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Abstract. In [13], Yen defines a class of formulas for paths in Petri netsand
claims that its satisfiability problem isEXPSPACE-complete. In this paper, we
show that in fact the satisfiability problem for this class offormulas is as hard as
the reachability problem for Petri nets. Moreover, we salvage almost all of Yen’s
results by defining a fragment of this class of formulas for which the satisfiability
problem isEXPSPACE-complete by adapting his proof.

1 Introduction

Petri nets (or equivalently, vector addition systems) are one of the most popular mathe-
matical model for the representation and analysis of parallel processes [2]. The reacha-
bility problem for Petri nets is one of the key problems in thearea of automatic verifica-
tion since many other problems (e.g. the liveness problem) were shown to be recursively
equivalent to the reachability problem (see [4, 6]). It is well known that the reachabil-
ity problem for Petri nets is decidable [11, 10, 7, 8]. However, the precise complexity
of the reachability problem for Petri nets remains open (allknown algorithms require
non-primitive recursive space). The best known lower boundis exponential space given
by Lipton in [9].

On the other hand, to obtain a uniform approach for deciding and studying the
complexity of many Petri nets problems, Yen has defined in [13] a class of formulas for
paths in Petri nets, each of them is of the form:

∃µ1, . . . ,µn∃σ1, . . . ,σn
(

(µ0
σ1−−→µ1

σ2−−→·· ·µn−1
σn−−→µn) ∧ φ(µ1, . . . ,µn,σ1, . . . ,σn)

)

whereφ belongs to a certain set of predicates (constraining the markings and transitions
sequence occurring in the formula) andµ0 is the initial marking of the given Petri net.
The above formula means that any markingµi can be reached fromµi−1 (1≤ i ≤ n) in
the Petri net through the firing sequence of transitionsσi and such that the predicate
φ(µ1, . . . ,µn,σ1, . . . ,σn) holds. In [13], Yen claims that the satisfiability problem for
such class of formulas (i.e., the problem of, given a Petri net and a formula, determining
whether there exists a path in the Petri net satisfying the given formula) is complete for
exponential space. This class of formulas is a useful and an interesting one since it is
powerful enough to express many Petri nets properties. In particular, Petri nets problems
such asboundedness, coverability, fair-nontermination, and regularity detectionare
reducible to the satisfiability problem for this class of formulas [13]. Moreover, Yen’s
result has been cited and used in several papers [1, 15, 14, 5,3].



In this paper, we prove that the reachability problem for Petri nets is in fact as hard as
the satisfiability problem for this class of formulas. However, we can salvage almost all
of Yen’s results by defining an interesting and useful fragment of this class of formulas
of paths in Petri nets for which the satisfiability problem isEXPSPACE-complete. In
proving the upper bound for this fragment, we correct an error in the proof given in
[13]. Essentially, the fragment requires the markingµn to be bigger thanµ1 allowing the
path satisfying the formula to be repeated.

Theregularity detectionproblem can not be expressed using our fragment and there-
fore to the best of our knowledge it’s complexity (given asEXPSPACEin [13]) remains
unclear.

2 Preliminaries

Let Z (resp.N) denote the set of ( resp. nonnegative) integers, andZ
k (resp.Nk) the set

of vectors ofk (resp. nonnegative) integers.
Let Σ be a finite alphabet. We denote byΣ∗ (resp.Σ+) the set of all finite (resp. non

empty) words overΣ and byε the empty word. We use|Σ| to denote the number of
symbols inΣ. We denote byNΣ (resp.ZΣ) the set of all mappings fromΣ to N (resp. to
Z) and by0 the mapping that maps every symbol inΣ to 0. Notice that any mapping in
N

Σ can be considered as a mapping inZ
Σ.

Let Σ andΣ′ be two finite alphabets such thatΣ ⊆ Σ′. Given a mappingµ in Z
Σ′

, we
write µ|Σ to denote the mapping that maps everya∈ Σ to µ(a).

Let Σ be a finite alphabet andµ1 andµ2 two mappings fromΣ to Z, we denote by
µ1⊙µ2 the inner product ofµ1 andµ2 (i.e.,µ1⊙µ2 = ∑a∈Σ µ1(a)µ2(a)).

TheParikh image♯ : Σ∗ 7→ N
Σ maps a wordw to a mapping♯(w) from Σ to N such

that♯(w)(a) is the number of occurrences ofa in w.
A Petri netN = (P,T,F,µ0) consists of a finite setP of places, a finite setT of

transitions disjoint fromP, a weight functionF : (P×T)∪ (T ×P) 7→ N, and an initial
markingµ0 ∈ N

P. A marking is a map fromP to N. For a markingµ of N and a place
p∈ P, we say that, inµ, the placep containsµ(p) tokens. For markingsµ, µ′, we write
µ+µ′ for the marking obtained by point wise addition of place contents. We writeµ≤ µ′

if µ(p) ≤ µ′(p) for all p∈ P, and we writeµ< µ′ if µ≤ µ′ andµ(p′) 6= µ′(p′) for some
placep′ ∈ P. The marking0 maps everyp∈ P to 0.

A transitiont ∈ T is enabled at a markingµ if and only if F(p,t) ≤ µ(p) for all
p∈ P. If a transitiont is enabled at a markingµ, thent may be fired yielding to a new
markingµ′ defined as follows:µ′(p) = µ(p)−F(p,t)+ F(t, p) for all p∈ P. We then
write µ t−→µ′ to denote that the markingµ′ is reached fromµ by firing the transition
t. A sequence of transitionsσ = t1 · · ·tn is a firing sequence fromµ0 if and only if
µ0

t1−→µ1
t2−→·· ·

tn−→µn for some sequence of markingsµ1, . . . ,µn. Furthermore, we call
µ0

σ−→µn a computationof N .
A marking µ is said to be reachable inN if and only if µ = µ0 or there is some

σ ∈ T+ such thatµ0
σ−→µ. The reachability problem for a Petri netN is, for a given

markingµ, to determine whetherµ is reachable inN .
We define the sizes(N ) of a Petri NetN as in [13], i.e. numbers are encoded in

binary and the size of a Petri Net is then⌈logk⌉+ ⌈logr⌉ (wherek is the number of



places andr is the number of transitions) + the sum of the sizes of the elements ofF +
the size ofµ0. The firing of a transition may result in removing (or adding)2s(N ) tokens
from (to) a place.

Finally, we recall that the reachability problem for Petri nets is decidable.

Theorem 1 ([11, 9]).The reachability problem for Petri nets isEXPSPACE-hard.

3 Yen’s Path Logic for Petri Nets

In this section we define the class of path formulas for Petri nets considered by Yen in
[13]. We essentially follow his definitions. LetN = (P,T,F,µ0) be a Petri net. Each
path formula consists of the following elements:

1. Variables:There are two types of variables, namely, marking variablesµ1,µ2, . . .

and variables for transition sequencesσ1,σ2, . . ., where eachµi denotes a marking
of N and eachσi denotes a finite sequence of transition rules.

2. Terms:Terms are defined recursively as follows:
– For every mappingc∈ N

P, c is a term.
– For all j > i, µj −µi is a term, whereµi andµj are marking variables.
– T1 + T2 andT1 − T2 are terms ifT1 andT2 are terms. (Consequently, every

mappingc∈ Z
P is also a term.)

3. Atomic predicates:There are two types of atomic predicates, namely, transition
predicates and marking predicates.
(a) Transition predicates:

– z⊙ ♯(σi) ≥ c and z⊙ ♯(σi) > c are predicates, wherei > 1, c ∈ N is a
constant, andz is a mapping fromT to Z.

– ♯(σ1)(t)≥ c and♯(σ1)(t)≤ c are predicates, wherec∈ N is a constant and
t ∈ T is a transition rule ofN .

(b) Marking predicates:
– µ(p) ≥ zandµ(p) > zare predicates, whereµ is a marking variable,p∈ P

is a place ofN , andz∈ Z is an integer.
– T1(p1) = T2(p2), T1(p1) < T2(p2), andT1(p1) > T1(p2) are predicates,

whereT1 andT2 are terms andp1, p2 ∈ P are two places ofN .

A predicateis either a marking predicate, a transition predicate, or ofthe form
W

1≤i≤k
V

1≤ j≤mi
ϕ j

i (i.e., in the disjunctive normal form1) where eachϕ j
i is a marking or

transition predicate. APath formula fis a formula of the form:

∃µ1, . . . ,µn∃σ1, . . . ,σn
(

(µ0
σ1−−→µ1

σ2−−→·· ·µn−1
σn−−→µn) ∧ φ(µ1, . . . ,µn,σ1, . . . ,σn)

)

whereφ is a predicate.

Given a Petri netN and a path formulaf , we useN |= f to denote thatf is true in
N . Thesatisfiability problemfor such a path formulaf asks if there exists an execution

1 In [13], a predicate can be any positive boolean combinationof predicates. In fact, we can
show that our results (in particular Theorem 3) still hold even if we consider this general case.



ofN of the formµ0
σ1−−→µ1

σ2−−→·· ·µn−1
σn−−→µn such thatφ(µ1, . . . ,µn,σ1, . . . ,σn) holds.

In this case, we sayN satisfies the path formulaf (i.e.,N |= f ).

The following result can be shown following [13].

Lemma 1. Given a Petri netN = (P,T,F,µ0) and a formula f , we can construct in
polynomial time, a Petri netN ′ = (P′,T ′,F ′,µ′0) and a formula f′ containing no tran-
sition predicates such thatN |= f if and only ifN ′ |= f ′.

Therefore, it is sufficient to consider formulas containingonly marking predicates
in order to decide satisfiability.

4 From the reachability problem to the satisfiability problem

In the following, we prove that the reachability problem forPetri nets is polynomially
reducible to the satisfiability problem for path formulas.

Theorem 2. Given a Petri netN = (P,T,F,µ0) and a marking µ∈ N
P, we can con-

struct, in polynomial time, a Petri netN ′ = (P′,T ′,F ′,µ′0) and a path formula f such
that the marking µ is reachable byN if and only ifN ′ |= f .

The rest of this section is devoted to the proof of Theorem 2. We first construct a
Petri netN ′ = (P′,T ′,F ′,µ′0) with P ⊆ P′ such that a markingµ∈ N

P is reachable in
N if and only if there is a markingµ′ ∈ N

P′
such thatµ′|P = µ andµ′ is reachable in

N ′. Then, we construct a path formulaf for the Petri netN ′ such thatN ′ satisfies the
formula f if and only if there is a markingµ′ ∈N

P′
such thatµ′|P = µandµ′ is reachable

in N ′. This implies that the markingµ is reachable inN if and only if N ′ satisfies the
formula f .

4.1 Constructing the Petri netN ′

The Petri netN ′ = (P′,T ′,F ′,µ′0) is built up fromN in a way described in Fig. 1.
Formally,N ′ contains all transitions and places ofN . In addition, three new places
q0,q1,q2 and two new transitionsr1 andr2 are added toN ′. Initially, N ′ has just one
token in the placeq0 andµ0(p) tokens in each placep∈ P (i.e.,µ′0(q0) = 1, µ′0(q1) =
µ′0(q2) = 0, andµ′0|P = µ0). The transitionr1 (resp.r2) consumes exactly one token
from the placeq0 (resp.q1) and produces only one token in the placeq1 (resp.q2),
i.e., F ′(q0, r1) = F ′(r1,q1) = 1 (resp.F ′(q1, r2) = F ′(r2,q2) = 1) and 0 otherwise. A
transitiont ∈ T of N ′ consumes exactly one token from the placeq2 andF(p,t) tokens
from each placep ∈ P, and produces one token in the placeq2 andF(t, p) token in
each placep∈ P. Formally, we have that for everyi ∈ {0,1}, F ′(qi ,t) = F ′(t,qi) = 0,
F ′(q2, t) = F(t,q2) = 1 and for everyp∈ P, F ′(p,t) = F(p,t) andF ′(t, p) = F(t, p).

Then, the relation betweenN andN ′ is giving by the following lemma.



q0 r1 q1 r2 q2

t
N

Fig. 1.The Petri netN ′

Lemma 2. Let µ∈ N
P be a marking andσ ∈ T+ be a sequence of transitions ofN .

µ0
σ−→µ is a computation ofN if and only if µ′0

r1−−→µ′1
r2σ

−−→µ′ is a computation ofN ′

where:

– µ′1(q0) = µ′1(q2) = 0, µ′1(q1) = 1, and µ′1|P = µ0.

– µ′(q0) = µ′(q1) = 0, µ′(q2) = 1, and µ′|P = µ.

As an immediate consequence of Lemma 2, we get the following result.

Corollary 1. A marking µ∈ N
P is reachable byN if and only if there is a sequence

of transitionsσ ∈ T∗ such that µ′0
r1−−→µ′1

r2σ
−−→µ′ is a computation ofN ′ with µ′(q0) =

µ′(q1) = 0, µ′(q2) = 1, and µ′|P = µ.

4.2 Constructing the path formula f for the Petri net N ′

In the following, we construct a path formulaf such thatN ′ satisfiesf if and only if
the markingµ is reachable byN . The path formulaf is of the following form:

∃µ1,µ2∃σ1,σ2
(

(µ′0
σ1−−→µ1

σ2−−→µ2) ∧ φ1(µ1)∧φ2(µ1,µ2)
)

whereφ1 andφ2 are two predicates.
The predicateφ1(µ1) = µ1(q1)≥ 1 says that only the transition ruler1 is fired during

the sequence of transitionsσ1 (i.e.,σ1 = r1). This implies that the markingµ1 is defined
as follows:µ1(q0) = µ1(q2) = 0, µ1(q1) = 1, andµ1|P = µ0.

φ2(µ1,µ2) = (µ2(q2) ≥ 1) ∧
^

p∈P

(

µ2(p)−µ1(p) = µ(p)−µ0(p)

)

Fig. 2.The predicateφ2(µ1,µ2)

The predicateφ2 (given by Fig. 2) says that for each placep ∈ P, the difference
between the number of tokens added top and the number of tokens taken fromp,



during firing the sequence of transitionsσ2, is equal toµ(p)−µ0(p). This implies that
µ2(q0) = µ2(q1) = 0, µ2(q2) = 1, andµ2|P = µ.

Lemma 3. The Petri netN ′ satisfies the path formula f if and only if µ′
0

r1−−→µ1
r2σ

−−→µ2

is a computation ofN ′ whereσ ∈ T∗, and µ1 and µ2 are two markings defined as
follows:

– µ1(q0) = µ1(q2) = 0, µ1(q1) = 1, and µ1|P = µ0.

– µ2(q0) = µ2(q1) = 0, µ2(q2) = 1, and µ2|P = µ.

As an immediate consequence of Lemma 3 and Corollary 1, we have that:

Corollary 2. The marking µ is reachable byN if and only ifN ′ |= f .

Hence, the reachability problem for Petri nets is polynomially reducible to the sat-
isfiability problem for the class of path formulas.

Remark 1.It is also possible to reduce the reachability problem for Petri nets to the
satisfiability problem for a path formula that contains onlytransition predicates.

5 From the satisfiability problem to the reachability problem

In this section, we show that the satisfiability problem for path formulas is polynomially
reducible to the reachability problem for Petri nets.

Theorem 3. Given a Petri netN = (P,T,F,µ0) and a path formula f , we can construct,
in polynomial time, a Petri netN ′ = (P′,T ′,F ′,µ′0) such thatN |= f iff the empty
marking0 is reachable byN ′.

The rest of this section is devoted to the proof of Theorem 3. Let us suppose that
the path formulaf is of the form:

∃µ1, . . . ,µn∃σ1, . . . ,σn
(

(µ0
σ1−−→µ1

σ2−−→µ2 · · ·µn−1
σn−−→µn) ∧ φ(µ1, . . . ,µn)

)

We assume, without loss of generality, thatφ contains only marking predicates (see
Lemma 1). Furthermore, becauseφ1∨φ2 is satisfiable if and only ifφ1 is satisfiable or
φ2 is satisfiable, we can assume thatφ is of the formφ = ϕ1∧·· · ∧ϕm where for every
i ∈ {1, . . . ,m}, ϕi is a marking predicate of the form2:

yi
0 +

n

∑
j=1

(yi
j ⊙µj) ≤ zi

0 +
n

∑
j=1

(zi
j ⊙µj)

whereyi
j and zi

j are two mappings fromP to N and yi
0 and zi

0 are two nonnegative
integers.

2 According to [13] (Lemma 3.4, page 130) any marking predicate can be represented as a
predicate of this form. Moreover, it is easy to see that the set of predicates of this form is
slightly more general than the set of marking predicates defined in section 3.



For everyi ∈ {1, . . . ,m}, letρ−
i andρ+

i be two mappings from(NP)n to N such that:
for every given sequence of markingsµ1, . . . ,µn of N , we have thatρ−

i (µ1, . . . ,µn) =
yi

0 + ∑n
j=1(y

i
j ⊙µj) andρ+

i (µ1, . . . ,µn) = zi
0 + ∑n

j=1(z
i
j ⊙µj).

In the following, we compute a Petri netN ′ = (P′,T ′,F ′,µ′0) such thatN |= f if
and only if the empty marking0 is reachable byN ′. A computation ofN ′ can be
divided in two phases: First,N ′ guesses a sequence of markingsµ1, . . . ,µn of N such
that:µ0

σ1−−→µ1
σ2−−→µ2 · · ·µn−1

σn−−→µn is a computation ofN for someσ1, . . . ,σn ∈ T+.
Then, in the second phase,N ′ checks for everyi ∈ {1, . . . ,m}, if ρ−

i (µ1, . . . ,µn) ≤
ρ+

i (µ1, . . . ,µn) (i.e., the predicateφ(µ1, . . . ,µn) is true).
The Petri netN ′ contains all places ofN . In addition, the new placesq1, . . . ,qn

andq̄ are added toN ′ such that the total number of token in all these places is always
less or equal to one. The sequence of placesq1, . . . ,qn is used during the first phase to
guess the sequence of markingsµ1, . . . ,µn of N , while, the place ¯q is used during the
second phase to check if the predicateφ(µ1, . . . ,µn) is true for the guessed sequence of
markings. Moreover, for everyi ∈ {1, . . . ,m}, the Petri netN ′ has two placess−i ands+

i
to keep track (in some increasing way with respect to the sequence of guessed markings)
of the value ofρ−

i andρ+
i , respectively, such that a markingµ∈ N

P′
is reachable byN ′,

if and only if one of the two following cases holds:

– During the first phase:If µ(q j) = 1 for somej ∈ {1, . . . ,n} (only one token in the
placeq j and, consequently, the placesq1, . . . ,q j−1,q j+1, . . . ,qn, andq̄ are empty),
then there is a sequence of markingsµ1, . . . ,µj−1 ∈ N

P of N such that:

1. µ0
σ1−−→µ1

σ2−−→µ2 · · ·µj−1
σ j
−−→µ|P is a computation ofN , and

2. for every i ∈ {1, . . . ,m}, the number of tokens in the placess−i and s+
i is

ρ−
i (µ1, . . . ,µj−1,µ|P, . . . ,µ|P) andρ+

i (µ1, . . . ,µj−1,µ|P, . . . ,µ|P), respectively.

– During the second phase:If µ(q̄) = 1 (only one token in the place ¯q and, con-
sequently, the placesq1, . . . ,qn are empty), then there is a sequence of markings
µ1, . . . ,µn ∈ N

P of N such that:

1. µ0
σ1−−→µ1

σ2−−→µ2 · · ·µn−1
σn−−→µn is a computation ofN ,

2. for every placep ∈ P, the number of tokens in the placep is less or equal to
µn(p), and

3. for everyi ∈ {1, . . . ,m}, there is a nonnegative numberci such that the number
of tokens ins−i (resp.s+

i ) is equal toρ−
i (µ1, . . . ,µn)−ci (resp. less or equal to

ρ+
i (µ1, . . . ,µn)−ci).

Initially, the Petri netN ′ hasµ0(p) tokens in each placep ∈ P, one token in the
placeq1, 0 token in the set of placesq2, . . . ,qn, q̄, and for everyi ∈ {1, . . . ,m}, the
placess−i ands+

i haveyi
0 andzi

0 tokens, respectively.
The set of transitions ofN ′ is defined in such a way that the above invariant is

always preserved. Formally, the set of transitions ofN ′ is defined as the smallest set
satisfying the following conditions:

– The simulation of the first phase:



• Simulation of a computation ofN from µj−1 to µj : For every natural number
j ∈ {1, . . . ,n} and for every transitiont ∈ T, N ′ has a transitiont j such that:

1. F ′(q j , t j) = F ′(t j ,q j) = 1, F ′(q̄,t j ) = F ′(t j , q̄) = 0, and F ′(ql ,t j) =
F ′(t j ,ql ) = 0 for all l ∈ {1, . . . ,n} and l 6= j. This means that in order
to fire the transitiont j , the placeq j must contain one token.

2. For every placep ∈ P, F ′(p,t j) = F(p,t) and F ′(t j , p) = F(t, p). This
means that the transitiont j of N ′ has the same effect over the set of places
P as the transitiont of N .

3. For every i ∈ {1, . . . ,m}, F ′(s−i ,t j) = ∑p∈PF(p,t)∑k≥ j (y
i
k(p)) and

F ′(t j ,s
−
i ) = ∑p∈PF(t, p)∑k≥ j(y

i
k(p)). Hence, the invariant between the

places−i and the mappingρ−
i is preserved.

4. For every i ∈ {1, . . . ,m}, F ′(s+
i ,t j) = ∑p∈PF(p,t)∑k≥ j (z

i
k(p)) and

F ′(t j ,s
+
i ) = ∑p∈PF(t, p)∑k≥ j (z

i
k(p)). Hence, the invariant between the

places+
i and the mappingρ+

i is preserved.

• Guessing the markingµj : For every natural numberj ∈ {1, . . . ,n− 1} and

for every transitiont ∈ T, N ′ has a transitiont j+1
j such that:

1. F ′(q j , t
j+1
j ) = F ′(t j+1

j ,q j+1) = 1, F ′(q̄,t j+1
j ) = F ′(t j+1

j , q̄) = 0, and

F ′(ql , t
j+1
j )= F ′(t j+1

j ,ql ′) = 0 for anyl , l ′ ∈ {1, . . . ,n}, l 6= j andl ′ 6= j +1.
This corresponds to moving the token from the placeq j to the placeq j+1.

2. For every placep∈P, F ′(p,t j+1
j ) = F(p,t) andF ′(t j+1

j , p) = F(t, p). This

means that the transitiont j+1
j of N ′ has the same effect over the set of

placesP as the transitiont of N .

3. For everyi ∈ {1, . . . ,m}, F ′(s−i ,t j+1
j ) = ∑p∈PF(p,t)∑k≥ j (y

i
k(p)) and

F ′(t j+1
j ,s−i ) = ∑p∈PF(t, p)∑k≥ j(y

i
k(p)). Hence, the invariant between the

places−i and the mappingρ−
i is preserved.

4. For everyi ∈ {1, . . . ,m}, F ′(s+
i ,t j+1

j ) = ∑p∈PF(p,t)∑k≥ j (z
i
k(p)) and

F ′(t j+1
j ,s+

i ) = ∑p∈PF(t, p)∑k≥ j(z
i
k(p)). Hence, the invariant between the

places+
i and the mappingρ+

i is preserved.

Notice that firing the transition rulet j+1
j in N ′ simulates the firing of the tran-

sition rulet in N over the set of placesP. This guarantees that the guessed
sequence of transitionsσ j contains at least one transition.

• Guessing the markingµn: For every transitiont ∈ T,N ′ has a transitiontn+1
n

such that:
1. F ′(qn, tn+1

n ) = F ′(tn+1
n , q̄) = 1, F ′(tn+1

n ,qn) = 0, and F ′(ql ,tn+1
n ) =

F ′(tn+1
n ,ql ) = 0 for all 1≤ l < n. This corresponds to moving the token

from the placeqn to the place ¯q.
2. For every placep∈P, F ′(p,tn+1

n ) = F(p,t) andF ′(tn+1
n , p) = F(t, p). This

means that the transitiontn+1
n of N ′ has the same effect over the set of

placesP as the transitiont of N .



3. For everyi ∈ {1, . . . ,m}, F ′(s−i ,tn+1
n ) = ∑p∈PF(p,t)∑k≥ j (y

i
k(p)) and

F ′(tn+1
n ,s−i ) = ∑p∈PF(t, p)∑k≥ j(y

i
k(p)). Hence, the invariant between the

places−i and the mappingρ−
i is preserved.

4. For everyi ∈ {1, . . . ,m}, F ′(s+
i ,tn+1

n ) = ∑p∈PF(p,t)∑k≥ j (z
i
k(p)) and

F ′(tn+1
n ,s+

i ) = ∑p∈PF(t, p)∑k≥ j(z
i
k(p)). Hence, the invariant between the

places+
i and the mappingρ+

i is preserved.

– Simulation of the second phase:

• Decreasing the number of tokens in each place ofP: For everyp∈P,N ′ has
a transitiontp such thatF ′(q̄,tp) = F ′(tp, q̄) = F ′(p,tp) = 1 and 0 otherwise.

• Decreasing the number of tokens in each places+
i : For everyi ∈ {1, . . . ,m},

N ′ has a transitiont+i such thatF ′(q̄,t+i ) = F ′(t+i , q̄) = 1, F ′(s+
i ,t+i ) = 1, and

0 otherwise.

• Decreasing the number of tokens in each places−i : For everyi ∈ {1, . . . ,m},
N ′ has a special transitiont−i such thatF ′(q̄,t−i ) = F ′(t−i , q̄) = 1, F ′(s−i ,t−i ) =
F ′(s+

i , t̄−i ) = 1, and 0 otherwise. Notice that, while decrementing the number
of tokens ins−i , we decrease also the number of tokens ins+

i by one.

• The end of the second phase:N ′ has a transitiontend such thatF ′(q̄,tend) = 1
and 0 otherwise.

Then, Theorem 3 is an immediate consequence of the followinglemma:

Lemma 4. The marking0 is reachable inN ′ if and only ifN satisfies f .

Hence, the satisfiability problem for the class of path formulas is polynomially re-
ducible to the reachability problem for Petri nets. As an immediate consequence of
Theorem 2 and 3, we get the following result:

Corollary 3. The satisfiability problem for the class of path formulas is as hard as the
reachability problem for Petri nets.

6 An EXPSPACE-complete fragment

In this section we consider a fragment of Yen’s path logic forwhich we can show that
its satisfiability problem isEXPSPACE-complete. The proof follows very closely Yen’s
proof [13] which is a generalization of Rackoff’s proof [12]for the complexity of the
boundedness problem. The basic idea is to show that if a path satisfying a formula
exists, then there is a short one. This is done by induction onthe number of places of
the Petri Net. However we have to modify one crucial lemma whose proof in the paper
of Yen [13] contains an error. To correct the lemma, Yen’s logic has to be restricted.
The restriction makes sure that if there is a path showing that a formula is satisfiable,
then there is also a path starting at each intermediate marking of the path which satisfies
the formula. This is achieved by requiring the last designated marking of the path to be
bigger than the first designated marking. Formally,



Definition 1. A path formula f of the form

∃µ1, . . . ,µn∃σ1, . . . ,σn
(

(µ0
σ1−−→µ1

σ2−−→·· ·µn−1
σn−−→µn) ∧ φ(µ1, . . . ,µn,σ1, . . . ,σn)

)

is called increasing ifφ(µ1, . . . ,µn,σ1, . . . ,σn) does not contain transition predicates
and implies µn ≥ µ1.

Notice that forn = 1, µn ≥ µ1 is always true and that an increasing path for-
mula can also be written as∃µ1, . . . ,µn∃σ1, . . . ,σn

(

(µ0
σ1−−→µ1

σ2−−→·· ·µn−1
σn−−→µn) ∧

φ(µ1, . . . ,µn)
)

.
For the rest of the section we consider increasing path formulas. We can suppose

furthermore that the formulasφ are conjunctions of marking predicates, since disjunc-
tions can be considered separately. We first give some additional definitions. Given a
predicateφ and a set of positive integersD we defineφ[D] to be the predicate resulting
from removing all marking predicates of the formµi(p) ≥ c andµi(p) > c from φ for
all i 6∈ D. Let (P,T,F,µ0) be a Petri Net withk places. We suppose an ordering onP and
T and can then suppose that markings are vectors ofINk.

The transition vectorof a transitiont, denoted bŷt is ak-dimensional vector with
t̂(i) = F(t, pi)−F(pi , t) for all i with 1≤ i ≤ k. The set of transition vectors, denoted
by T̂ is {t̂ | t ∈ T}. A generalized markingis a mapping fromP to Z (i.e. a vector ofZk.
A generalized firing sequenceis any sequence of transitions ofT. A finite sequence of
vectorsw1, . . . ,wm ∈Z

k is said to be apath(of lengthm−1) if w1 = µ0 andwi+1−wi ∈
T̂ for all i with 1 ≤ i < m. A pathw1, . . . ,wm corresponds to at least one generalized
firing sequencet1, . . . ,tm−1 such thatwi+1−wi = t̂i for all i with 1≤ i < m. Let w∈ Z

k.
The vectorw is i boundedif w( j) ≥ 0 for 1≤ j ≤ i. If r ∈ IN+ is such that 0≤ w( j) < r
for 1 ≤ j ≤ i, thenw is called i-r bounded. A path p = w1, . . . ,wm ∈ Z

k is called i
bounded(i-r bounded) if eachwj in p is i bounded (i-r bounded). Given a predicate
φ(µ1, . . . ,µn), ani bounded (i-r bounded) pathw1, . . . ,wm is called ani boundedφ path
if ∃1≤ j1 ≤ j2 ≤ . . .≤ jn = msuch thatφ[{1,...,i}](wj1,wj2, . . . ,wjn) is true. Letm′(i,µ,φ)
be either the length of the shortesti boundedφ path whose initial generalized marking
is µ, or 0 if it does not exist. Letg(i,φ) = max{m′(i,µ,φ) | µ∈ Z

k}. We haveg(i,φ) ∈ IN
(see [13]).

The following two lemmas are from [13].

Lemma 5. If there is an i-r boundedφ-path in the Petri Net(P,T,F,µ0) , then there
is an i-r boundedφ-path of length≤ r(s(N ))c

, for some constant independent of r and
s(N ).

We deriveg(i,φ) recursively.

Lemma 6. g(0,φ) ≤ 2(s(N ))c
, for some constant c independent of s(N ).

Lemma 7. g(i +1,φ) ≤ (2(s(N ))(g(i,φ)+1))(s(N ))c
for all i < k, where c is a constant

independent of s(N ).

Proof:

– Case 1. If there is an(i +1)-2(s(N ))(g(i,φ)+1) boundedφ path, then using Lemma
5, there exists a short one with length≤ (2(s(N ))(g(i,φ)+1))(s(N ))c

.



– Case 2. Otherwise, letv1, . . . ,vm0,vm0+1, . . . ,vm be an(i +1) boundedφ path such
thatvm0 is the first vector not(i +1)−2(s(N ))(g(i,φ)+1) bounded. Without loss of
generality, we assume thatvm0(i+1)> 2(s(N ))(g(i,φ)+1). Furthermore we assume
that no two ofv1, . . . ,vm0 can agree on the firsti + 1 positions, otherwise the path
could be made shorter. Thereforem0 ≤ (2(s(N ))(g(i,φ)+1))i+1. Now we show that
if we take as initial markingvm0, there is ani boundedφ path in the Petri Net3.
There are two cases depending onφ.
1. φ is of the formφ(µ1). In this case, sincev1, . . . ,vm is ani +1 boundedφ path

andφ is just a predicate on the markingµ1, vm0,vm0+1, . . . ,vm is clearly ani
boundedφ path.

2. φ is of the form φ(µ1, . . . ,µn) and it implies µn ≥ µ1. Since v1, . . . ,vm0,

vm0+1, . . . ,vm is an(i + 1) boundedφ path it is ani boundedφ path as well.
Therefore∃1 ≤ j1 ≤ j2 ≤ . . . ≤ jn = m such thatφ[{1,...,i}](v j1,v j2, . . . ,v jn) is
true. Furthermorev jn ≥ v j1. Let s′ = t ′1, . . . ,t

′
o be a sequence of transitions cor-

responding to the pathv j1,v j1+1, . . . ,v jn. Let s = tm0, . . . ,tm−1 be a sequence
of transitions corresponding to the pathvm0,vm0+1, . . . ,vm. Thenss′ is a se-
quence of transitions corresponding to a pathvm0, . . . ,vm,v′j1+1, . . . ,v

′
jn where

v′i = vi + v jn − v j1 for all i such thatj1 + 1 ≤ i ≤ jn. Clearly the path is ani
boundedφ path starting fromvm0 (sinceφ[{1,...,i}](vm,v′j2, . . . ,v

′
jn) is true, be-

cause all predicates stay true when adding to all markings the same positive
vector).

Now, we can take the shortesti boundedφ path p in (P,T,F,vm0). It’s length
is ≤ g(i,φ). As vm0(i + 1) > 2(s(N ))(g(i,φ) + 1) and each place of each transi-
tion vector in the Petri Net is at most 2(s(N )) in absolute value,p is also i + 1
bounded and the(i + 1) position will never fall below 2(s(N )) in p (so that mark-
ing predicates of the formµi(p′) ≥ c andµi(p′) > c will still hold in p). Therefore
v1, . . . ,vm0−1, p is an (i + 1) boundedφ path of length(2(s(N ))(g(i,φ) + 1))i+1 +

g(i,φ) < (2(s(N ))(g(i,φ)+1))(s(N ))c
.

2

The following theorem now follows easily [13] from the boundong.

Theorem 4. The satisfiability problem for increasing path formulas canbe decided in
O(2d∗s(N )∗log(s(N ))) space, for some constant d independent of s(N ).

Since unboundedness can be expressed in the logic and boundedness isEXPSPACE-
hard [9] we have the following:

Theorem 5. The satisfiability problem for increasing path formulas isEXPSPACE-
complete.

3 At this point, there is a mistake in the proof of [13] (Lemma 3.7, page 130), as it assumes that
this path always exists and takes the shortest one. Howeverno i boundedφ path might exist
starting fromvm0.



6.1 Some applications

In the following we consider the applications given in [13] and discuss if they are in the
increasing fragment. The following six problems are all in the fragment and therefore
in EXPSPACE. They have already been shown to be inEXPSPACEbefore Yen’s paper.

1. Boundedness problem. Unboundedness of a Petri Net can be formulated as
∃µ1,µ2∃σ1,σ2

(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧ (µ2 > µ1)
)

which is clearly an increasing path
formula.

2. Coverability. It can be formulated as∃µ1,∃σ1
(

(µ0
σ1−−→µ1) ∧ (µ1 ≥ v)

)

which is an
increasing path formula.

3. (Strict) Self-Coverability Problem. It can be solved by considering formulas of the
form ∃µ1,µ2∃σ1,σ2

(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧
(

(
V

s∈I µ2(s) ≥ µ1(s))∧ (
V

s′ 6∈I µ2(s′) =

µ1(s′)))
)

whereI is a set of places (For strict self-coverability, replace≥ by >).
The formulas are clearly increasing path formulas.

4. u-Self-Coverability Problem. This can be solved by considering formulas of the
form∃µ1,µ2∃σ1,σ2

(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧ (µ2−µ1 = u)
)

whereu∈ INk. These for-
mulas are increasing.

5. Final-State Self-Coverability Problem. This can be solved by considering for-
mulas of the form∃µ1,µ2,µ3∃σ1,σ2,σ3

(

(µ0
σ1−−→µ1

σ2−−→µ2
σ3−−→µ3) ∧ (µ3 ≥ µ1)∧

(
W

s∈F µ2(s) > 0)
)

for some setF of places. This formula is increasing.
6. Fair Nontermination Problems. All the formulas considered for these problems

are of the form∃µ1,µ2∃σ1,σ2
(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧ (µ2 ≥ µ1)∧ϕ(σ1,σ2)
)

where
ϕ(σ1,σ2) is a formula containing only transition predicates. By carefully inspect-
ing this transition predicates one can easily see that eliminating them with Lemma
1 yields increasing formulas.

The following problems were claimed to be inEXPSPACEin [13].

1. Regularity Detection Problem. Nonregularity of a Petri Net is equivalent to the
satisfiability of the following path formula:

∃µ1,µ2,µ3,µ4∃σ1,σ2,σ3,σ4
(

(µ0
σ1−−→µ1

σ2−−→µ2
σ3−−→µ3

σ4−−→µ4) ∧ ϕ(µ1,µ2,µ3,µ4)
)

whereϕ(µ1,µ2,µ3,µ4) is (µ2 ≥ µ1)∧ (
Wk

i=1µ2(i) > µ1(i))∧ (
Vk

i=1(µ1(i) < µ2(i))∨
(µ3(i) ≤ µ4(i)))∧ (

Wk
i=1µ3(i) > µ4(i))

)

. Unfortunately, this formula is not increas-
ing and we can not apply our complexity result. To the best of our knowledge the
complexity of regularity is therefore still unknown.

2. (Potential) Determinism Detection Problem. Nondeterminism of a Petri Net can be
expressed using the formula∃µ1,∃σ1

(

(µ0
σ1−−→µ1) ∧ ((

W

t,t′ ,t 6=t′(µ1 ≥ vt)∧ (µ1 ≥

vt′))
)

where thevt are the minimal vectors for whicht is enabled. Clearly,
the formula is increasing. Non potential determinism can then be expressed
as∃µ1,µ2,∃σ1,σ2

(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧ ((
W

t,t′ ,t 6=t′(µ1 ≥ vt)∧ (µ1 ≥ vt′))∧ (µ2 ≥

µ1))
)

. This formula is increasing and therefore the problem is inEXPSPACE.
3. Frozen Token Detection Problem. To decide if a Petri Net has a frozen token it

is sufficient to check the formula∃µ1,µ2,∃σ1,σ2
(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧ (µ1(p) >



0)∧ (µ2 ≥ µ1) ∧ (σ2 6= Λ)
)

where p is a designated place andσ2 6= Λ denotes
W

t∈T ♯σ2(t) > 0. Eliminating with Lemma 1 the transition predicates yields an in-
creasing path formula and therefore the problem is inEXPSPACE.

4. (Strong) Promptness Detection. A Petri Net is not (strongly) prompt if and only if
∃µ1,µ2,∃σ1,σ2

(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧ ((
V

t∈T1
♯σ2(t)≤ 0)∧(µ2 ≥ µ1)∧(σ2 6= Λ))

)

is true. Again eliminating with Lemma 1 the transition predicates yields an increas-
ing path formula and therefore the problem is inEXPSPACE.

5. y-Synchronization Problem. Given a mapy from the transitionsT to Z, a Petri
net is noty-synchronized iff∃µ1,µ2,∃σ1,σ2

(

(µ0
σ1−−→µ1

σ2−−→µ2) ∧ ((
V

t∈T1
♯σ1(t)≤

0) ∧ (((∑t∈T y(t)♯(σ2)(t) > 0) ∨ (∑t∈T y(t)♯(σ2)(t) < 0)) ∧ (µ2 ≥ µ1))
)

is true.
While eliminating with Lemma 1 the transition predicates wenotice that the newly
added places are always increasing. Thus this yields an increasing path formula and
therefore the problem is inEXPSPACE.

7 Conclusion

In this paper, we have shown that the satisfiability problem for the class of path formulas
considered by Yen [13] is as hard as the reachability problemfor Petri nets. However
for an important fragment we have shown that its satisfiability problem isEXPSPACE-
complete. By doing this, we have corrected the proof given in[13]. Furthermore we
show that almost all applications considered by Yen can be solved using our fragment.
However, the exact complexity of the regularity detection problem remains open. It
would be interesting to obtain a bigger fragment which is inEXPSPACEallowing to
show theEXPSPACEcomplexity of the regularity detection problem.

Acknowledgement:The authors would like to thank Ahmed Bouajjani and Javier Es-
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