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Abstract—Let ( ) be a pair of random variables distributed
over a finite product set according to a probability dis-
tribution ( ). The following source coding problem is con-
sidered: the encoder knows , while the decoder knows and
wants to learn without error. The minimum zero-error asymp-
totic rate of transmission is shown to be the complementary graph
entropy of an associated graph. Thus, previous results in the lit-
erature provide upper and lower bounds for this minimum rate
(further, these bounds are tight for the important class of perfect
graphs). The algorithmic aspects of instantaneous code design are
considered next. It is shown that optimal code design is -hard.
An optimal code design algorithm is derived. Polynomial-time sub-
optimal algorithms are also presented, and their average and worst
case performance guarantees are established.

Index Terms—Complementary graph entropy, graph coloring,
graph entropy, lossless coding, -completeness, side informa-
tion, Slepian–Wolf, zero-error capacity.

I. INTRODUCTION

T HE problem of zero-error source coding when the decoder
has side information unknown to the encoder is consid-

ered. With the advent of networks (such as the Internet), dis-
tributed storage and retrieval of very large databases is seen
as a promising application. Recently, this has renewed interest
in multiterminal source coding frameworks such as distributed
source codes (see, for example, [29], [17], [23]). The scenario
of theside-information problem—where the encoder tries to ex-
ploit side information about the source available to the decoder
but not to itself—is important both as a canonical distributed
source coding system, and as a fundamental building block of
more intricate real-world systems. The zero-error version of
this problem, apart from its significance in practical applica-
tions, has also been studied due to its connections with basic
graph-theoretic quantities.
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Witsenhausen initiated the investigation of the zero-error
side-information problem in [27], where he characterized the
side-information structure as a confusability graph defined on
the source alphabet. With this characterization, fixed-length
side-information codes were equivalent to colorings of the
associated graph. Alon and Orlitsky considered variable-length
zero-error codes in [1]. They defined two classes of such
codes, where the second class is obtained as a subclass of the
first by restricting the structure of allowed codes. Along with
establishing upper and lower bounds on the rates of scalar
codes, they characterized the minimum asymptotic rate needed
for the subclass of codes above as the graph entropy [19] of
the associated graph. But a single-letter characterization of the
minimum asymptotic rate for the class of all variable-length
codes remained elusive.

Building on a partial characterization established in [1], in
Section III we show that the minimum asymptotic variable-
length coding rate for the side-information problem is thecom-
plementary graph entropyof the associated graph. This quantity
was defined by Körner and Longo, [19], in their investigation
of a two-step source coding problem. Since no formula is cur-
rently known for the complementary graph entropy, our results
do not yield a single-letter characterization either. But they fur-
ther strengthen the close connections between the zero-error
side-information and zero-error capacity [24] problems, as we
discuss next.

Associated with the zero-error versions of both the channel
coding and the side-information problems are graphs defined on
the corresponding input alphabets. The duality of the indepen-
dence number (size of the largest edge-free induced subgraph)
and the chromatic number (minimum cardinality of a partition
of the graph into edge-free induced subgraphs) of a graph is
well known (see [3]). Witsenhausen showed in [27] that the min-
imum fixed-length zero-error side-information rate (briefly, the
zero-error rate) is the limit of the normalized chromatic numbers
of normal powers of the underlying graph. In [24], Shannon de-
fined the corresponding limit of normalized independence num-
bers as the zero-error capacity of the graph.

Suppose now that the source statistics are known, and vari-
able-length codes tailored to the source distribution are used by
the encoder. Our results show that the complementary graph
entropy characterizes the minimum rate of transmission, and
is thus the analog, for this problem, of the zero-error rate of
Witsenhausen. Similarly, Csiszár and Körner, in [9], defined an
analog of the zero-error capacity where the channel codewords
are constrained to be picked according to a fixed distribution.
Roughly speaking, the complementary graph entropy and the
zero-error capacity within a distribution are, respectively, the
limits of the normalized chromatic numbers and independence
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numbers of high-probability induced subgraphs in the normal
powers of the underlying graphs. Marton showed, in [22], that
the complementary graph entropy and the zero-error capacity
within a distribution of an arbitrary graph sum to the entropy
of the underlying probability distribution. Thus, determination
of either quantity directly yields the other one. Further, better
understanding of either one of the two quantities—zero-error
side-information rate or zero-error capacity—may lead to new
insights into the other.

While no formula is currently known for the complementary
graph entropy (such a formula would also immediately yield a
formula for the zero-error capacity), upper and lower bounds
have been studied in [19] and [22]. Further, it was shown in [10]
that these bounds are tight for the widely studied class of perfect
graphs.

Complementary to the asymptotic analysis considered above
is the design of optimal codes for finite block lengths. For pre-
vious work on constructive code design, see [29], [17], [23], and
[28]. Our approach is different from these, in that we emphasize
design complexity as well as code performance. In Section IV,
we show that optimal code design is -hard for both the
classes of codes introduced in [1]. Thus, if the widely held con-
jecture that is true, no polynomial-time optimal code
design algorithm exists.

In some applications, optimal code design may be desirable
even at the cost of high design complexity. Examples include
applications where the size of the source alphabet is small, and
design is off-line. In Section V, we develop an optimal code
design algorithm based on recursively building up the optimal
code for the entire graph from optimal codes of its subgraphs.
Analyzing this algorithm, we show that it has exponential (in the
size of the source alphabet) worst case complexity, and derive
the value of the exponent.

Polynomial-time suboptimal algorithms may be of interest
when large graphs are encountered. We explore two different
strategies toward the development of such algorithms in
Section VI. Our first strategy is based on approximate graph
coloring. Of the two such algorithms we propose, the first
guarantees good worst case performance, while the second is
extremely simple, and promises good performance for most
inputs. As a second strategy, we develop a class of algorithms
to design codes by approximating a lower bound on the optimal
scalar coding rate established in [1]. Code performance can
then be traded off against design complexity by suitably
choosing an algorithm from this class.

We formulate the problem and establish notation in Section II.
All our results are then summarized in Section III. In the con-
cluding Section VIII, we remark on a few open problems.

II. PRELIMINARIES

Let be a sequence of independent drawings of
a pair of dependent random variables . Here take
values in the finite product set according to the proba-
bility distribution . It is desired to encode the sequence

such that the decoder can decode itwithout error. The
special assumption made here is that the decoder has access to
the side information . We will call this theside-information
problem.

Distinct areconfusableif there is a such
that and . Two confusable letters may
not be assigned the same codeword in any valid code. Thus, con-
fusability defines a binary-symmetric relation on the letters of

. Witsenhausen [27] captured this confusability relation of the
source pair in thecharacteristic graph .
is defined on the vertex set, and distinct are con-
nected by an edge if they are confusable. The pair de-
notes the probabilistic graph consisting of together
with the distribution over its vertices. (Here we denote also
by the marginal distribution on .)

Variable-length codes for the side-information problem were
introduced by Alon and Orlitsky in [1]. They defined two fami-
lies of binary variable-length codes.

1) A restricted inputs(RI) code for is a mapping
such that if then is

not a prefix of .

2) An unrestricted inputs(UI) code for is a mapping
such that, for every distinct pair

is not a proper prefix of , and, if ,
then .

(These definitions generalize in the obvious way to the case of
-ary codes, .)
UI codes, which form a subclass of the class of RI codes, may

be preferred to the latter in some applications. Since the code-
word set is prefix free, UI codes protect against loss of synchro-
nization if the side information at the decoder is occasionally
wrong. On the other hand, the use of an RI code in such appli-
cations may lead to catastrophic errors. The motivation behind
these two classes of codes is discussed in more detail in [1] (also
see [12] for a communication complexity viewpoint).

The rate of a code is the expected number of bits transmitted

We denote by the minimum rate of an RI
(UI) code for

is an RI code for

is a UI code for

and call the codes attaining these minima the optimal codes.
(In general, we write and for the cor-
responding minimum rates for-ary codes . Thus,

and .)
We have that

To define variable-length block codes, we extend the notion
of confusability to vectors. Thus, distinct

are confusable iff every distinct pair ,
is confusable. The characteristic graph for is then
the so-called -fold normal power of , denoted .



KOULGI et al.: ON ZERO-ERROR SOURCE CODING WITH DECODER SIDE INFORMATION 101

, with, for distinct , iff
for all distinct pairs , .

Note that the normal power is also referred to as theAND power
in the literature. We denote by the product distribution in-
duced on by

The previous definitions of RI and UI codes for may
now be extended to RI and UI block codes for .

We shall briefly summarize some standard notations and con-
cepts from graph theory, which we will use extensively in the
sequel (see, for example, [3]). We assume that all graphs are
undirected and have no loops or multiple edges. For our pur-
poses, these assumptions do not entail any loss of generality.
Two distinct nodes are connected in—the complement of

—if they are not connected in . The subgraph
induced in by a subset is called an

induced subgraph. A subset of the vertex set is an independent
set of if it induces an edge-free subgraph in. Let —the
independence numberof —be the maximum size of an in-
dependent set of , and let —the chromatic numberof

—be the minimum cardinality of a coloring of, i.e., a par-
tition of into independent sets. It is clear that
and . is aperfectgraph if
for every induced subgraph of. For the extensive literature on
perfect graphs, see [3], [20], and the references therein.

Finally, note that all logarithms are to base two, unless men-
tioned otherwise.

III. SUMMARY OF RESULTS

A. Characterization of Minimum Asymptotic Rate

Let denote the minimum rate of an RI code for
. The minimum asymptotic rate per source letter re-

quired for the side-information problem is

(1)

(Note that, by subadditivity, the limit exists.)
The characterization of was first considered by

Alon and Orlitsky in [1]. They defined thechromatic entropy
of a probabilistic graph, , as the minimum entropy of
its colorings. They then showed that

but a single-letter characterization of remained elu-
sive.

While we are also unable to derive such a characterization, in
Section IV we build on the results of Alon and Orlitsky in [1]
to equate the minimum asymptotic rate to thecomplementary
graph entropy, , of the characteristic graph . In
particular, we prove that

(2)

Motivated by a two-step source coding problem, Körner and
Longo considered in [19] two information-theoretic functionals

on probabilistic graphs: thegraph entropy (previously
defined in [18]) and thecomplementary graph entropy
(this is also referred to as the co-entropy or the-entropy in the
literature). They showed that these quantities characterize the
minimum asymptotic rates for the coding problems they consid-
ered. While Körner derived a formula for in [18], no
formula is currently known for . Marton, in her investi-
gation of the zero-error capacity of a probabilistic graph [22], re-
vealed the close connection between the complementary graph
entropy and the zero-error capacity [24]. Thus, a formula for
the complementary graph entropy of an arbitrary probabilistic
graph would imply, via her results, a formula for the zero-error
capacity of the corresponding graph. This, in turn, would re-
solve a major unsolved problem of information theory and graph
theory.

Upper and lower bounds for have been studied
by Csiszár, Körner, Marton, and others. In [19], Körner and
Longo established bounds for in terms of
and

(3)

(where is the Shannon entropy of). We show that the
lower bound above may be derived by recognizing its equiva-
lence to a side-information problem. Csiszáret al., [10], showed
that both the bounds in (3) are tight for all distributionsif the
graph is perfect. Thus, perfect graphs satisfy an optimality
condition for zero-error side-information coding, as we show.
We also provide an example where neither bound in (3) is tight.

Other bounds for include those of Marton in [22],
in terms of a generalization of the Lovász-functional [21] to
probabilistic graphs. These bounds are also tight if the under-
lying graph is perfect.

B. Design and Analysis of Codes

In [1], it was shown that an RI code for may be in-
terpreted as a coloring of , followed by one-to-one encoding
of the colors. Similarly, a UI code is a coloring of followed
by prefix-free coding of the colors. But in neither of these cases
does the optimal code necessarily induce a coloring ofwith
the minimum number of colors. Consider the-colorable graph
in Fig. 1. The optimal binary RI code (which, in this case, is the
same as the optimal UI code), also shown in Fig. 1, induces a
coloring with four colors.

Consider -ary coding of a given probabilistic graph ,
where is fixed. Let be the cardinality of the vertex set
of .

An efficient algorithm for the design of optimal prefix-free
codes (“Huffman codes”) was discovered by Huffman in [16].
We consider the corresponding design problems for RI and UI
codes. Note that RI and UI codes may be viewed as generaliza-
tions of prefix-free codes: for a complete graph (where every
node is connected to every other node), the classes of RI and UI
codes collapse to that of prefix-free codes, so that the Huffman
algorithm may be used to design the optimal code. By contrast,
for arbitrary , we show that design of the optimal RI code
is -hard (the various complexity classes considered in this
paper are discussed in detail in [13]). Similarly, optimal UI code
design is also -hard.
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(a)

(b)

Fig. 1. The node labels in (a) indicate probabilities with� < 1=4. In (b) they
indicate optimal codewords.

Consider the following coding problem:

Is ?

is in since, given a code for , it is easy to check
if it is a valid RI code, and if the rate of this code is . Ex-
ploiting the connections between RI coding and graph coloring,
we reduce, in polynomial time, the well-known -complete
problem of graph -colorability [13] to . Thus, problem is,
in fact, -complete and, correspondingly, optimal RI code de-
sign is -hard.

For the design of binary UI codes, we are able to prove a
stronger hardness-of-approximability result: cannot
be approximated to within bits unless . More pre-
cisely, we show that the following problem is -hard:

Find a binary UI code of rate with

bits, for fixed

A similar lower bound on polynomial-time approximability can
also be proved for -ary UI coding where .

In practice, optimal codes may be desirable if the underlying
graph has a small vertex set, design is off-line, and complexity
is not a significant constraint. On the other hand, fast approxi-
mate (i.e., suboptimal) algorithms are needed for the design of
codes for large graphs. This motivates the consideration of both
optimal and approximate coding algorithms.

We develop optimal RI and UI coding algorithms via struc-
tural analysis of the respective optimal codes. These algorithms
are based on efficient recursive search for optimal codes of in-
duced subgraphs of . Further, we show that these algo-
rithms can be implemented to design the optimal-ary RI/UI
code in worst case time .

Turning then to the development of fast design algorithms,
we pursue two distinct approaches. In the first approach, we
consider approximately coloring the given graph, then Huffman
coding the colors. The example in Fig. 1 shows that this separa-
tion is not justified in the case of optimal code design. But, by

drawing on the rich literature on approximate graph coloring,
we demonstrate that good suboptimal codes can indeed be de-
signed via this approach.

Let and be the maximum and minimum probabil-
ities under , and define

maximum degree of

If can be colored with colors, we show that this coloring
can be translated into a UI code for of rate such that

(4)

and

(5)

To minimize these bounds, we suggest use of the approximate
graph-coloring algorithm of Halldórsson [15] which has the best
currently known worst case performance guarantee. (It may be
noted that the algorithm of [15] colors an arbitrary graphon

nodes with fewer than colors.)
In practice, worst case performance guarantees may be pes-

simistic, since worst cases occur infrequently. Motivated by this
observation, we use a standard random graph model to analyze
a simple coding algorithm, which is based on greedy coloring,
and show that it produces, on average, a UI code of ratewith

(6)

and

(7)

In the second approach to the design of suboptimal codes, we
consider the following inequality established in [1]:

where is the graph entropy of . We show that
the lower bound may be interpreted as a
rate-distortion function [4], and thus may be calculated using
the Blahut–Arimoto (BA) algorithm [5]. Since exact calculation
of this quantity may be computationally intensive, we propose
a class of approximating algorithms of increasing complexity.
We then show that suboptimal RI codes may be designed as
by-products of these algorithms.

IV. M INIMUM ASYMPTOTIC RATE AND THE

COMPLEMENTARY GRAPH ENTROPY

The chromatic entropy of a probabilistic graph
(where ), , was defined in [1]. If is a
function defined over , then is a random variable with
entropy

where is the inverse of , and for
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Definition 1: The chromatic entropy of is the lowest
entropy of any coloring of

is a coloring of

Let be the minimum rate of auniquely decodable(i.e., not
necessarily instantaneous) code for . The following
lemma bounds in terms of .

Lemma 1:

(8)

Proof: Let be a code for . If
distinct are confusable and, further, if

, then the decoder cannot distinguish betweenand ,
and is not uniquely decodable. In other words, ifis uniquely
decodable, for distinct implies that
and are not connected in . Thus, may be written as the
composition of a coloring of and a one-to-one encoding of
the colors. Equation (8) now follows from the upper and lower
bounds established in [2] on the rates of one-to-one codes.

Identical bounds as in (8) were proved in [1] for the restricted
class of instantaneous codes, and were then used to calculate the
minimum asymptotic rate of such codes. We can, therefore, par-
allel these calculations, to determine the minimum asymptotic
rate for uniquely decodable codes.

Lemma 2:

(9)

Proof: The proof is identical to that of [1, Lemma 6].

Since the same asymptotic rate as in (9) is achievable with
instantaneous codes, Lemma 2 shows that the possibly larger
class of uniquely decodable codes offers noasymptoticadvan-
tage. While this situation is identical to that obtained in reg-
ular lossless source coding, we are unable to answer whether
uniquely decodable codes also offer no advantage in the case of
finite block lengths.

We will now derive an alternate characterization of the limit
in (9). To do so, we consider the complementary graph entropy,
which is an information-theoretic functional on probabilistic
graphs defined in [19].

Definition 2: The complementary graph entropy of
is the normalized logarithm of the “essential chromatic number
of with respect to ,” i.e., the number

(10)

where is the subgraph induced in by .

Thus, has a high-probability induced subgraph which can
be colored with approximately colors. Körner and
Longo used this fact in [19] to show that the complementary
graph entropy is the rate required for the following two-step
source coding problem: Consider a memoryless source emitting
symbols from a finite alphabet according to a distribution .

Assume that some pairs of elements of the alphabet are distin-
guishable, while some others are not, and letbe the graph on

where connectedness means distinguishability (note that this
graph is different from the characteristic graph defined earlier).
We want to encode the-length source vector in two steps.
In the first step, an encoding functionon is used, and it
is required that, on the basis of , the decoder be able to
determine a sequence that is, with high probability, indis-
tinguishable from in every coordinate. Call an encoder
achieving this goal “ -faithful.” In the second step, we want to
encode by an encoding function such that the following
holds: the encoded source , together with anarbitrary

-faithful encoding of , determines with high proba-
bility. It was shown in [19] that the minimum asymptotic rate
needed for such a “complementary encoding” in the second step
is .

We will also need the following generalization of the zero-
error capacity [24] to probabilistic graphs. This quantity was
introduced by Csiszár and Körner in [9] to study the capacity
of an arbitrarily varying channel with maximum probability of
error.

Definition 3: Let be the set of “ -typical” se-
quences in , i.e., the set of sequences for which the
frequency of each element satisfies

Let be the subgraph of induced by .

Definition 4: The capacity of the graph relative to is

(11)

We will need the following relation between and
established by Marton in [22]:

(12)

Consider a fixed-length encoding function

for of which we require the following property:
if then, with high probability, .
It follows from (10) that the minimum rate required is .
In the following theorem, we show that is also the
minimum rate required if is allowed to be a variable-length
encoding function, but ,
always.

Theorem 1:

(13)

where is defined as in (9).
Proof: We will show that

We claim that is not smaller than the limit on the
left-hand side. Fix . Let
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Then, for any fixed , for each there is a subset
with , and a coloring of satisfying

(14)

For , define the function as

if

else.

Thus, is the indicator function of . Estimating the entropy
of the coloring

where we used (14) in the last step. But, by the definition of the
chromatic entropy

Normalizing by and taking limits, the claim follows.
Now consider the reversed inequality. We lower-bound

in terms of the maximum size of an independent
set induced by in . But this size is related to the
capacity , and the inequality will then follow from
(12). Let us fill in the details. Fix . Let the coloring
function on achieve , so that

To lower-bound , we use the following elementary
lower bound for the entropy function: if is a probability dis-
tribution over the set , and , then

Thus, we have the following estimate for :

(15)
But the set of -typical sequences captures most
of the probability [11, p. 34]

(16)

Further, in any coloring of , the maximum cardinality of a
single-colored subset of cannot exceed ,
the size of the largest independent set induced by in

. Thus,

(17)

where the minimization is over the set of probability distribu-
tions . We use a well-known
formula for the probability of a typical sequence [11, p. 32] in
the second inequality, and the uniform continuity of entropy [11,
p. 33] in the third.

Substituting (16) and (17) in (15)

Taking limits

where is defined as (cf. (11))

Since this is true for every, the result follows by letting
and using (12).

While no formula is currently known for , upper
and lower bounds were studied in [19], [10], and [22]. We shall
consider here the bounds in terms of the graph entropy in some
detail.

Definition 5: The graph entropy of is the number

(18)

Here is the collection of independent sets of. The
minimum is taken over all random pairs such that has
distribution , takes values in , and the random vertex
belongs to the random setwith probability . In [18], Körner
provided an alternate definition of in terms of normal-
ized chromatic numbers of co-normal powers of, analogous
to the definition of in (10). We will not need this in-
terpretation of here.

Körner and Longo showed in [19] that

(19)

We shall give a different proof of the lower bound to bring out
its simple side-information coding interpretation.

Lemma 3:

(20)

Proof: Let , and let be jointly distributed with
such that . Then it is clear that the character-

istic graph of for any such is either or a subgraph
of . Consider now independent drawings of the random pair

. Suppose first that the decoder knows, while the en-
coder knows , and the conditional distribution of given .
If an eventually vanishing nonzero probability of error is per-
mitted, Slepian and Wolf showed in [26] that the encoder must
transmit at a minimum rate of to convey to the de-
coder. Suppose next that the encoder knows only that the condi-
tional distribution of given satisfies . Then,
maximizing over all possible choices of, the encoder needs to
transmit at a rate of not less than

if a vanishingly small probability of error is permitted. But, from
(18), this is the same as . Now, if zero error is
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required, by Theorem 1, the encoder needs to transmit at a rate
of no more than and the lemma follows.

In a remarkable paper [10], Csiszáret al.proved that equality
holds in both the inequalities of (19) for all distributionsif

is perfect. Thus, perfectness of is sufficient to guarantee
equality in (20). The necessary conditions for equality are un-
known at present.

We now provide an example of a probabilistic graph
for which neither bound of (19) is tight.

Example 1: Let be the -cycle, and be the
uniform distribution on its nodes. Since the maximum size of
a set in is , . Choosing
the distribution for each of the two edgesthat a
node belongs to, we get . Since
the maximum size of a set in is also ,

. Equality is achieved by setting for
each of the two maximal independent setsbelongs to. Now,
let

be the zero-error capacity of a graph[24]. It is clear that
. Lovász showed in [21] that

. But Shannon’s construction [24], which achieves the
capacity , uses each vertex the same number of times,
so that . Hence,

.
Putting all these numbers together,

Bounds for have also been studied by Marton in
[22]. She derived upper and lower bounds in terms of a general-
ization of the Lovász -functional [21] to probabilistic graphs,
and showed that these bounds also coincide for all distributions

if is perfect.

V. HARDNESS OFOPTIMAL CODE DESIGN

The complexity classes and are well known (for an
in-depth discussion see [13]), so we will confine ourselves to
their rough, working descriptions. A problem belongs to the
class if it can be solved in time bounded by a polynomial
in the size of the input. It is in if a guessed solution can be
verified in polynomial time. Clearly, . But proof of the
long-standing conjecture that the inclusion is strict has not been
forthcoming; in fact, this problem remains a major challenge in
computer science.

-complete problems are the “hardest” problems in
in the following sense: if any single -complete problem can
be solved in polynomial time, thenall problems in can so
be solved. A problem, not necessarily in , is -hard if

some -complete problem can be transformed to it in poly-
nomial time. An -hard problem is “at least as hard” as the

-complete problems, since it cannot be solved in polyno-
mial time unless .

Fix . We consider the complexity of the following
coding problems.

( ) INSTANCE: Graph , distribution on ,
and a positive real number.
QUESTION: Is there a -ary RI code for of
rate ?

( ) INSTANCE: Graph , distribution on ,
and a positive real number.
QUESTION: Is there a -ary UI code for of
rate ?

We will show that both problems and are -complete. It
follows, as a simple corollary, that the design of optimal-ary
RI and UI codes is -hard.

For the case of , it turns out that a simple observa-
tion proves both and to be -complete. After disposing
this case in Theorem 2, we treat the binary coding cases sepa-
rately in Theorems 3 and 4. The proof for the binary UI coding
case yields a slightly stronger result, in that it brings out the

-hardness of finding even “good” suboptimal codes. This
statement is made precise in Corollary 1. Throughout, we will
consider polynomial-time reductions from and toand of the
well-known -complete problems of graph -colorability,

, for [13]:

( ) INSTANCE: Graph .
QUESTION: Is colorable with colors?

We will assume throughout this section, without loss of gener-
ality, that the graphs under consideration do not have isolated
vertices.

Theorem 2: Problems and are -complete for fixed
(i.e., prespecified) .

Proof: Note that, in a -ary (UI or RI) code of rate
, each codeword is composed of a single letter from

, and no codeword composed of more than
one letter exists. This observation leads to a simple proof. Thus,
let be given as an instance of . Consider

, where is an arbitrary distribution on . Further,
set , and . If is -colorable, then succes-
sive color classes may be assigned codewords from among

to obtain an RI code of rate
bits. Conversely, if an RI code for of rate
bits exists, then distinct codewords can be identified as colors
to obtain a coloring of with or fewer colors. But
graph -colorability is -complete for every fixed .

The argument is identical in the case of UI coding.

Consider now the case . Note that the problem is
equivalent to asking if binary codewords can be assigned to the
vertices of , such that connected vertices get different code-
words, with maximum length less than . On the other
hand, problems and consider expected lengths of the as-
signed codewords. These quantities coincide if all the lengths
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are , but may not coincide otherwise. Therefore, since graph
-colorability can be easily checked in polynomial time, the pre-

vious proof cannot be extended to the case . Instead, in
the following theorems, we will construct from the instance
of auxiliary probabilistic graphs such that a bi-
nary RI (UI) code of a certain rate for exists iff is

-colorable.

Theorem 3: Problem is -complete for .
Proof: Let be an instance of , with

. Write . Construct the auxiliary graph
as follows:

where by we mean , , and
. Thus, the subgraph induced in by

is obtained by removing the edges and ,
, from the complete graph on those 12 nodes.

Next, assign the probability distribution on such that,
for

if

else.

Let be the optimal binary RI code for .
We hope that also minimizes over all pos-
sible binary RI codes for . This can be guaranteed by
choosing , since for such a choice ofand any bi-
nary RI code , if

then

(in the impossible worst case when

and for all

and we have a contradiction.

The edge structure of the subgraph induced by in
enforces the following constraints on the codewords ,

:

1) , , and may not prefix , , and
, respectively, for .

2) may not prefix for , andvice
versa.

3) may not prefix or for ,
andvice versa.

It is easy to check that is minimized by
choosing

and

Correspondingly, may be calculated as

Now consider assignment of codewords to nodes in. Since
every is connected to , the pair
should be prefix free for and . On the other
hand, the pairs and , ,

, do not need to be prefix free.
Suppose now that is -colorable. Then the four color

classes may be assigned codewords and ,
respectively, so that

Conversely, suppose is not -colorable. Then for
at least one node , so that

Thus, is -colorable iff there exists a binary RI code for
of rate bits.

Construction of the auxiliary graph in the previous theorem
is slightly involved since, in an RI code, some codewords may
be proper prefixes of others. In contrast, the construction for the
binary UI coding case is simpler, as shown in the proof of the
following theorem.

Theorem 4: Problem is -complete for .
Proof: Let be an instance of , with

. Construct as follows:

Let . Assign the probability distribution on such
that, for

if

else.
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Let be the optimal binary UI code for .
We hope that also minimizes over all pos-
sible binary UI codes for . This can be guaranteed by
choosing , since for such a choice ofand any binary
UI code , if

then

(in the impossible worst case when

and for all

and we have a contradiction.
Suppose that is -colorable. Then has only three distinct

codewords, with (say) , , and .
Further

(21)

Conversely, suppose that is not -colorable. Then has at
least four distinct (prefix-free) codewords. Also, crucially, the
assignment above of codewords of lengths to and

is no longer possible. Therefore, the rate is bounded from
below as

(22)

Thus, is -colorable iff there exists a binary UI code for
of rate not above .

Note that, from (21) and (22) in the above proof, ifis -col-
orable, then , and, if is not -col-
orable, then . The difference in rates between these
two cases is not less than

bits

Now, suppose there exists a polynomial-time algorithm which is
guaranteed to design a UI code of rate within bits of the
minimum rate ( ). After suitably picking , this algorithm
can be executed on to decide if is -colorable. Since,

from the above theorem this is not possible unless ,
we have the following corollary.

Corollary 1: Let be the input. Finding a UI code
for with rate such that

for any fixed is -hard.
This section focused on the complexity of scalar coding.

One might be concerned about the complexity of block coding,
where the corresponding graph is anAND power graph, and has
a special structure. However, it is trivial to show that optimal
design is still -hard in the size of the alphabet, and the
complexity grows at least exponentially with the block length.

VI. OPTIMAL CODING ALGORITHMS

Optimal coding algorithms for RI codes have previously also
been considered by Zhao and Effros in [29]. Here, using the
language of partition trees, the problem is separated into optimal
code design for a given partition tree, and search for the optimal
partition tree. The search itself is simplified by the derivation
of necessary conditions for optimality of a partition tree. On
the other hand, our approach is again graph theoretic, and is
apparently simpler. Unlike the algorithm in [29], our algorithms
are amenable to complexity analysis.

Let a probabilistic graph be given, and let
be the subgraph induced inby . We write

for the total probability of the set . Let the distribution
denote the restriction of to , i.e., for

We then say that the probabilistic graph is induced in
by .

We will illustrate the derivation of the optimal algorithms for
binary codes. The algorithms can be naturally generalized to

-ary code design, , and we omit the details.
Throughout this section, we will use the following compact

notation for the weighted codeword length of the subgraph:

Consider optimal RI code design. Let be the
optimal RI code for . If is an arbitrary intermediate (i.e.,
nonleaf) node of the code tree corresponding to, we define the
sets

is a prefix of

and write for the subgraph induced in by
. Let and denote the two children of. Then we

have
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Since is theoptimalcode, this may be recast as

(23)

(The minimization is over all induced subgraphs
of . is the subgraph

induced by in .)
This suggests a recursive algorithm to find , and the

corresponding optimal RI code. Let be an in-
duced subgraph of , and let be the set of isolated nodes in

. Then, as in (23), we have

(24)

with the terminating condition

(25)

when .
It is not necessary to search over all possible induced sub-

graphs in the minimization of (24).

Definition 6: A -partition of the vertex set of
a graph is called adominating -partition, [7],
if every node in is connected to some node in, and
vice versa.

Lemma 4: Let be the optimal RI code for
, and let be the set of all isolated nodes of. Then

form a dominating -partition of .
Proof: We will show that every node in is con-

nected to some node in . The lemma will then follow
by reversing the roles of and in the subsequent arguments.

Note that an isolated node need not be assigned a codeword.
A node in is not connected to any other node in .
It should be connected to some node in ; otherwise, it
is isolated in , and the rate can be reduced by moving it to
. If a node in is not connected to any node

in , the rate can again be reduced by assigning it the
codeword .

Thus, the minimization in (24) can be restricted to the domi-
nating -partitions of .

Here, we outline a possible implementation of the optimal
binary RI coding algorithm.

Input: (G; P )

1. for r = 1: jV j,

2. for i = 1: jV j
r

,

3. calculate L(Gi; r) from (24) and (25),

where Gi; r is the ith r-node induced

subgraph of G.

4. end.

5. end.

6. Calculate L(G; P ) from (24).

Note that the previously calculated optimal codes for smaller
subgraphs may be used in the minimization of Step 3. The worst

case complexity, , of the algorithm is determined as follows. In
Step 3, in the worst case, an exhaustive search over all possible
smaller subgraphs would have complexity . Thus,

A similar recursive algorithm can be derived for the design
of optimal binary UI codes also. The recursive relation (24) is
modified in this case to

since the codeword set is required to be prefix free. The termi-
nating condition remains unchanged: if

Clearly, the algorithm derived from these recursions again has a
worst case complexity of .

VII. FAST (SUBOPTIMAL) DESIGN ALGORITHMS

A. Design Algorithms Based on Approximate Coloring

Let be given. Let and denote the max-
imum and minimum node probabilities under. In prepara-
tion for the performance analysis of suboptimal coding algo-
rithms, we prove the following lemma. (Recall that is the
size of the largest independent set in, while
the maximum degree of . Clearly, .)

Lemma 5: Let be a UI code for , of rate . Let
be the cardinality of the coloring of induced by ,

and be the size of the smallest color class in this coloring.
Then we have the following estimates for the suboptimality of.

1) In terms of and

(26)

(27)

2) In terms of and

(28)

(29)

Proof: We use the lower bounds for and
established in [1]

(30)

(31)

Via elementary arguments, the chromatic entropy may itself be
bounded in terms of as

(32)
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1) The following upper bound for is clear:

Since is a prefix-free code for , we obtain (26) using
(30) and (32):

Equation (27) similarly follows from (31) and (32).
2) Let be a probability distribution

with . The following upper bound on is
easily derived:

Thus, we have

Equations (28) and (29) now follow by using this estimate with
(30) and (31) respectively, and paralleling the calculations made
in proving 1).

Consider the following generic algorithm for the design of
codes for .

1. Color using an approximate graph coloring algorithm
.

2. Find the Huffman code for the color probabilities. (Here,
the probability of a color is the sum of probabilities of the
nodes assigned that color.)

3. To each node assign the Huffman codeword of its color.
Since the codeword set is prefix free, a UI code is produced by
this approach. We analyze two possible choices for the algo-
rithm in Step 1. The first choice is an algorithm proposed by
Halldórsson in [15]. This algorithm is guaranteed to color the
graph with fewer than

colors. The worst case performance guarantee of the corre-
sponding coding algorithm may be calculated by substituting

for in (28) and (29).
In practice, worst case performance guarantees may be pes-

simistic, since worst cases occur infrequently. Thus, as a second
choice for , we consider an algorithm which provides good av-
erage-case performance. The following greedy graph coloring
algorithm was analyzed by Grimmett and McDiarmid in [14]:
Index the nodes of as , and let

be the set of allowed colors. Color nodewith .
Color node with if has a neighbor already col-
ored with for all but not one with .
Our coding algorithm consists simply of greedily coloring the
graph, then Huffman coding the colors.

Consider the following probability distribution on graphs
with vertices: the probability that an edge joins any two given
vertices of a randomly chosen graph is a fixed number

independently of any set of information about the
presence or absence of other edges. Note that this is one of the

standard random graph models; see, e.g., [6]. Letdenote
a graph drawn from this distribution. Then and
are, respectively, the size of the largest independent set in
and the smallest number of nodes of assigned the same
color by the greedy coloring algorithm.

Lemma 6: The sequence of random variables and
of random variables satisfy

as (33)

in probability.
Proof: Let denote the number of colors used by

the greedy coloring algorithm to color . Let denote
the number of nodes assigned color, . The fol-
lowing results are proved in [14]:

as (34)

and

as (35)

in both cases almost surely (a.s.). Further

as (36)

in mean, and hence in probability.
By considering the effect of renumbering the nodes, it is clear

that, a.s.

for

Therefore, since , a.s.

But from (35) and (36)

as

in probability. Thus, the , are equal in prob-
ability, and the claim of the lemma follows on again using (34)
and (35).

The result of this lemma, combined with (26) and (27), then
proves the average-case performance guarantee claimed in (6)
and (7) for the coding algorithm consisting of greedy graph col-
oring followed by Huffman coding of the colors. Note that the
complexity of greedy coloring is , while that of Huffman
coding is . So the resultant coding algorithm only
has complexity of .

B. Design Algorithms Based on Graph Entropy Approximation

We turn now to a second approach to the development of sub-
optimal design algorithms. The following lower bound for the
minimum coding rates in terms of the graph entropy is from [1]

(37)

Note that exact calculation of the graph entropy of an arbitrary
graph may be computationally expensive [25]. Instead, we pro-
pose an algorithm for approximating this quantity. We then show
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that this approximation may be used in the design of an RI code
for .

Graph entropy is defined by the following formula (see
Definition 5):

(38)

where is the collection of all independent sets in.
We convert this minimization into a rate-distortion problem

[4] by introducing the distortion function

if

otherwise

and rephrasing (38) as

The BA algorithm [5] for a slope may now be used.
The iterations of the BA algorithm become

if

otherwise

and the corresponding optimality conditions are

In order to reduce the computational burden, the collection
may be restricted to, say, collection of all inde-

pendent sets of size for some fixed . The approximation
of is then improved by increasing.

RI code design may be based on approximate calculation of
the lower bound of (37). We shall illustrate
the idea via an example. Let be the collection of all in-
dependent sets of sizein , i.e., of all edges of . Note that
the rate of an RI code may be expressed as

(39)

The BA algorithm is used to calculate for each edge of
, and these edges are ordered by decreasing probabilities. The

edges are then traversed in order, resolving the prefix violation
at that edge (if any) by extending the current codewords at the
two ends of the edge by the minimum possible number of bits.
The heuristic behind the algorithm is based on (39): if the higher
probability edges are visited earlier, it is more likely that the
codewords assigned to the corresponding vertices are shorter,
thus reducing the rate of the designed code.

VIII. C ONCLUSION

In this paper, we considered zero-error source coding with
side information at the decoder. We showed that the minimum
asymptotic rate required is the complementary graph entropy

of a graph associated with the problem. Previous studies of the
complementary graph entropy had been motivated by its con-
nections to the zero-error capacity and graph entropy.

Slepian and Wolf showed in [26] that knowledge at the en-
coder of decoder side information affords no advantage in terms
of the asymptotic rate if occasional errors are tolerated. Lemma
3 shows that this is no longer the case in general if zero er-
rors are required. But if the underlying graph is perfect, no loss
of optimality may be entailed; this is yet another instance of
the striking information-theoretic properties of perfect graphs.
While perfectness of the graph is sufficient, it may be of interest
to determine whether perfectness is also necessary for this opti-
mality. This would also answer a question of Körner and Longo,
raised in a different context in [19], about necessary conditions
for .

Turning then to the design of optimal codes, we showed that
this problem is -hard. Further, even suboptimal design (to
within bits) is -hard for a particular class of codes where
the codeword set is required to be prefix free. Investigation of
hardness of approximability for the class of all codes remains
essentially open.

We developed optimal and suboptimal algorithms for
code design. While polynomial-time approximate algorithms
represent one line of attack, another popular approach to

-hard graph-theoretic problems has been the consideration
of restricted classes of graphs. It may be of interest to identify
classes of graphs more likely to be encountered in practical
side-information coding scenarios. The existence of polyno-
mial-time optimal coding algorithms for these graphs could
then be investigated.
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