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Abstract. Two conditions on the signs of the coefficients of a bivariate polynomial which ensure that

the zero set is a single curve are derived. The first condition demands that all but one of the coefficients have

the same sign. The second requires that the signs are ‘split’ by any straight line. Both properties are demon-

strated by generalizing the set of isoparametric lines to a certain two-parameter family of curves. Equivalent

curves are found for power, tensor-product Bernstein, exponential and triangular Bernstein polynomials.

The second property will allow greater freedom when using algebraic curves for geometric modelling.

§1. Introduction

With the emergence of algebraic curves and surfaces in geometric modelling [2,4,6,11,12,
21,22] it is important to be able to predict how many connected components the zero set of
a multivariate function has in terms of its coefficients. It would be especially useful to find
a condition which ensures that the zero set is a single curve or surface.

For univariate polynomials Descartes’ Rule of Signs [24] bounds the number of zeros
by the number of sign changes in the sequence of coefficients. For Bernstein polynomials
Descartes’ rule usually goes under the name ‘variation-diminishing’ [13]. Further information
can be gleaned from the Budan-Fourier theorem, used for example in [16], and from Sturm’s
sequences [24] which can be used to get an exact count of the zeros and to separate them.

For bivariate polynomials no such comprehensive theories exist and it is known from
numerical experiments that the zeros can take on complex configurations. Karlin [18] has
pointed out the lack of a satisfactory concept of total-positivity for multivariate functions
and total positivity has been used to derive many variation-diminishing properties.

There are situations where the zeros are predictable. For example, if the control net
f̂ of a Bernstein-Bézier triangle f is convex, then so is f itself [9]. This would imply that
the zeros of f were either non-existent or formed those parts of some convex curve which
intersected the triangle. If f̂ is monotonically increasing in some direction d, then f is also
monotonically increasing in the same direction [17]. So in this case the zero set, if non-empty,
must consist of an open curve, transversal to d. To a more limited extent, similar properties
could be derived for the zeros of tensor-product Bernstein polynomials using convexity and
monotonicity [10,14,17].

However, we would prefer to have simpler conditions than these, conditions which are in
terms only of the signs of the coefficients, similar to the univariate case.

In this paper two simple conditions are presented which, barring degenerate cases, ensure
that the zero set has one or at most one connected component, that component usually being
a smooth curve. Typically, f will have the form f(x, y) =

∑

i

∑

j ai,jφi(x)φj(y), where the
φi are the basis functions, the ai,j are the coefficients, and f will be defined on some subset
Ω of IR2. We decompose Ω into the three sets

f− = f−1((−∞, 0)), f0 = f−1({0}), f+ = f−1((0,∞)). (1)

The following two properties of f will be derived for certain bases.
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(P1) If at most one of the coefficients of f is negative, then the set f− on which f is
negative is either empty or simply connected.

(P2) If the matrix of coefficients ai,j, regarded as forming a uniform grid, can be divided
by any straight line, such that those coefficients on one side of the line are negative
and those on the other side are positive, then the zero set f0 of f is a single analytic
curve. In short, if the signs of the coefficients are split by a straight line, then f0 is
a single curve.

By considering −f , it is clear from (P1), that also if at most one of the coefficients of f
is positive, then the set f+ is either empty or simply connected. In (P1), if all the coefficients
are non-zero, one can deduce that f0 can only be empty, a point, or a single non-intersecting
curve. Moreover if the negative coefficient is in the interior of the grid, this curve will be
closed. Otherwise it will start and finish on the boundary of the domain (when the domain
is infinite in some direction, this needs to be interpreted accordingly). We regard (P1) as
mainly of theoretical interest but it could lead to a more general property which bounds the
number of connected components of f− in terms of the number, and possibly position, of
the negative coefficients.

The special case of (P2) in which the straight line is horizontal or vertical is certainly
well-known in geometric modelling. A similar special case for Bernstein-Bézier triangles,
when the line is parallel to one of the sides, was proved by Bajaj and Xu [5] and used
to develop a scheme for modelling with piecewise algebraic curves, called A-splines [6]. It
was also generalized by Bajaj, Chen and Xu [3,4] in two ways to Bernstein polynomials on
tetrahedra. However (P2) in general provides more freedom in the choice of the signs of the
coefficients while still ensuring that there is only one curve in the domain of interest.

Properties (P1) and (P2) are derived from two things: (i) a certain two-parameter family
of curves in the parameter domain which generalizes the set of isoparametric lines, and (ii)
Descartes’ Rule of Signs for generalized univariate polynomials, polynomials having non-
integer exponents. Indeed we use Descartes’ rule for generalized univariate polynomials in
order to deduce something about ordinary multivariate polynomials. The curves (i) may be
an important tool in the study of zeros of multivariate polynomials.

Equivalent families of curves and properties (P1) and (P2) are found for power, exponen-
tial, and Bernstein tensor-product polynomials and for triangular Bernstein-Bézier triangles.

This paper is organized as follows. Section 2 covers Descartes’ Rule of Signs for gener-
alized polynomials and some simple consequences. In Sections 3 and 4 the two-parameter
family of curves is defined and used to prove (P1) and (P2) for bivariate polynomials with
power bases. Corresponding curves and properties are then developed for each of the bases:
exponential, tensor-product Bernstein, and triangular Bernstein-Bézier in Sections 5,6,7. We
finish in Section 8 with some remarks about what can be deduced when f has several negative
coefficients, similar to (P1).

§2. Preliminaries

The subsequent development of properties of zeros of bivariate polynomials will require
two special cases of Descartes’ Rule of Signs for generalized univariate polynomials. Let
g : (0,∞) → IR be the generalized polynomial defined by g(x) =

∑r

k=1 gkx
pk , where p1 <

p2 < · · · < pr is any increasing sequence of real numbers.

2



Generalized Descartes’ Rule of Signs. The number of positive roots of the equation
g(x) = 0 does not exceed the number of changes of signs in the sequence g1, g2, . . . , gr.

The proof, using properties of the Wronskian of the basis functions xpk can be found in
[7]. We now derive from the Rule of Signs two almost self-evident consequences which
will constitute the building blocks for the variation-diminishing properties derived later for
bivariate polynomials.

Lemma 1. Suppose that for some q ∈ IR, the coefficients of g are such that either gk ≤ 0
for k < q and gk ≥ 0 for k > q or gk ≥ 0 for k < q and gk ≤ 0 for k > q. Suppose further
that at least one coefficient is positive and at least one negative. Then g has exactly one
zero, x0 > 0, say and g′(x0) 6= 0.

This is simply Descartes’ Rule of Signs when the number of sign changes is exactly one. The
second lemma concerns the case when the coefficients have two sign changes but limited to
when they are consecutive. We define g−, g0, g+ analogously to f−, f0, f+.

Lemma 2. Suppose that at most one of the coefficients gk is negative. Then if the set g−
is non-empty, it is connected, i.e. it is an open interval.

Proof. We know that g has at most two roots. If there are none or one, g− is empty or
connected, respectively. Otherwise there are two roots. Then g > 0 for small enough x > 0
and for large enough x, and g < 0 between the roots. ⊳

We shall generalize the two properties above in a certain way to (ordinary) bivariate
polynomials. Initially we will concentrate on the power basis functions. Let Ω = (0,∞) ×
(0,∞) and define f : Ω → IR as

f(x, y) =
m

∑

i=0

n
∑

j=0

ai,jx
iyj. (2)

§3. One negative (or positive) coefficient

Consider the isoparametric line corresponding to

y = c, (3)

where c is some positive constant. If we define g : (0,∞) → IR as f evaluated along the
curve, i.e. g(x) = f(x, c) then

g(x) =
m

∑

i=0

n
∑

j=0

ai,jx
icj =

m
∑

i=0

gix
i, gi =

n
∑

j=0

ai,jc
j.

Now suppose at most one coefficient ai,j is negative. Then, since c > 0, it is clear that at
most one coefficient gi is negative. Then we may apply Descartes’ Rule of Signs (Lemma 2)
to g, which in this case is an ordinary polynomial, and deduce that the set g− is either empty
or an open interval. Thus the set f− intersects the line {y = c} in at most one interval.
Clearly a similar property is valid for isoparametric lines defined by

x = c, (4)

and we summarize these two properties as a lemma.
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Fig. 1. Impossible configurations of the components of f−.

Lemma 3. Suppose only one of the coefficients ai,j is negative. Then the intersection set
of f− with any isoparametric line is either empty or connected (an open line segment).

Lemma 3 means that if at most one coefficient ai,j is negative, the zeros of f cannot
take on the configurations of (i) and (ii) in Figure 1. However it is not in itself sufficient to
prevent the situation in (iii) occurring. It will be shown that the latter situation is impossible
by extending the family of isoparametric curves sufficiently that through any two points in
Ω, there is a curve having the property that its intersection with f− is connected. This will
imply that the set f− is path-wise connected. Consider the curves

y = y(x) = αxβ, α, β ∈ IR, α > 0, β 6= 0. (5)

Lemma 4. Suppose only one of the coefficients ai,j is negative. Then the intersection set of
f− with any curve of the form y = αxβ, where α > 0, β 6= 0, is either empty or connected.

Proof. If one defines g(x) = f(x, αxβ), one finds that

g(x) =
m

∑

i=0

n
∑

j=0

ai,jα
jxi+βj.

Then collect common terms (there may be many if β is 1, −1, 2, or −1
2
, for example, but

none if β is transcendental) and get

g(x) =
r

∑

k=1

gkx
pk ,

for some increasing sequence of powers p1 < p2 < · · · < pr, and r ≤ (m + 1)(n + 1). Now
since each ai,j contributes to only one gk, only one, at most, of the gk can be negative. Then
we may apply Descartes’ Rule of Signs to the basis {xpk} (Lemma 2), and deduce that g−
is either empty or connected, i.e. either empty or an open interval. It immediately follows
that the intersection of f− with the curve y = αxβ, is either empty or connected. ⊳

Applying the whole family of curves defined by (3–5) we deduce the following, namely
(P1).
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Proposition 5. Suppose only one coefficient ai,j is negative. Then the set f− is either
empty or consists of one simply connected component.

Proof. Suppose that f− 6= ∅. We first show that f− is connected. Let x1 = (x1, y1) and
x2 = (x2, y2) be points in f−. So f(x1) < 0 and f(x2) < 0. First of all, if y1 = y2 = c,
for some c then consider the isoparametric line {y = c}. By Lemma 3, f(x, y) < 0 for all
x ∈ (x0, x3) for some x0, x3, with 0 ≤ x0 < x1 < x2 ≤ x3 ≤ ∞. Consequently the straight
line segment

(1 − λ)x1 + λx2, λ ∈ [0, 1],

is a path joining x1 and x2 lying inside f−. Similarly, if x1 = x2, the vertical straight line
segment joining the points is a path inside f−.

Now suppose x1 6= x2 and y1 6= y2. One can find uniquely α and β such that the curve
y = αxβ interpolates x1 and x2. Indeed, solving

y1 = αxβ
1 , y2 = αxβ

2 ,

one finds the unique solution

α = exp

(

ln x2 ln y1 − ln x1 ln y2

ln x2 − ln x1

)

> 0, β =
ln y2 − ln y1

ln x2 − ln x1

6= 0.

Note that the sign of β is the same as that of (x2 − x1)(y2 − y1). By Lemma 4, and the
fact that g(x1) < 0, g(x2) < 0, we must have that g(x) < 0 for all x ∈ (x1, x2). Therefore
(x, y(x)) for x ∈ [x1, x2] is a path lying entirely inside f−, joining x1 to x2. Since the points
x1 and x2 were chosen arbitrarily, it follows that f− is connected [23].

In order to show that f− is simply connected, we suppose f− to be non-empty and having
a hole, in the sense of the Jordan Curve Theorem [1]. Then there exists a simple closed curve
Γ ⊂ f− and at least one point x1 6∈ f− lying inside Γ. Then consider the isoparametric line
{y = y1}. This line must cross Γ at least twice. Moreover, it must cross it at least once at a
point (x0, y1), x0 < x1 and at least once at a point (x2, y1), x2 > x1. Therefore f(x0, y1) < 0,
f(x1, y1) ≥ 0, f(x2, y1) < 0, which contradicts Lemma 3. ⊳

Observations.
(a) If in Proposition 5 the negative coefficient is an internal one (1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1)

and if all remaining coefficients are positive then f0 is one of the following:
(i) empty,
(ii) a single point,
(iii) a simple closed curve.

(b) If many of the coefficients are zero, f0 can have two connected components. For example
the zeros in Ω of f(x, y) = x − 3xy + 2xy2 are the lines y = 1 and y = 2. The
set f− can also be arbitrarily close to a curve of the form y = αxk. For example,
f(x, y) = (y − x2)2 − ǫx2y = y2 − (2 + ǫ)x2y + x4 has one negative coefficient, and as
ǫ → 0, f− converges towards the curve y = x2. In the limit it is empty.

To see (a), suppose first that f− is empty. Then if f0 contains two points they can be
interpolated by one of the curves (3–5) and since f cannot be identically zero along it,
it must be negative between the two points. This contradicts the fact that f− is empty.
Alternatively, suppose that f− is non-empty. Then by hypothesis it is bounded away from

5



the boundary of Ω and we claim that f0 consists of the boundary of f−. Indeed, if f0

contained, in addition, some point lying outside the closure of f− then we could join it to
any point on the boundary of f− with one of the curves (3–5). Now f would be negative
along this curve between the two points, contradicting the fact that f is non-negative at all
points outside f−.

§4. Splitting the signs of the coefficients by straight lines

Having presented the class of curves (3–5), we now use them to give a second property of
‘variation-diminishing’ type. Suppose now that for some k ∈ 1, . . . ,m − 1, that either the
condition

ai,j ≤ 0, for i < k,

ai,j ≥ 0, for i > k,
(6)

or the condition
ai,j ≥ 0, for i < k,

ai,j ≤ 0, for i > k,
(7)

is placed on the coefficients. We will further suppose, to avoid trivialities that at least
one of the coefficients is negative and at least one is positive. Note that the signs of the
coefficients ak,j are arbitrary. Consider the isoparametric line (3). It was found before that
if g(x) = f(x, c), then

g(x) =
m

∑

i=0

gix
i, where gi =

n
∑

j=0

ai,jc
j.

So from (6), it follows that gi ≤ 0 for i < k and gi ≥ 0 for i > k. And the opposite is true
for (7). Thus there is one sign change in {gi} and Lemma 1 shows that g has exactly one
zero. Since it depends on c, we call it x(c). This defines a function x : (0,∞) → IR. Since
the curves (3) cover the whole domain (0,∞) × (0,∞), the only zeros of f are of the form
(x(c), c).

In fact f0 is an analytic curve. We know that g′(x(c)) 6= 0, i.e. ∂
∂x

f(x(c), c) 6= 0 for
each c > 0. Moreover f is an analytic function. So by the Implicit Function Theorem [20]
the zeros of f in a neighbourhood of (x(c), c) form an analytic curve. Since this curve must
coincide with (x(c), c) it follows that the whole curve (x(c), c) is analytic. The condition
is easy to define diagrammatically. Figure 2 shows an example of (6). If we arrange the
coefficients in a rectangular grid, the property (6) says that all coefficients on one side of
some vertical line have one sign or are zero while all coefficients on the other side have the
other sign or are zero. If the line passes exactly through one column of coefficients, those
signs are arbitrary.

By an analogous argument, one can show that f0 is an analytic curve if there exists an
l ∈ {1, . . . , n − 1} for which

ai,j ≤ 0, for j < l,

ai,j ≥ 0, for j > l,
(8)

or
ai,j ≥ 0, for j < l,

ai,j ≤ 0, for j > l.
(9)

We summarize as follows.
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Fig. 2. Splitting the signs of the coefficients with a vertical line.

Proposition 6. If either property (6) or (7) holds for some k, then f0 is an open analytic
curve transversal to the direction of the x-axis. If either (8) or (9) holds for some l, then f0

is an open analytic curve transversal to the direction of the y-axis.

By applying the curves (5), we may generalize Proposition 6 to (P2), a property involving
any straight line which splits the signs of the coefficients of f ; see Figure 3.

Proposition 7. Suppose ∃β ∈ IR, β 6= 0 and γ ∈ IR for which either

ai,j ≤ 0, for i + βj < γ,

ai,j ≥ 0, for i + βj > γ,
(10)

or
ai,j ≥ 0, for i + βj < γ,

ai,j ≤ 0, for i + βj > γ.
(11)

Suppose further that there is at least one negative and one positive coefficient. Then f0 con-
sists of one analytic curve of the form (x(α), αxβ(α)), parametrized by α, and is transversal
at every point to the curve of the form (x, αxβ) which passes through that point.

Proof. For any α > 0, define the curve pα(x) = (x, αxβ) and consider gα(x) = f(pα(x)).
Then

gα(x) =
m

∑

i=0

n
∑

j=0

ai,jα
jxi+βj =

r
∑

k=1

gkx
pk ,

for some increasing sequence p1 < p2 < · · · < pr, and r ≤ (m+1)(n+1). Now by hypothesis,
either gk ≤ 0 for pk < γ and gk ≥ 0 for pk > γ or gk ≥ 0 for pk < γ and gk ≤ 0 for pk > γ.
In either case, Lemma 1 applies and one finds that gα has exactly one zero x(α) say. Also
g′α(x(α)) 6= 0 and so, by the chain rule,

∇f . p′
α 6= 0,

at x = x(α). Then the Implicit Function Theorem applies and shows that the curve q(α) =
(x(α), αxβ(α)) is analytic and crosses each pα transversally. By varying α, the curves pα

cover the whole domain and so the curve q contains all the zeros of f . ⊳

Figure 3 shows examples of f satisfying the hypothesis of Proposition 7. In all cases in
Figure 2 and 3, f0 is a single curve, dividing Ω into two connected subsets f− and f+. The
splitting of signs is reminiscent of Newton’s diagram [19] used in the study of double points
of algebraic curves. In a Newton diagram all coefficients to one side of a line are zero.
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Fig. 3. Splitting the signs of the coefficients with straight lines.

§5. Exponential polynomials

The log functions encountered in the proof of Proposition 5 suggest that it might be a good
idea to make the transformation of variables x = eX , y = eY . Substituting these into (2)
and letting f̃(X,Y ) = f(x, y), we find that

f̃(X,Y ) =
m

∑

i=0

n
∑

j=0

ai,je
iX+jY , (12)

an exponential polynomial. It can easily be proved that f̃ , as a function defined on the whole
of IR2 satisfies (P1) and (P2). They can be derived in an analogous way by noticing that the
curves (3–5) are transformed into

Y = c̃, X = c̃, and Y = βX + λ, β 6= 0,

where c̃ = ln(c) and λ = ln(α). These are now the set of all straight lines in IR2. However it is
simpler to notice that the topologies of f̃−, f̃0, f̃+ are the same as the topologies of f−, f0, f+.
The sets f̃−, f̃0, f̃+ decompose the domain of f̃ which is IR2. Indeed, let φ : Ω → IR2 be the
transformation φ(x, y) = (ln(x), ln(y)). Then (X,Y ) = φ(x, y). It follows that f̃− = φ(f−),
and f̃0 = φ(f0). Since φ is an isomorphism [23], this establishes (P1) and (P2).

There is a third way of proving (P1) which uses convexity and is more in the spirit of
the proof of Descartes’ Rule of Signs. Indeed, if ak,l is the negative coefficient, we can define

h̃(X,Y ) = e−kX−lY f̃(X,Y ) =
m

∑

i=0

n
∑

j=0

ai,je
(i−k)X+(j−l)Y
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Fig. 4. Some of the curves in the tensor-product Bernstein case.

and we find, that for any λ1, λ2 in IR,

λ2
1h̃XX(X,Y ) + 2λ1λ2h̃XY (X,Y ) + λ2

1h̃Y Y (X,Y )

=
m

∑

i=0

n
∑

j=0

(λ1(i − k) + λ2(j − l))2ai,je
(i−k)X+(j−l)Y

=
m

∑

i=0

n
∑

j=0
(i,j) 6=(k,l)

(λ1(i − k) + λ2(j − l))2ai,je
(i−k)X+(j−l)Y ≥ 0.

This means that h̃ is convex and it follows that h̃− is either empty or convex. Since f̃− = h̃−,
f̃− is also either empty or convex, and in particular simply connected.

§6. Bernstein polynomials

Again we can transform variables in order to derive (P1) and (P2) for tensor-product Bern-
stein polynomials. Let x = X/(1 − X) and y = Y/(1 − Y ) and F (X,Y ) = (1 − X)m(1 −
Y )nf(x, y). Then

F (X,Y ) =
m

∑

i=0

n
∑

j=0

bi,j

(m

i

)

X i(1 − X)m−i

(

n

j

)

Y j(1 − Y )n−j,

where bi,j = ai,j/
(

m

i

)

/
(

n

j

)

. If φ : (0,∞) × (0,∞) → (0, 1) × (0, 1) is the transformation

φ(x, y) = (x/(1 + x), y/(1 + y)) then F− = φ(f−). So (P1) holds also for F , where ai,j is
replaced by bi,j. Similarly (P2) follows in a similar way.

Notice that the family of curves (3–5) is transformed to

Y = C, X = C, and Y =
αXβ

(1 − X)β + αXβ
,

where C = c/(1 + c). The third type of curve is monotonically increasing in X when β > 0
and decreasing when β < 0. Some of these curves are depicted in Figure 4.

§7. Bernstein polynomials on triangles

In this section we derive (P1) and (P2) for Bernstein-Bézier triangles. Here (P2) just has to
be interpreted a little differently; the grid of coefficients ai,j is now triangular rather than
rectangular.
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It is straightforward to follow the same arguments used previously once we have found
the two-parameter family of curves. Let p0, p1, p2 be any three affinely independent points
in IR2 and let Ω be the (open) interior of the triangle having these three points as vertices.
We may define a polynomial f : Ω → IR of degree n as

f(x) =
∑

|i|=n

ai

(n

i

)

τ i0
0 τ i1

1 τ i2
2 ,

(n

i

)

=
n!

i0!i1!i2!
,

where the τi are the barycentric coordinates of x with respect to △p0p1p2, i.e. τ0+τ1+τ2 = 1
and x = τ0p0 + τ1p1 + τ2p2. Any point in Ω has strictly positive barycentric coordinates.

The lines in the triangle which play the same role as isoparametric lines for tensor-product
polynomials are given by the equations

τ0/τ1 = c, τ1/τ2 = c, τ2/τ0 = c. (13)

Various examples of the first type of line are shown in Figure 5. If we parametrize the first
type, for example, as

Γ(t) = (1 − t)

(

c

(1 + c)
p0 +

1

(1 + c)
p1

)

+ tp2,

then f(Γ(t)) becomes a polynomial of degree n in t, in Bernstein form [13]:

g(t) = f(Γ(t)) =
∑

|i|=n

ai

(n

i

)

(

c

1 + c

)i0
(

1

1 + c

)i1

ti2(1− t)i0+i1 =
n

∑

i2=0

gi2

(

n

i2

)

ti2(1− t)n−i2 .

Thus if, for example, only one of the coefficients ai is negative, then at most one of the gi2

is negative and then the intersection of f− with the line Γ is either empty or a single line
segment. Also if, for example, ai ≤ 0 for i2 < q while ai ≥ 0 for i2 > q, for any q ∈ (0, n), then
g has exactly one zero (provided there is at least one negative and one positive coefficient).
Varying c ∈ (0,∞), and considering all such lines Γ, we deduce that the zero set f0 of f ,
is a single analytic curve passing from side p0p2 to side p1p2 as depicted in Figure 6. This
latter property was proved by Bajaj and Xu [5]. It was used in [15] to determine precisely
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Fig. 7. Some of the curves in the triangular Bernstein case.

when the implicit form of a certain rational cubic Bézier curve in a triangle has no more
zeros curves than the cubic curve itself.

In order to demonstrate (P1) and (P2) it is necessary to generalize Γ to a richer family of
curves. These are easiest to define when they are divided into three categories. We introduce,
the curve Γ : [0, 1] → IR2 defined as

Γ(t) =
(1 − t)q0 + αtβ(1 − t)1−βq1 + tq2

(1 − t) + αtβ(1 − t)1−β + t
.

The points (q0,q1,q2) are any of the three permutations (p0,p1,p2), (p1,p2,p0), (p2,p0,p1).
Also α > 0 and β ∈ (0, 1). The curve Γ begins at q0 and ends at q2. Examples of Γ are
displayed in Figure 7.

Now let

W (t) = (1 − t) + αtβ(1 − t)1−β + t,

and consider the case where qi = pi. Substituting Γ into f one finds that

f(Γ(t)) =
1

W n(t)

∑

|i|=n

ai

(n

i

)

αi1ti2+βi1(1 − t)(1−β)i1+i0

=
1

W n(t)

∑

|i|=n

ai

(n

i

)

αi1ti2+βi1(1 − t)n−(i2+βi1).
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Fig. 8. One of the three cases of the position of x2 relative to x1.

Further, making the transformation of variables t = x/(1 + x), we find that

f(Γ(t)) =
1

W n(t)

1

(1 + x)n

∑

|i|=n

ai

(n

i

)

αi1xi2+βi1 .

This is a positive multiple of a generalized polynomial which plays the same role as g in
Sections 3 and 4. Explicitly, if only one of the coefficients ai is negative then g− is empty
of connected where g(t) = f(Γ(t)), t ∈ (0, 1). So in order to derive (P1) it remains to show
that through any two points in the triangle, there is a curve of the form Γ interpolating
them. Indeed, let x1 and x2 be points in the triangle and let φ0, φ1, φ2, be the barycentric
coordinates of x1 and ψ0, ψ1, ψ2, be the barycentric coordinates of x2. If either

φ0

ψ0

<
φ1

ψ1

<
φ2

ψ2

or
φ0

ψ0

>
φ1

ψ1

>
φ2

ψ2

, (14)

then we set qi = pi. Using standard facts about barycentric coordinates (14) can be seen to
be equivalent to x2 lying in one of the subtriangles shown in Figure 8. The other four cases
are handled by the other two permutations of the indices (i0, i1, i2). Using the implicit form
of Γ:

τ1 − ατ 1−β
0 τβ

2 = 0,

we solve for α and β:

β = ln

(

φ1ψ0

ψ1φ0

)

/

ln

(

φ2ψ0

ψ2φ0

)

,

and
α = φ1φ

(β−1)
0 φ−β

2 ,

with α > 0 and from (14), 0 < β < 1. By forming the ratio of φ0 to φ2 we find that
x1 = Γ(t1) and x2 = Γ(t2) where

t1 = φ2/(φ0 + φ2),

and
t2 = ψ2/(ψ0 + ψ2).

This establishes (P1); see Figure 9.
We have already shown (P2) in the case when the straight line is parallel to one of the

sides of the triangle. We considered the case when the straight line is i2 = q, crossing the
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Fig. 10. f0 is a single curve.

sides p0p2 and p1p2. In order to show that (P2) generalizes to any straight line, we split
all possible lines into three categories and treat only one. Consider any line whose equation
is i2 + βi1 = γ, for any β ∈ (0, 1). Such a line has an unsigned direction lying in a double
cone, bounded by the unsigned directions p1 − p0 and p1 − p2. In this case we consider Γ
with qi = pi. Straight lines whose unsigned directions lie in the remaining two double cones,
can be treated by the remaining two permutations of indices. Now, considering the form of
f(Γ(t)) it merely remains to apply Lemma 2 to deduce that if ai ≤ 0 for i2 + βi1 < γ and
ai ≥ 0 for i2 + βi1 > γ then f0 consists of a single curve as in Figure 10. This establishes
(P2).

Finally it may be interesting to note that Γ can be any conic section which passes through
two of the vertices tangentially to the sides. Let β = 1

2
, and reparametrize Γ with respect to

s ∈ [0, 1], where s2/(1 − s)2 = t/(1 − t). Then multiplying numerator and denominator of
Γ(t) by (1 − s)2/(1 − t), one obtains

Γ(t) =
(1 − s)2q0 + αs(1 − s)q1 + s2q2

(1 − s)2 + αs(1 − s) + s2
,

a rational quadratic Bézier curve. The sign of α − 2 determines the type of conic [8]. For
each α, f has at most one zero along this conic when the signs of the coefficients of f are
split by any line parallel to the line passing through q1 and (q0 + q2)/2. For example the
equation for the line passing through p1 and (p0 + p2)/2 can be written as i0 = i2. Since
i1 = 1 − i0 − i2 this is equivalent to the equation i2 + 1

2
i1 = 1

2
.

§8. Final Remarks
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Can one bound the number of connected components of f− in terms of the number of
negative coefficients of f? This is unclear but numerical examples show that when two of
the coefficients of f are negative, f− can have three connected components. However, using
yet again the family of curves (3–5), we can say the following about (2).

Proposition 8. If at most two of the coefficients ai,j are negative, then every connected
component of f− is simply connected.

Proof. Suppose, to obtain a contradiction, that f− contains a multiply connected component.
Then there exists a simple closed curve Γ ⊂ f− and a point x1 = (x1, y1) 6∈ f− inside Γ. It
may be assumed that there are exactly two negative coefficients. First, suppose that they
are ai,j1 , ai,j2 . Then along any isoparametric line {y = c}, g(x) = f(x, c) has the property
that g− is connected since ai,j1 , ai,j2 contribute to the same coefficient of g, namely gi. But
when c = y1, the line y = c must cross Γ on both sides of x = x1 which is a contradiction.

A similar argument eliminates the case when the two negative coefficients have their
second index in common. The remaining case is when the two negative coefficients are ai1,j1

and ai2,j2 with i1 6= i2, j1 6= j2. Now define

β = (i1 − i2)/(j2 − j1), α = y1/x
β
1 ,

and consider the curve y = αxβ. It clearly passes through x1 and must cross Γ on either
side. If g(x) = f(x, αxβ), then g has at most one negative coefficient since ai1,j1 and ai2,j2

contribute to the same basis function xpk where pk = i1 + βj1 = i2 + βj2. Lemma 2 shows
that g− is therefore connected and this is again a contradiction. ⊳

It is also possible to obtain further statements which exclude multiply connected com-
ponents. For example, if exactly three coefficients are negative then at most one connected
component of f− can be multiply connected. Also if f− does have such a component then
no other component can lie inside one of its holes. However such statements seem to have
less and less value as one increases the number of negative coefficients.

It would be more interesting if it could be shown that when f has two negative coefficients
which are adjacent then f− had at most two connected components (numerical examples can
be constructed for which there are two components in this case). Adjacency would need to
made concrete. For example the two negative coefficients might be ai,j and ai+1,j.

Finally, are there families of curves like those considered in this paper for tensor-product
splines [8]?

§9. References

1. Ahlfors L. V., Complex analysis, New York, McGraw-Hill, 1953.
2. Bajaj C., Some applications of constructive real algebraic geometry, in Algebraic geom-

etry and its applications, C. Bajaj (ed.), Springer-Verlag, New York, 1994, 303–405.
3. Bajaj C., J. Chen, G. Xu, Modeling with cubic A-patches, Comp. Sci. Report, CAPO-

93-02, Purdue University, 1993.
4. Bajaj C., J. Chen, G. Xu, Free form surface design with A-patches, in Proc. of Graphics

Interface 94, Canadian Information Processing Society, Vancouver, Canada, 1994.
5. Bajaj C., G. Xu, A-splines: local interpolation and approximation using Ck-continuous

piecewise real algebraic curves, Comp. Sci. Report CAPO-92-44, Purdue University,
1992.

14



6. Bajaj C., G. Xu, Data fitting with cubic A-splines, Proc. of Computer Graphics Inter-
national, CGI94, Melbourne, Australia, 1994.

7. Berezin I. S., N. P. Zhidkov, Computing methods, Vol II, Pergamon Press, Oxford, 1965.
8. de Boor C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.
9. Chang G., P. J. Davis, The convexity of Bernstein polynomials over triangles, J. Approx.

Theory 40 (1984), 11–28.
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