ) the set of all finite (resp. non
empty) words ove and bye the empty word. We usg| to denote the number of
symbols inZ. We denote byN* (resp.Z%) the set of all mappings frofE to N (resp. to
7)) and by0 the mapping that maps every symbobirto 0. Notice that any mapping in
NZ can be considered as a mappingm

Let = ands’ be two finite alphabets such tHatC >’. Given a mappingtin ZZ , we
write /s to denote the mapping that maps evary > to u(a).

Let 2 be a finite alphabet angy andp, two mappings fronk to Z, we denote by
M1 © W2 the inner product ofy andpy (i.e., 1 © 2 = 3 a4es Ha(a) P2 (a)).

TheParikh imaget : =* — N* maps a wordv to a mapping(w) from X to N such
thati(w)(a) is the number of occurrencesafn w.

A Petri netA’ = (P T,F, ) consists of a finite se® of places, a finite setf of
transitions disjoint fron, a weight functiorF : (Px T)U (T x P) — N, and an initial
markingpp € NP. A marking is a map fron® to N. For a markingu of A’ and a place
p € P, we say that, iny, the placep containgu(p) tokens. For markingg, |/, we write
u+ W for the marking obtained by point wise addition of place ems. We writeu < |/
if u(p) < (p) forall pe P, and we writeu < I if u< i andp(p’) # K (p’) for some
placep’ € P. The markingd maps everyp € P to 0.

A transitiont € T is enabled at a marking if and only if F(p,t) < pu(p) for all
p € P. If a transitiont is enabled at a marking thent may be fired yielding to a new
markingp! defined as followsp/(p) = u(p) — F(p,t) + F(t, p) for all p € P. We then
write u-5 1 to denote that the marking is reached fronu by firing the transition
t. A sequence of transitions =t; -- -ty is a firing sequence fromyg if and only if
Ho A, M L, M, for some sequence of markings ... ., un. Furthermore, we call
Ho —% un acomputatiorof A

A marking p is said to be reachable i\ if and only if @ = pp or there is some
o € T+ such thaty-Z p. The reachability problem for a Petri n@f is, for a given
markingy, to determine whetharis reachable if\(.

We define the sizg(\() of a Petri Net/\l as in [13], i.e. numbers are encoded in
binary and the size of a Petri Net is théimgk] + [logr] (wherek is the number of



places and is the number of transitions) + the sum of the sizes of the etgsofF +
the size ofly. The firing of a transition may result in removing (or addiagj¥ tokens
from (to) a place.

Finally, we recall that the reachability problem for Pekisiis decidable.

Theorem 1 ([11, 9]).The reachability problem for Petri nets ExrPspACEhard.

3 Yen’'s Path Logic for Petri Nets

In this section we define the class of path formulas for Petts wonsidered by Yen in
[13]. We essentially follow his definitions. Lex_ = (P, T,F, o) be a Petri net. Each
path formula consists of the following elements:

1. Variables: There are two types of variables, namely, marking variahlepo, ...
and variables for transition sequen@asoy, ..., where eacly; denotes a marking
of A’ and eaclo; denotes a finite sequence of transition rules.

2. Terms:Terms are defined recursively as follows:

— For every mapping € NP, cis a term.

— Forallj >, yj — 1 is a term, whergy andy; are marking variables.

— 71+ T and‘T; — I are terms if7; and 7> are terms. (Consequently, every
mappinge € ZP is also a term.)

3. Atomic predicatesThere are two types of atomic predicates, namely, tramsitio
predicates and marking predicates.

(a) Transition predicates:
— z®H(gi) > candz® t(o;) > c are predicates, whele> 1, c€ N is a
constant, and is a mapping fronT to Z.
— #(o1)(t) > candf(o1)(t) < care predicates, whete= N is a constant and
t € T is a transition rule of\/.
(b) Marking predicates:
— W(p) > zandu(p) > zare predicates, whegeis a marking variablep € P
is a place ofA{, andz € Z is an integer.
— Ti(p1) = T2(p2), Ta(P1) < T2(P2), andTa(p1) > 71(p2) are predicates,
where7; and‘T; are terms angby, p2 € P are two places of\/.

A predicateis either a marking predicate, a transition predicate, othefform

Vici<k A1<j<m ¢ij (i.e., in the disjunctive normal forfhwhere eaclt|)ij is a marking or
transition predicate. Aath formula fis a formula of the form:

3“17"'a“nao-la"'70n((u0i>“l&>"'un*l&>un) A (p(p'la"'vunao-lw"ao-n))
where@is a predicate.

Given a Petri nef\ and a path formuld, we use\ |= f to denote thaf is true in
A . Thesatisfiability problenfor such a path formulé asks if there exists an execution

11n [13], a predicate can be any positive boolean combinatiopredicates. In fact, we can
show that our results (in particular Theorem 3) still holém¥f we consider this general case.



of AL of the formpio —% py —2» - - -ty 1 — Py such thatp(ly, . . ., n, O1, - .., On) holds.
In this case, we saf\ satisfies the path formula(i.e., A’ = f).

The following result can be shown following [13].

Lemma 1. Given a Petri net\l = (P, T,F,p) and a formula f, we can construct in
polynomial time, a Petri nel! = (P, T’,F’, ) and a formula f containing no tran-
sition predicates such thay = f if and only if A = /.

Therefore, it is sufficient to consider formulas containgrdy marking predicates
in order to decide satisfiability.

4 From the reachability problem to the satisfiability problem

In the following, we prove that the reachability problem Retri nets is polynomially
reducible to the satisfiability problem for path formulas.

Theorem 2. Given a Petri net\| = (P, T,F, o) and a marking = NP, we can con-
struct, in polynomial time, a Petri nex(’ = (P',T’,F’, 1) and a path formula f such
that the marking p is reachable By if and only if A" |= f.

The rest of this section is devoted to the proof of Theorem @.fvgt construct a
Petri net\’ = (P, T’,F’, %) with P C P’ such that a marking € NP is reachable in
AL if and only if there is a marking' € N such thatl|p = pandy! is reachable in
A’. Then, we construct a path formulidor the Petri net\’ such that\” satisfies the
formulaf if and only if there is a marking’ € NP’ such thaf{|p = pandy! is reachable
in A". This implies that the marking is reachable im( if and only if 2\’ satisfies the
formulaf.

4.1 Constructing the Petri neta\”

The Petri net\! = (P, T',F’, 1) is built up fromA( in a way described in Fig. 1.
Formally, A’ contains all transitions and places @f. In addition, three new places
Jo, 01,92 and two new transitions, andr, are added to\”’. Initially, A" has just one
token in the placep andpp(p) tokens in each placee P (i.e.,[o(do) = 1, Wo(a1) =
Ho(gz) = 0, andyg|e = Ho). The transitiorry (resp.rz) consumes exactly one token
from the placeqp (resp.q:i) and produces only one token in the plape(resp.qy),
i.e.,F’(qo,r1) = F'(r1,0n) = 1 (resp.F’(qu,r2) = F'(r2,02) = 1) and 0 otherwise. A
transitiont € T of A consumes exactly one token from the plggandF (p,t) tokens
from each placep € P, and produces one token in the plageandF (t, p) token in
each placep € P. Formally, we have that for eveiye {0,1}, F’(q;,t) = F/(t,qi) = 0,
F/(02,t) = F(t,q2) = 1 and for everyp € P, F'(p,t) = F(p,t) andF’(t, p) = F(t, p).

Then, the relation betweel andA(’ is giving by the following lemma.
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Fig. 1. The Petri net\”

Lemma 2. Let pe NP be a marking andy € T be a sequence of transitions 9.
Ho -2 is a computation o\’ if and only if 1 — 1y —2% [ is a computation of\

where:
— W1(do) = H1(d2) =0, K1 (n) = 1, and Hy [p = Ho.
— H(q0) =K (q2) =0, H(q2) =1, and d[p = .
As an immediate consequence of Lemma 2, we get the follovagaglt.

Corollary 1. A marking pe NP is reachable by\( if and only if there is a sequence
of transitionso € T* such that g —% 1(; —2% |1 is a computation of\’ with {(do) =
p’/(ql) = 01 |J/(q2) - 1, and I_i|p = u

4.2 Constructing the path formula f for the Petri net A

In the following, we construct a path formufasuch that\’ satisfiesf if and only if
the markinguis reachable by\/. The path formuld is of the following form:

T, Ho 301, 02 ((Ho —2 Hy 225 o) A @u(p) A @2(pa, Ho))

where@; andg, are two predicates.

The predicate (1) = p1(g1) > 1 says that only the transition ruleis fired during
the sequence of transitions (i.e.,01 = r1). This implies that the marking, is defined
as follows:p (Go) = Ha(dz2) = O, pu () = 1, andpu[p = Ho.

(M1, k) = (Ko(t2) > 1) A A\ <H2(p) —H(p) = H(p) — Uo(p))
peP
Fig. 2. The predicatep (g, H2)

The predicatep, (given by Fig. 2) says that for each plapes P, the difference
between the number of tokens addedpt@nd the number of tokens taken frop



during firing the sequence of transitioos, is equal tau(p) — Po(p). This implies that
H2(Go) = M2(a1) = 0, p2(02) = 1, andje|p = .

Lemma 3. The Petri net\’ satisfies the path formula f if and only ff {2 —2% o
is a computation of\’ whereo € T*, and | and |p are two markings defined as
follows:

— Ma(do) = pa(d2) =0, pa(qs) = 1, and pi[p = Ho.
= K2(qo) = H2(t) =0, Le(g2) = 1, and plp = L.
As an immediate consequence of Lemma 3 and Corollary 1, we thav:
Corollary 2. The marking p is reachable By if and only if A’ = f.

Hence, the reachability problem for Petri nets is polyndimi@ducible to the sat-
isfiability problem for the class of path formulas.

Remark 1.1t is also possible to reduce the reachability problem fariReets to the
satisfiability problem for a path formula that contains omfnsition predicates.

5 From the satisfiability problem to the reachability problem

In this section, we show that the satisfiability problem fattpformulas is polynomially
reducible to the reachability problem for Petri nets.

Theorem 3. Given a Petri nef\ = (P, T, F, ) and a path formula f, we can construct,
in polynomial time, a Petri nef\' = (P, T',F’, ) such thatA( |= f iff the empty
markingO0 is reachable by\".

The rest of this section is devoted to the proof of Theoreme?.us suppose that
the path formuld is of the form:

g, 301, -, On ((Ho—2 b —25 2+ Fno1— Pn) A @K, - -, Hin) )

We assume, without loss of generality, tlgatontains only marking predicates (see
Lemma 1). Furthermore, becausgV ¢ is satisfiable if and only i is satisfiable or
@ is satisfiable, we can assume tlpas of the form@= ¢1 A --- A by where for every

i € {1,...,m}, ¢; is a marking predicate of the fofm

Yot > (VOW) <%+ Y (FOw)
=1 =1
wherey! andz are two mappings fronP to N andy;, and z, are two nonnegative

integers.

2 According to [13] (Lemma 3.4, page 130) any marking prediozdn be represented as a
predicate of this form. Moreover, it is easy to see that theo@redicates of this form is
slightly more general than the set of marking predicatesddfin section 3.



Foreveryi € {1,...,m}, letp; andp;" be two mappings froniNP)" to N such that:
for every given sequence of markings ..., of A(, we have thap; (W, ..., ln) =
Yo+ 3 1(y] © 1) andp (b, .. 1) = 2+ 3T_1(7 O W)

In the following, we compute a Petri ng&{’ = (P',T',F’, ) such that\{ |= f if
and only if the empty markin@ is reachable by\’. A computation ofA’ can be
divided in two phases: Firsf\’ guesses a sequence of markipgs .., U, of A’ such
that: o 2% Py 225 o - - - Pn—1 — I is @ computation of\( for someos,...,0n € T,
Then, in the second phas®(’ checks for every € {1,...,m}, if p; (H1,...,Hkn) <
Pi (M, .- -, M) (i-e., the predicate(py, . .., ) is true).

The Petri net\’ contains all places aof\_. In addition, the new places,...,0n
andq are added t&\’ such that the total number of token in all these places isyawa
less or equal to one. The sequence of plages ., dy is used during the first phase to
guess the sequence of markings. .., U of A/, while, the placeyis used during the
second phase to check if the predicgfp, . . ., ) is true for the guessed sequence of
markings. Moreover, for eveiiye {1,...,m}, the Petri nef\”’ has two places ands"
to keep track (in some increasing way with respect to theesgrpiof guessed markings)
of the value op;” andp;", respectively, such that a markipg NP is reachable by,
if and only if one of the two following cases holds:

— During the first phasetf p(qg;) = 1 for somej € {1,...,n} (only one token in the
placeq; and, consequently, the places...,dj—1,0j+1,-..,0n, andg are empty),
then there is a sequence of markings. .., 1j_1 € NP of A’ such that:

1. po-Z -2 - 1 — plp is @ computation of\(, and
2. for everyi € {1,...,m}, the number of tokens in the placgs ands' is
P (Ma,-- - M- 1, P, .., Mlp) @andp;™ (W, ..., Mj—1,Hp, ..., H|p), respectively.

— During the second phaséf p(q) = 1 (only one token in the place and, con-
sequently, the places,...,qn are empty), then there is a sequence of markings
H1, ..., Hn € NP of A( such that:

1. g0 -2 o - o1 2 1y is @ computation of\(,

2. for every placep € P, the number of tokens in the plageis less or equal to
Hn(p), and

3. foreveryi € {1,...,m}, there is a nonnegative numtseisuch that the number
of tokens ins™ (resp.s') is equal top; (Ma,...,Hn) — G (resp. less or equal to
piJr(ulw . ,Hn) - CI)

Initially, the Petri netA\’ haspp(p) tokens in each placp € P, one token in the
placeqi, O token in the set of place®,...,qn,q, and for everyi € {1,...,m}, the
placess™ ands' haveyl, andz, tokens, respectively.

The set of transitions of\’ is defined in such a way that the above invariant is
always preserved. Formally, the set of transitions\gfis defined as the smallest set
satisfying the following conditions:

— The simulation of the first phase:



e Simulation of a computation of A from p;_1 to y;: For every natural number
j € {1,...,n} and for every transitione T, A" has a transitiot such that:

1. F'(a;.t) = F'(tj,q)) = 1, F(Q,) = F'(t;,q) = 0, and F'(q.,tj) =
F'(tj,q) =0 for all | € {1,...,n} andl # j. This means that in order
to fire the transition;, the placeg; must contain one token.

2. For every place € P, F'(p,tj) = F(p,t) andF'(tj,p) = F(t,p). This
means that the transitiagnof A’ has the same effect over the set of places
P as the transitioh of A/.

3. For everyi € {1,...,m}, F/(.Si,tj) = YperF(P,1) Tk (Yi(p)) and
F'(tj,s ) = YperF (t,P) 31> (Yk(P)). Hence, the invariant between the
places  and the mapping;” is preserved.

4. For everyi € {L1,....m}, F'(§"tj) = TpepF(P,t) Tk (Z(P)) and
F/(tj,S") = YperF(t,P) Yk=j(Zc (). Hence, the invariant between the
places™ and the mappingﬁ is preserved.

e Guessing the markingp;: For every natural numbgre {1,...,n—1} and
for every transitiort € T, A’ has a transitiomjjJrl such that:

1 F(q ™ = F(i ) = 1, F/@t™) = F/i/™.§ = 0, and
F’(q|,tjj+l) = F’(tjjJrl,qy) =0foranyl,l’c {1,...,n},1 #jandl’ # j+1.
This corresponds to moving the token from the plagceo the placeg;. 1.

2. Forevery place € P, F’(p,tj”l) =F(p;t) andF’(tjj”, p) =F(t,p). This
means that the transitid}j‘frl of A" has the same effect over the set of
placesP as the transitioh of A.

3. For everyi € {1,...,m}, F’(g‘,tj’”) = SperF(P) Tk (Yk(P)) and
F’(tj”l,g‘) =¥ pep F(t,P) Tk=j (Yk(P)). Hence, the invariant between the
places  and the mapping;” is preserved.

4. For everyi € {1,....m}, F’(q*,tj“rl) = YperF(P1) Tk (Z(p)) and
F’(tj”l,g*) =¥ pep F(t, P) Tk (2 (p)). Hence, the invariant between the
places™ and the mapping;" is preserved.

Notice that firing the transition rulté+1 in A” simulates the firing of the tran-

sition rulet in A over the set of placeB. This guarantees that the guessed
sequence of transitiortg contains at least one transition.

o Guessing the markingy,: For every transition e T, A’ has a transitiotf**
such that:

1 F/(g,tith) = F/((1*,0) = 1, F'(tF"*,an) = 0, and F'(q,tp*h) =
F/(t0*%,q) = 0 for all 1 < | < n. This corresponds to moving the token
from the placey, to the placey.

2. Foreveryplacg € P, F/(p,th*1) = F(p,t) andF'(ti*1, p) = F(t, p). This
means that the transitiadli** of A" has the same effect over the set of
placesP as the transitioh of A/.



3. For everyi € {1,...,m}, F'(5,t1") = S pepF(P1) Sk (Yk(P)) and
F/(tTL,57) = S pepF (L, ) Sk (Vi (P)). Hence, the invariant between the
places  and the mapping; is preserved.

4. For everyi € {1,....m}, F/(s",th*1) = 5 ,cpF(p,t) Sk (Z(p)) and
F/(t+lsh) = SpepF(tP) Yo (z,.(p)). Hence, the invariant between the
places” and the mapping;" is preserved.

— Simulation of the second phase:

e Decreasing the number of tokens in each place &: For everyp € P, A’ has
atransitiort, such thaf’(q,tp) = F'(tp,q) = F'(p,tp) = 1 and 0 otherwise.

e Decreasing the number of tokens in each pIacg*: Foreveryi € {1,...,m},
A has a transitioy” such thaF’(q,t") = F/(t",q) = 1, F'(s",t") = 1, and
0 otherwise.

e Decreasing the number of tokens in each placg : For everyi € {1,...,m},
A has a special transitidpi such tha®’(q,t7) =F'(t7,q) =1,F'(5,t7 ) =
F'(s",t7) = 1, and 0 otherwise. Notice that, while decrementing the remb
of tokens ing~, we decrease also the number of tokeng'itby one.

e The end of the second phase\ has a transitiotu,q such thaf’(q,tend) = 1
and O otherwise.

Then, Theorem 3 is an immediate consequence of the follolemgna:
Lemma 4. The marking) is reachable i\’ if and only if A{ satisfies f.

Hence, the satisfiability problem for the class of path fdamus polynomially re-
ducible to the reachability problem for Petri nets. As an iadiate consequence of
Theorem 2 and 3, we get the following result:

Corollary 3. The satisfiability problem for the class of path formulassshard as the
reachability problem for Petri nets.

6 An EXPSPACEcomplete fragment

In this section we consider a fragment of Yen’s path logicvibich we can show that
its satisfiability problem i€xpPsPACEcomplete. The proof follows very closely Yen’s
proof [13] which is a generalization of Rackoff’s proof [12} the complexity of the
boundedness problem. The basic idea is to show that if a aigfysng a formula
exists, then there is a short one. This is done by inductiothemumber of places of
the Petri Net. However we have to modify one crucial lemmaseharoof in the paper
of Yen [13] contains an error. To correct the lemma, Yen'dddtas to be restricted.
The restriction makes sure that if there is a path showingatarmula is satisfiable,
then there is also a path starting at each intermediate ngpokithe path which satisfies
the formula. This is achieved by requiring the last desigdatarking of the path to be
bigger than the first designated marking. Formally,



Definition 1. A path formula f of the form

I+, M0 301, -, On (Ho =5 p1 =25+ -1 " o) A @K, -, Mn, O1, -, On) )

is called increasing ifp(p, - . . ,Hn, 01, -.,0n) does not contain transition predicates
and implies g > .

Notice that forn = 1, puy > 1 is always true and that an increasing path for-
mula can also be written &y, ..., 301, ..., 0n((Ho 2 P —2+ -+ Pno1 " o) A
@1, .-, Hn))-

For the rest of the section we consider increasing path fasniVe can suppose
furthermore that the formulagare conjunctions of marking predicates, since disjunc-
tions can be considered separately. We first give some additdefinitions. Given a
predicatap and a set of positive integeBswe definep® to be the predicate resulting
from removing all marking predicates of the fopg(p) > ¢ and;(p) > ¢ from @ for
alli ¢D. Let(P,T,F, ) be a Petri Net witlk places. We suppose an ordering®and
T and can then suppose that markings are vectol$“of

Thetransition vectorof a transitiort, denoted by is ak-dimensional vector with
(i) = F(t,pi) — F(pi,t) for all i with 1 <i < k. The set of transition vectors, denoted
by T is {f|t € T}. A generalized markings a mapping fronP to Z (i.e. a vector ofzk.
A generalized firing sequenégany sequence of transitions Bf A finite sequence of
vectorswy, ..., W, € ZX is said to be @ath(of lengthm— 1) if wy = pp andw; 1 —w; €
T for all i with 1 <i < m. A pathws, ..., wn corresponds to at least one generalized
firing sequencey, . .., tm_1 such thawvi 1 —w; =f foralli with 1 <i <m. Letwe ZX.
The vectomw isi boundedf w(j) >0for1<j<i.lfre N*issuchthat<w(j) <r
for 1< j <i, thenw is calledi-r bounded A path p = wa,...,wn € ZK is calledi
bounded(i-r bounded if eachw; in pis i bounded itr bounded). Given a predicate
o(Ha,---,Un), ani boundeditr bounded) pathws, ..., wn, is called an boundedp path
if 31<j1 <j2<... < jn=msuch thatg {1t (wj ,wj,,...,wj,) is true. Letm (i, 1, @)
be either the length of the shortédtoundedp path whose initial generalized marking
isp, or 0 if it does not exist. Leg(i, ) = max{m (i, i, @) | p € Z¥}. We haveg(i,) € N
(see [13)).

The following two lemmas are from [13].

Lemma 5. If there is an i-r boundedp-path in the Petri Ne{P, T,F,p) , then there
is an i-r boundedyp-path of length< r(80)°  for some constant independent of r and

S(AL).
We deriveg(i, ®) recursively.
Lemma 6. g(0,q) < 2(8%0)° for some constant ¢ independent (18

Lemma 7. g(i +1,¢) < (2600)(g(i, ) + 1)) ™)) for all i < k, where ¢ is a constant
independent of(s\).

Proof:

— Case 1. Ifthere is afi + 1)-28"0)(g(i, ) 4 1) boundedyp path, then using Lemma
5, there exists a short one with length(2(80) (g(i, @) + 1)) (S0)°,



— Case 2. Otherwise, l&t, . .., Vi, Vimg+1, - - -, Vm be an(i + 1) boundedp path such
thatvm, is the first vector noti + 1) — 28"0) (g(i, ¢) + 1) bounded. Without loss of
generality, we assume thak, (i +1) > 2(80) (g(i, @) + 1). Furthermore we assume
that no two ofvy, ..., vy, can agree on the first- 1 positions, otherwise the path
could be made shorter. Therefarg < (2570 (g(i, @) + 1)) *1. Now we show that
if we take as initial markingym,, there is an boundedy path in the Petri Nét
There are two cases depending@n

1. @is of the form@(ly ). In this case, sincey, ...,V is ani + 1 boundedp path
and@ s just a predicate on the markimg, Vmy, Vmy+1, - - - , Vm IS Clearly ani
boundedp path.

2. ¢ is of the form @(Hy,...,Mn) and it impliespn > pg. Since vy, ..., Vm,,
Ving+1, - --»Vm IS @n (i + 1) boundedy path it is ani boundedp path as well.
Therefored1 < j; < jo < ... < jn = msuch thap{H(vj ,vj,,...,vj,) is
true. Furthermoregj, > vj,. Lets =t;,...,t; be a sequence of transitions cor-
responding to the pathj,,vj,+1,...,Vj,. Lets=ty,,...,tm—1 be a sequence
of transitions corresponding to the patf,, Vimy+1,-..,Vm. Thenss is a se-
guence of transitions corresponding to a pa# ... ,vm,\/]1+1, ... ,v}n where

Vi =V, +Vj, —Vj, for all i such thatj; +1 <i < j,. Clearly the path is an

boundedp path starting fronv, (since@ -1} (vin, Vi ...,V ) is true, be-

cause all predicates stay true when adding to all markings#me positive
vector).

Now, we can take the shortestboundedg path p in (P, T,F,vy,). It's length

is < g(i,9). AS Vi (i +1) > 2680)(g(i,¢) + 1) and each place of each transi-

tion vector in the Petri Net is at mostS?¥) in absolute valuep is alsoi + 1

bounded and thé + 1) position will never fall below #*0) in p (so that mark-

ing predicates of the form;(p’) > c andy;(p’) > c will still hold in p). Therefore

Vi,...,Vm,_1, P is an (i + 1) boundedy path of length(28\0) (g(i, @) + 1)) +* +

o(i.9) < (2570)(g(i, @) + 1)) (0,

The following theorem now follows easily [13] from the bounidg.

Theorem 4. The satisfiability problem for increasing path formulas dendecided in
O(2+s(7)+l0g(s(\))) space, for some constant d independent 8f 5

Since unboundedness can be expressed in the logic and lomasdes xPSPACE
hard [9] we have the following:

Theorem 5. The satisfiability problem for increasing path formulasgegPsSPACE
complete.

3 At this point, there is a mistake in the proof of [13] (Lemmd,3age 130), as it assumes that
this path always exists and takes the shortest one. Howeveboundedp path might exist
starting fromvi,.



6.1 Some applications

In the following we consider the applications given in [1&Paliscuss if they are in the
increasing fragment. The following six problems are allhie fragment and therefore
in EXPSPACE They have already been shown to be&kpPspPACEbefore Yen'’s paper.

1. Boundedness problenUnboundedness of a Petri Net can be formulated as
T, o301, 02 ((Ho —2+ p1 —2+ o) A (b > pa)) which is clearly an increasing path
formula.

2. Coverability It can be formulated a8y, 307 (Mo —% p1) A (W > V)) which is an
increasing path formula.

3. (Strict) Self-Coverability Problenit can be solved by considering formulas of the
form 3y, ko301, 02 ((Ho—= =2 12) A ((Aser Ha(S) > Ha(9)) A (Agg Ha(S) =
H1(S)))) wherel is a set of places (For strict self-coverability, replacdy >).
The formulas are clearly increasing path formulas.

4. u-Self-Coverability ProblemThis can be solved by considering formulas of the
form 3p, ho301, 02 ((Ho — 22 b —2- p) A (2 — p = U)) whereu € NX. These for-
mulas are increasing.

5. Final-State Self-Coverability ProblenThis can be solved by considering for-
mulas of the formBu, po, Ms301, 02,03 ((Ho —2 P —25 P —2+ Hg) A (Hg > Ha) A
(Vser H2(S) > 0)) for some sefF of places. This formula is increasing.

6. Fair Nontermination ProblemsAll the formulas considered for these problems
are of the formBpy, p301, 02 (Mo —2+ P1 —2> Po) A (Mo > pa) A0 (01,02)) where
$(01,02) is a formula containing only transition predicates. By éalig inspect-
ing this transition predicates one can easily see that editing them with Lemma
1 yields increasing formulas.

The following problems were claimed to begxPSPACEIn [13].

1. Regularity Detection ProblenNonregularity of a Petri Net is equivalent to the
satisfiability of the following path formula:

3, o, M3, Ha301, 02,03, 04 (Mo~ e —225 pp 2 1ig 245 pg) A & (g, b, Hs, 1))

whered (1, o, s, Ha) i (ke > ba) A (Vi1 (i) > pa (i) A (A1 (i) < pa(i)) v
(Ha(i) < pa(i))) A (VE  ps(i) > Ha(i))). Unfortunately, this formula is not increas-
ing and we can not apply our complexity result. To the bestuwfkmowledge the
complexity of regularity is therefore still unknown.

2. (Potential) Determinism Detection Probleiondeterminism of a Petri Net can be
expressed using the formumjl,ﬂcl((u()&ul) A (Ve e (M > V) A (M >
vt,))) where thew; are the minimal vectors for which is enabled. Clearly,
the formula is increasing. Non potential determinism caenttbe expressed
as I, iz, 301, 02 (o~ —2 H2) A (Vi g (M1 = Vo) A (Ha > W) A (b >
ul))). This formula is increasing and therefore the problem BXRSPACE

3. Frozen Token Detection Problerfio decide if a Petri Net has a frozen token it
is sufficient to check the formulapy, po, 301, 02 ((Ho 2 i —2+ po) A (e (p) >



0)A (2 > W) A (02 # /\)) where p is a designated place am # A denotes
Vet fio, () > 0. Eliminating with Lemma 1 the transition predicates ygedth in-
creasing path formula and therefore the problem BXRSPACE

4. (Strong) Promptness DetectioA Petri Net is not (strongly) prompt if and only if
I, 2, 301, 02 ( (Mo~ 1 =2 p2) A (Aver, fiop (1) < O) A (b2 > ) A (02 # N)))
is true. Again eliminating with Lemma 1 the transition pieadis yields an increas-
ing path formula and therefore the problem i€xPSPACE

5. y-Synchronization ProblenGiven a mapy from the transitionsT to Z, a Petri
net is noty-synchronized ifBpy, b2, 301, 02 ((Ho —2 P —25 h2) A ((Arer, fos (1) <
0) A (((Srer Y()E(02) (1) > 0) V (Zrer Y(1)2(02)(1) < 0) A (2 > Wa))) is true.
While eliminating with Lemma 1 the transition predicateswatice that the newly
added places are always increasing. Thus this yields ag@astrg path formula and
therefore the problem is iBXPSPACE

7 Conclusion

In this paper, we have shown that the satisfiability problenttfe class of path formulas
considered by Yen [13] is as hard as the reachability prolitarPetri nets. However
for an important fragment we have shown that its satisfigijiifoblem iSExPSPACE
complete. By doing this, we have corrected the proof givefl8]. Furthermore we
show that almost all applications considered by Yen can hedaising our fragment.
However, the exact complexity of the regularity detectisnlgpem remains open. It
would be interesting to obtain a bigger fragment which i€kPspPACEallowing to
show theexpspPACEcomplexity of the regularity detection problem.

Acknowledgement: The authors would like to thank Ahmed Bouajjani and Javier Es
parza for very helpful discussions on this topic as well @&pBane Demri who inde-
pendently found the error in Yen’s proof.
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