
Onboard Contextual Classification of 3-D Point Clouds with Learned

High-order Markov Random Fields

Daniel Munoz, Nicolas Vandapel, and Martial Hebert

The Robotics Institute

Carnegie Mellon University

{dmunoz,vandapel,hebert}@ri.cmu.edu

Abstract— Contextual reasoning through graphical models
such as Markov Random Fields often show superior perfor-
mance against local classifiers in many domains. Unfortunately,
this performance increase is often at the cost of time consuming,
memory intensive learning and slow inference at testing time.
Structured prediction for 3-D point cloud classification is one
example of such an application. In this paper we present
two contributions. First we show how efficient learning of
a random field with higher-order cliques can be achieved
using subgradient optimization. Second, we present a context
approximation using random fields with high-order cliques
designed to make this model usable online, onboard a mobile
vehicle for environment modeling. We obtained results with the
mobile vehicle on a variety of terrains, at 1/3 Hz for a map 25
× 50 meters and a vehicle speed of 1-2 m/s.

I. INTRODUCTION

Accurate perception of environments is critical for

autonomous ground vehicles. An improved understand-

ing/classification of the world is beneficial for many applica-

tions such as autonomous navigation and environment mod-

eling. However, there exists a trade-off between processing

time and the quality of the classification. In this paper, we

address both these challenges for the task of contextual 3-D

point cloud classification onboard of a moving vehicle. An

example classification result from our onboard experiments

is presented in Figure 1; the different colors represent inter-

esting labels such as vegetation (green), large (red) and small

(blue) tree trunks, and ground (orange).

A common classification approach for this problem is to

learn a classifier that assigns a label to each point, inde-

pendently of its neighbors’ assignments. This approach is

computationally fast [1] and can produce good results when

the extracted features are discriminative. However, when the

extracted features are noisy, this approach can produce noisy

classifications where points’ labels are not locally consistent.

Local consistency can be achieved by considering the local

context around each point when performing classification.

The label of the points are then determined jointly, not

independently. The Markov Random Field framework is a

popular choice because it models the spatial interactions

present in the scene. A Conditional Random Field (CRF)

is a popular discriminative model to learn such interactions

from training data. In this paper, we are interested in a

CRF variant called an Associative Markov Network (AMN).

The authors in [2], [3] show that modeling the interactions

Fig. 1. Example onboard terrain classification result.

with AMNs outperform standard Support Vector Machine

(SVM) algorithms for the application of 3-D point cloud

classification.

While the benefits of modeling the interactions are ap-

parent, they come at a cost. Due to combinatorial issues,

these interactions are typically considered at most between

pairs of points at a time, that is, a pairwise model is used.

Thus, in order to model context, for each point it is necessary

to consider the interactions with many neighbors during

classification. Because of this interdependency, classification

is slower than local independent classifiers such as SVMs.

In [4], the authors present a new method that very effi-

ciently models the interactions of a group of points instead of

normally considering the many linked pairs of points within

that same group, that is, it models high-order interactions.

The parameters for this high-order contextual model are de-

termined through cross-validation, a time-consuming task for

high-dimensional parameters. The first contribution of this

paper is to show how to efficiently learn high-dimensional

model parameters from very large training datasets using a

recently proposed optimization technique [5]. The result of

this formulation directly translates into efficiently learning

a high-order AMN. Our second contribution analyzes the

feasibility and presents a context approximation method

to perform contextual classification onboard of a moving

vehicle.

This paper is structured into six sections. In the next,

various notations are introduced and the background of the

original pairwise AMN formulation is reviewed. In Section

III, we present our first contribution: how to efficiently learn

the model parameters for high-order AMNs. In Section IV,

we propose and analyze the performance of our context

approximation in the off-board, batch scenario. Section V

presents our second contribution where we utilize a high-

order AMN and perform classification onboard of a moving

robot with our proposed context approximation.

II. PRELIMINARIES

A. Problem

Our classification task can be formalized as follows. Given

a set of N random variables Y = {Y1, . . . ,YN}, where each

variable takes a value Yi ∈ {l1, . . . , lK}, find the assignment

of values of y = {y1, . . . ,yN} to Y that maximizes some

score function. In the context of 3-D point classification,

each random variable represents a 3-D point and its value

corresponds to one of K labels; in our experiments we

classify {wires, pole/tree trunks, load bearing surfaces, fa-

cades, vegetation/scattered points} from data. Formulating

the classification task as a supervised learning problem, we

want to learn a discriminative model that conditions the joint

distribution of labels on the data x that we can extract from

the scene Pw(y|x), where w are the model parameters. The

classification procedure is then broken into two steps: (1)

learning the model parameters given labeled data (x, ŷ) and

then (2) inferring the best assignments of a novel scene given

its features.

B. Conditional Random Fields

In this section we give a brief overview of the CRF model

in general and then proceed in more details about our model

in the next section. A CRF is a popular MRF variant used in

computer vision that models a conditional distribution P(y|x)
[6]. The distribution is defined by the dependencies of the

random variables represented in an undirected graph (V,E)
with edges E = {(i j)}|(i < j) where each vertex represents

a random variable and the edges represent a dependency

between two variables. Through the Hammersley-Clifford

Theorem [7], the probability distribution is defined over the

sets of cliques C in the graph as

Pw(y|x) =
1

Z
∏
c∈C

φc(yc), (1)

where yc = {yi}i∈c, φc(·) is a clique potential that is implic-

itly a function of the data x and model parameters w. The

potential measures the affinity of the assignment yc to the

variables of the clique, and Z is the normalizing partition

function defined to be Z = ∑y′∏c∈C φc(y
′
c); note that the

computation of Z is exponential.

Because CRFs model the joint distribution, performing

inference on a graph with arbitrary clique interactions is

NP-hard in general due to the exponential output space of

possible solutions. To accomodate this combinatorial issue,

most random fields use a pairwise model where only the po-

tentials around each node i and each edge (i j) are considered.

Still, in general, inference on arbitrary pairwise potentials on

graphs with cylic interactions is also NP-hard [8]. Common

approximation inference techniques include graph-cuts [9],

[8] and belief propagation (BP) and its variants [10], [11].

We refer to [12], [13] for thorough recent surveys.

Learning the model parameters in CRFs is traditionally

done by maximizing the conditional likelihood of Equation

1, with regularization on the model parameters. It can be

shown that computing this gradient involves computing the

marginal probabilities at each iteration to define the partition

function; these marginals are often approximated with the

beliefs from BP [14]. It is important to note that this approach

does not extend in general to high-order interactions as

BP computation is exponential in the size of the largest

clique [15]. In our model, we will have hundreds of cliques

containing 30 to 60 nodes.

C. Pairwise Associative Markov Networks

In our final model, we use an Associative Markov Network

(AMN) as originally described by Taskar et al. in [16]. In the

following we describe the pairwise model using the notation

from [16]. First, we define x = {xi,xij} to be the extracted

features from the scene where xi ∈R
dn and xij ∈R

de are the

features that describe node i and the relationship between

nodes i and j, respectively and x≥ 0. In our application, xi

are statistics of the local distribution of points around point

i and xij measures how well the features from i and j agree.

The AMN model uses log-linear potentials to represent the

dependence of the potentials on the extracted features. That

is, logφi(lk) = wk
n ·xi where yi = lk (the label value assigned

to node i) and wk
n ∈R

dn are the weights used when a node is

assigned lk. The potential over an edge models an associa-

tive/Pott’s behavior that favors the two linked nodes taking

on the same labels and penalizes otherwise: logφi j(lk, lk) =
wk

e · xij, where wk
e ∈ R

de are the weights used when linked

nodes are both assigned lk, and ∀lk 6= lo, logφi j(lk, lo) = 0. As

will be discussed in the next section, enforcing non-negative

edge potentials enables efficient inference. To achieve this,

the edge weight vectors are constrained by wk
e ≥ 0. Finally,

changing the representation of an assignment y with a vector

of K ·N indicator variables where y = {yk
i ,k, i|yk

i = I(yi = lk)},
the log of the joint-conditional probability is defined as

logPw(y|x) =

N

∑
i=1

K

∑
k=1

(wk
n ·xi)y

k
i + ∑

(i j)∈E

K

∑
k=1

(wk
e ·xi j)y

k
i yk

j− logZw(x), (2)

where Zw(x) = ∑y′∏
N
i=1 φi(y

′
i)∏i j∈E φi j(y

′
i,y
′
j).

To simplify notation, we define a K(dn + de) length

row vector w = {wn,we} with wn = {w1
n, . . . ,w

K
n } and

we = {w1
e , . . . ,w

K
e }. Also we redefine y to be a K(N + |E|)

column vector y = {yn,ye}T
with yn = {. . . ,y1

i , . . . ,y
K
i , . . .}

and ye = {. . . ,y1
i j, . . . ,y

K
i j, . . .} where yk

i j = yk
i ∧ yk

j. Finally,

we construct X to be a K(dn +de)×K(N + |E|) matrix such

that logPw(y|x) = wXy− logZw(x). This matrix contains the

features repeated multiple times in the columns and padded

with zeros appropriately.

In order to solve the inference task y∗ = argmaxy Pw(y|x),
the authors in [16] formulate a linear program (LP) over a

non-integral (and constrained) version of y and setting wXy

as the objective function. Finding the optimal parameters w is

formulated as a max-margin learning problem. Given labeled

data (x, ŷ), the goal is to find the weights that maximize the

margin of confidence in Pw(ŷ|x) versus Pw(y|x) ∀y 6= ŷ.

This learning problem is formulated as the following convex

program:

min
w,ξ

λ
2
‖w‖2 +ξ

s.t wXŷ+ξ ≥max
y

wXy+L (y, ŷ),
(3)

where ξ is a slack variable that represents the gap in the

total energy between the optimal and achieved solutions and

L (y, ŷ) is a loss function that acts as a margin term for struc-

tured output spaces. As in [16] and [2], we use the Hamming

distance between the true and achieved assignments for our

loss function. In [16], the authors show how to substitute the

dual of the inference LP to bound the non-linear constraint

which then results in a valid quadratic program (QP) and

can then be solved by optimization software. Note that one

important property of this formulation is that estimating the

intractable partition function Z has been successfully omitted

from the derivation.

In the next section, the model will be extended to effi-

ciently learn higher order interactions beyond the pairwise

case.

III. LEARNING HIGH-ORDER ASSOCIATIVE

MARKOV NETWORKS

A. Alternative Optimization Approaches

In this section we will show how to extend the AMN

model to efficiently learn high-order interactions. In contrast

to learning with a QP solver, the technique uses a gradient-

based method from [5] that requires performing inference

at each step. Here we review alternative algorithms for

inference and learning that we use to learn the high-order

AMN model.

Inference Instead of using an LP for inference, the authors

of [16] mention that inference on the pairwise model can also

be performed through graph-cut inference, i.e. finding the st-

mincut of a specially constructed graph. However, note that

the original QP learning must still rely on an LP formulation

of inference. We briefly review the graph-cut approach as it is

essential for incorporating the high-order model. Performing

inference on our random field can then be thought of as

minimizing its energy, that is, the negative of the clique

potentials:

E(y) =
N

∑
i=1

Ei(yi)+ ∑
(i j)∈E

Ei j(yi,y j), (4)

with Ei(yi) =− logφi(yi) and Ei j(yi,y j) =− logφi j(yi,y j). In

[8], the authors state that pairwise submodular energy func-

tions of binary variables (K = 2) are graph-representable,

that is, a directed graph can be constructed such that the st-

mincut is the function’s minimum value and the vertices left

connected to the source and terminal define the respective

binary variable values. Note that a function of one binary

variable is always submodular, a second-order function of

binary variables is submodular iff Ei j(0,0) + Ei j(1,1) ≤
Ei j(0,1) + Ei j(1,0), and the sum of two submodular func-

tions is submodular. If K = 2, it is clear that the pairwise

AMN energy is submodular and thus can be minimized by

finding the st-mincut; we refer to [8] for how to construct

the graph. If K > 2, the function is not submodular but can

be approximated up to a factor of 2 with the α-expansion

algorithm; we refer to [9] for more details. This formulation

is practically appealing as it does not require optimization

software and is memory-efficient for large random fields.

Learning In [5], the authors use the subgradient method

to optimize objective

min
w

λ‖w‖2

2
+max

y
(wXy+L (y, ŷ))−wXŷ, (5)

which is the unconstrained version of Equation 3. Since

Equation 5 is convex in w, a solution can be achieved through

subgradient descent. The key to compute the subgradient of

Equation 5 is to use the property: if f (a,b) is differentiable

in a, then ∇a f (a,b∗) is a subgradient of the convex function

maxb f (a,b) for b∗ ∈ argmaxb f (a,b). Therefore, a subgra-

dient gw of Equation 5 is

gw = λw+Xy∗−Xŷ. (6)

Solving the loss-augmented inference problem y∗ =
maxy(wXy + L (y, ŷ)) can still be solved with graph-cuts

as long as the loss function L (y, ŷ) does not affect sub-

modularity. To ensure this, the Hamming loss function is

typically chosen as it decomposes over the node potentials,

which does not affect submodularity. Starting at time t = 0

with w0 = 0, the solution is then achieved through descent

until convergence, or T iterations, using the update rule:

wt+1←PW [wt −αgwt
], (7)

where PW projects w onto a convex set W formed by any

specific convex constraints on w; for AMNs, this projection

enforces any negative we to become 0. A common step-size

is α = γ√
t
, for some positive γ and current iteration t.

B. Pn Potts Model

In order to model high-order interactions, we need to be

able to efficiently solve the model. Kohli et al. recently

proposed a class of energy functions that can be efficiently

minimized, called the Pn Pott’s model [4]. This model

extends the general idea of the Pott’s model with cliques

of arbitrary order n. That is, the model is associative and

favors all variables in the clique taking on the same label

and penalizes otherwise:

Ec(yc) =

{
λ k

c if ∀i ∈ c,yi = lk

λmax otherwise,
(8)

where λmax ≥ λ k
c ,∀lk ∈ {l1, . . . , lK}. The authors show how

to construct a graph such that its st-mincut represents the

minimized energy for K = 2 (the energy is submodular), and

for K > 2 minimizes the optimal move for the α-expansion

algorithm. Hence this potential is graph-representable.

C. Learning The New Model

In the AMN model, we would then like to incorporate the

high-order information with the pairwise model, that is our

energy function is the sum of Equations 4 and 8:

E(y) =
N

∑
i=1

Ei(yi)+ ∑
(i j)∈E

Ei j(yi,y j)+ ∑
c∈S

Ec(yc), (9)

where S is the set of high-order cliques we would like

to consider; we will discuss their construction in the next

section. We can minimize (perform inference on) Equation

9 through the Additivity Theorem [8]: minimizing the sum

of two graph-representable functions is the same as finding

the st-mincut of the two merged graph representations.

Modeling the high-order energy terms in the AMN log-

linear model, we define the clique potentials ∀c∈ S,Ec(yc) =
− logφc(yc) where

logφc(yc) =

{
wk

c ·xc if ∀i ∈ c,yi = lk

0 otherwise,
(10)

and wk
c are the weights used when all the variables in

clique c obtain value lk and xc ∈ R
dc are the features that

describe clique c. Now, we define y = {yn,ye,yc}T where

yc = {. . . ,y1
c , . . . ,y

K
c , . . .} is a |S| ·K indicator vector with

yk
c = ∏i∈c yk

i . In addition, we define a K · dc weight vector

wc = {w1
c , . . . ,w

K
c } and w = {wn,we,wc}. As before, adjust

X such that wXy =

N

∑
i=1

K

∑
k=1

(wk
n ·xi)y

k
i + ∑

(i j)∈E

K

∑
k=1

(wk
e ·xi j)y

k
i j + ∑

c∈S

K

∑
k=1

(wk
c ·xc)y

k
c.

(11)

Thus, in contrast to cross-validation for parameter selection

[4], we can now learn models with high-order potentials that

are log-linear in w using the subgradient method and graph-

cut inference as done before. Note that to satisfy the Pn Pott’s

model (submodularity constraints), we must have λ k
c =−wc ·

xc ≤ λmax = 0. As done with the edge weights, we project

negative high-order clique weights to 0 at each iteration.

D. Discussion

We note that the high-order version of the model was

originally formulated in [16]. However, the difference in

this work is a feasibility issue. As stated above, because

the learning step was formulated as QP, an optimization

solver such as CPLEX must be used. The authors in [5] state

that a training set of approximately 30,000 points neared

the upper bound of what could be handled by the solver

due to memory constraints. Memory constraints with the

subgradient method only require efficient inference such as

graph-cuts. In our experiments in the next two sections, we

will be using training sets with an increase of size by 30%

and 64%, respectively. An overview of the learning algorithm

is presented in Algorithm 1

Algorithm 1 Learning algorithm overview

Inputs: Cliques C, ground truth labeling ŷ, regularization

term λ , step-size αt , number of iterations T

Compute features for cliques in C: X = {{xi},{xij},{xc}}
w← 0

for T iterations do

y∗← graphcut inference(X,w) (Eq. 9)

w← subgradient update(X, ŷ,y∗,λ ,αt) (Eq. 7)

end for

return w

IV. EXPERIMENTAL RESULTS

In this section we first describe how our random fields are

constructed and the features used in our experiments. We

then propose and analyze the context approximation method

which we use in our onboard experiments described in the

next section.

A. Clique Construction

For our edge potentials, we model local, spatial interac-

tions by iterating over the nodes (3-D points) and linking

each node to its closest b-nearest neighbors (b-NN). In

Section IV-D, we evaluate graphs using 3-NN and 5-NN.

In images, the lattice structure of the domain allows for a

natural definition of high order cliques; however, an analogy

with 3-D point clouds is unclear due to varying point density

and lack of an intrinsic data structure. Drawing inspiration

from [17], we define a clique in a 3-D point cloud as a

set of locally similar points resulting from clustering over

the nodes’ features and locations. We use simple k-means

clustering where a ratio kratio = 0.0263 of clusters versus

nodes with the training data was found experimentally to

capture the same local geometric structure. During testing

ktest = kratio ·Ntest. An example of the clustering on test data

is illustrated in Figure 2.

Fig. 2. Clusters on a scene to be used as the high-order cliques.

B. Features

We implemented three geometric features commonly used

in spectral analysis of point clouds [18]. We define λ2 ≥
λ1 ≥ λ0 to be the eigenvalues of the scatter matrix M

defined over a local neighborhood Np around point p.

These features capture the {point, surface, linear}-”ness” of

the local geometry: {σp = λ0,σs = λ1− λ0,σl = λ2− λ1},
respectively. We refer to these as the spectral features. Next,

we estimate the local tangent ~vt and normal ~vn vectors for

each point by using the principal and smallest eigenvectors

of M, respectively. We then compute the cosine and sine of

the angles formed between the directions of ~vt and ~vn against

the vertical and horizontal plane, resulting in four values. We

estimate a confidence in the features by scaling the values

based on the strength of the extracted directions: {~vt ,~vn} by

{σl ,σs}/max(σl ,σp,σs), respectively. We will refer to these

scaled values as the directional features.

In our experiments, the spectral features are defined using

a neighborhood of points within a radius of 0.6 m; the

concatenation of the spectral and directional features define

the node features xi. We define an affinity feature between

two scalars values f1 and f2 as 1/(1 + | f1− f2|). Then, the

edge features xi j are defined to be the concatenation of the

two nodes’ spectral features and the affinities between the

directional features. For the high-order clique features xc, we

computed the same types of features as for the nodes except

that the support volume to calculate the scatter matrix is the

locations of the nodes that constitute the clique/segment. All

of our feature vectors also contain a bias feature of 1.0.

C. Implementation details

We used publicly available implementations of k-means

clustering [19] and maxflow-mincut [20] performing infer-

ence. With the k-means library, we used all the default

parameters for Lloyd’s algorithm except reduced the number

of stages in half in order to reduce computation time. During

testing, we do not create nodes or cliques if their features

cannot be computed; this will happen if the support volume

neighborhood contains less than four points. For α-expansion

inference during the field test, at each time step we initialize

the labelings from the previous iteration as the majority of

the nodes are not deleted from the random field.

D. Context Approximation Analysis

In order to perform onboard classification with the AMN

model, we need to be able to efficiently 1) construct the

necessary cliques in the graph and 2) perform inference.

We will now empirically analyze the computational costs

of these two tasks for our problem. From our previous work

[3], we found that while the pairwise model significantly

performs better than SVMs, the large amount of time taken

for inference makes the approach unattractive for onboard

processing. The expensive inference time can mainly be

attributed to the cyclic and long range dependencies resulting

from a highly linked random field. Such random fields are

needed in order to propagate information in the pairwise

model.

Because AMN potentials enforce the nodes in a clique to

agree with the same label, it may not be necessary to have

a random field with complicated pairwise dependencies if

we can model a node’s surrounding context in a different

manner. Instead, we propose an approximation to achieve

contextual information that tries to enforce local regions to

keep the same label while utilizing node-level information.

Instead of creating a random field with many dependencies,

we construct a random field with disjoint high-order cliques

with the goal that the cliques themselves provide sufficient

context. This formulation models context beyond the point-

wise level, but does not introduce long range dependencies.

This is a counter-intuitive approximation as we have effec-

tively separated the cliques from each other and are now

dealing with a seemingly harder problem of modeling high-

order interactions instead of simpler pairwise interactions.

However, since there are no long-range dependencies, the

constructed directed graph used for graph-cut inference is

simpler and, as the following will show, optimizing high-

order potentials is efficient and still maintains contextual

classification. Furthermore, note that this is not the same as

performing clique-wise classification as the node potentials

are also used.

We trained three models: using nodes and high-order

cliques resulting from clustering (HOC), using nodes and

edges constructed with 3-NN (3-NN), and using nodes

and edges constructed with 5-NN (5-NN). Our training set

consisted of 39,188 data points with 5 labels: {vegetation,

wire, pole/trunk, load bearing, and facade}. The training

parameters for HOC were found to be step size γ = 0.1 and

regularization term λ = 0.1. The training parameters for both

3-NN and 5-NN were T = 700, γ = 0.007, and λ = 0.1.

We performed quantitative evaluation on a testing set of 1.2

million labeled points; note that this is separate data from

the field test experiments in Section V. The classification

performances are given in Table I, where rows are the ground

truth labels and columns are the predicted labels. The 5-NN

model performs the best overall with better or about equal

precision and recall rates for four of the five classes. The

behavior of more true-positives with HOC on the physically

smaller pole/trunk and wire classes can be attributed to the

smoothing effect that pairwise models commonly exhibit [3].

Although most accurate, the timing information in Table II

illustrates that 5-NN is not practically feasible in an onboard

setting. With our context approximation (HOC), we observe

comparable classification with most efficient computation.

HOC 3-NN 5-NN

Classification 3.643 16.123 35.277

Clique construction 11.055 5.843 9.036

Total 14.698 21.966 44.313

TABLE II

AVERAGE COMPUTATION TIMINGS (S) PER 100,000 POINTS FOR A

DATASET OF 1.2 MILLION POINTS.

V. FIELD TESTS

This section presents results from the context approximate

HOC model tested onboard the Demo-III XUV. The task

considered is environment modeling and scene interpretation,

that is, we are interested in autonomously creating accurate,

detailed representations of unknown environments. Such a

representation is potentially useful for other applications such

as autonomous navigation.

Confusion Matrix with High-order Cliques Only (HOC). Overall classification rate: 0.871.
vegetation wire pole/trunk load bearing facade Recall

vegetation 198690 7396 7469 562 11810 0.879
wire 113 1293 12 1 71 0.868

pole/trunk 1840 111 4350 8 435 0.645
load bearing 8665 89265 2388 806039 17430 0.872

facade 4284 3057 3410 3 56084 0.839

Precision 0.930 0.013 0.247 0.999 0.653

Confusion Matrix with Pairwise model (3-NN). Overall classification rate: 0.884.
vegetation wire pole/trunk load bearing facade Recall

vegetation 211234 4011 6168 29 4485 0.935
wire 176 1242 44 0 28 0.834

pole/trunk 3120 96 3196 21 311 0.474
load bearing 10274 56751 23085 807086 26591 0.874

facade 2662 1814 2650 0 59712 0.893

Precision 0.929 0.019 0.091 1.000 0.655

Confusion Matrix with Pairwise model (5-NN). Overall classification rate: 0.889.
vegetation wire pole/trunk load bearing facade Recall

vegetation 209007 4760 6385 127 5648 0.925
wire 120 1286 84 0 0 0.863

pole/trunk 2945 589 2861 67 282 0.424
load bearing 2931 78873 8126 812278 21579 0.879

facade 1018 1231 1510 0 63079 0.944

Precision 0.968 0.015 0.151 1.000 0.696

TABLE I

CONFUSION MATRIX WITH HIGH-ORDER CLIQUES ONLY (HOC), PAIRWISE MODEL (3-NN), AND PAIRWISE MODEL (5-NN)

The three main challenges we faced in using a random

field onboard of a mobile robot for on-line data processing

are: 1) maintaining a coherent graph structure, 2) avoiding

data accumulation as more laser data are collected and the

vehicle is moving, and 3) efficient feature computations. We

address those problems by leveraging on previous work for

efficient data accumulation and features computation, and we

develop an insertion-deletion scheme for the random field.

First the laser data is accumulated into a dense 3-D

scrolling map discretized into ten centimeters edge voxels.

At data insertion, the spectral features sufficient statistics

are stored and the features are computed efficiently for the

new or updated voxels following [1]. Figure 3 illustrates the

following process. The newly inserted points are clustered.

The resulting clusters are treated as the high-order cliques

and are added to the accumulated random field. As the

vehicle moves, nodes and cliques outside an area of interest

are deleted. The cliques’ associated nodes are deleted when

its centroid location is outside the area of interest. By

construction we ensure node assignment to a unique clique1.

An illustration of the evolution of the number of nodes and

cliques within the accumulated random field is presented in

Figure 5. The results were produced on the trail illustrated

in Figure 6-center.

Code integration was done on an off-the-shelf computer

with a 3 GHz CPU and 2 GB of memory. The Demo-III

eXperimental Unmanned Vehicle (XUV) [22] used for field

testing is illustrated in Figure 4. The vehicle is equipped

1Since the time of submission, we have performed additional field-test
experiments where we investigate the efficiency of non-disjoint cliques (by
using overlapping segmentations and linking nodes between adjacent cliques
as they are inserted) and compare with the pairwise model [21].

with state of the art pose estimation and 3-D laser sensing.

Data from a subsection of the environment was previously

collected and hand labeled; the training set consisted of

49,110 points with the same types of labels. A HOC model

Fig. 3. Illustration of the insertion and deletion procedure for nodes and
cliques. Top: vehicle starting position with some cliques within the area of
interest, represented in red. Bottom: the vehicle moved some distance, the
area of interest (in red) overlaps completely and partially with some cliques;
the cliques to delete are shaded in orange; the cliques to add are shaded in
green; deletion and addition of cliques are performed only if the centroid
is within the area of interest.

was trained with parameters step size γ = 0.001 and regular-

ization term λ = 0.1.

We tested the code onboard the vehicle over a variety

of terrains including trails surrounded by dense vegetation

(Figure 6-center), a forest with large tree trunks, understory

vegetation and canopy (Figure 6-right), and also a mock-

up urban terrain with paved roads, utility poles, grass, and

buildings (Figure 6-left). The code was tested over almost 10

km. Illustration of the representative terrains, classification

results and computation times are presented in Figure 6. The

computation times include timings for node feature computa-

tion (nodes), cliques construction and features computation

(cliques), insertion (merge) and deletion (delete) of nodes

and cliques as the vehicle is moving, and the classification

time (classification). We were able to obtain classification

results at least every three seconds in the most stringent

conditions tested: using a large area of interest (25×50 m), in

a highly cluttered environment, and with large pan-tilt laser

turret motion (±10deg×± 20deg). The vehicle speed was

between one and two meters per second.

Fig. 4. Demo-III eXperimental Unmanned Vehicle (XUV)

VI. CONCLUSION

In this paper we presented a contribution to the problem

of 3-D point cloud classification onboard a mobile vehicle

using a conditional random field for scene interpretation

and environment modeling. Our first contribution showed

how higher-order interactions can be efficiently learned using

the subgradient method. The second contribution analyzed,

implemented, and tested a context approximation method for

classifying streaming data from a 3-D laser range finder.

Experiments onboard a mobile robot were conducted in

several types of environments (urban, forest, trail) to support

the claims.

VII. ACKNOWLEDGMENTS

Prepared through collaborative participation in the

Robotics consortium sponsored by the U.S Army Research

Laboratory under the Collaborative Technology Alliance

Program, Cooperative Agreement DAAD19-01-209912. The

authors would like to thank General Dynamics Robotic

Systems for its support.

Fig. 5. Evolution of the number of nodes and cliques deleted (top) and
present in the accumulated random field (bottom) while driving on a trail.
As expected, the number of nodes and cliques increases first as laser data
is accumulated, then levels off while the vehicle is moving as nodes and
cliques are inserted but also deleted. More and more nodes are deleted
because the surrounding of the trail is becoming increasingly cluttered with
vegetation.

REFERENCES

[1] J.-F. Lalonde, N. Vandapel, and M. Hebert, “Data structures for
efficient dynamic processing in 3-d,” The International Journal of

Robotics Research, vol. 26, no. 8, pp. 777–796, August 2007.

[2] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng, “Discriminative learning of markov random
fields for segmentation of 3-d scan data,” in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2005.

[3] D. Munoz, N. Vandapel, and M. Hebert, “Directional associative
markov network for 3-d point cloud classification,” in Fourth In-

ternational Symposium on 3D Data Processing, Visualization and

Transmission, 2008.

[4] P. Kohli, M. Kumar, and P. Torr, “P3 and beyond: Solving energies
with higher order cliques,” in IEEE International Conference on

Computer Vision and Pattern Recognition, 2007.

[5] N. Ratliff, J. Bagnell, and M. Zinkevich, “Online subgradient methods
for structured prediction,” in Eleventh International Conference on

Artificial Intelligence and Statistics, 2007.

[6] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
International Conference on Machine Learning, 2001.

[7] S. Li, Markov Random Field Modeling in Image Analysis. Springer-
Verlag Telos, 2001.

[8] V. Kolmogorov and R. Zabih, “What energy functions can be mini-
mized via graph cuts?” PAMI, 2004.

[9] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” PAMI, 2001.

[10] J. Yedidia, W. Freeman, and Y. Weiss, “Generalized belief propaga-
tion,” in NIPS, 2000.

[11] V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” PAMI, 2006.

Urban terrain Trail Dense forest

Fig. 6. Onboard data processing results for an urban environment (left column), a trail (center column), and a dense forest (right column). From top
to bottom: a representative image of part of the terrain, classification results for the complete scene, a close up view, and the timings. The urban terrain
covers an area of 215 × 165 m and the vehicle drove over 1.7 km, the trail is 360 m in length, and the vehicle path is the forest is 93 m long. The
processing area covers an area 50 meters wide and 25 meters deep in front of the vehicle. The vehicle operates at speeds between one and two meters per
second. Color code: foliage/grass (green), large tree trunks/facade (dark red), small tree trunks (blue), ground (orange).

[12] N. Komodakis, P. Torr, V. Kolmogorov, and Y. Boykov, “Discrete
optimization methods in computer vision,” Tutorial at International
Conference on Computer Vision (ICCV), October 14-15, 2007.

[13] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappena, and C. Rother, “A comparative study of
energy minimization methods for markov random fields,” PAMI, 2007.

[14] C. Sutton and A. McCallum, Introduction to Statistical Relational

Learning, L. Getoor and B. Taskar, Eds. MIT press, 2006.

[15] C. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[16] B. Taskar, V. Chatalbashev, and D. Koller, “Learning associative
markov networks,” in ICML, 2004.

[17] A. Willis, J. Speicher, and D.Cooper, “Surface sculpting with stochas-
tic deformable 3d surfaces,” in ICPR, 2004.

[18] G. Medioni, M.-S. Lee, and C.-K. Tang, A Computational Framework

for Segmentation and Grouping. Elsevier, 2000.
[19] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and

A. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” PAMI, 2002.

[20] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max- flow algorithms for energy minimization in vision,” PAMI,
2004.

[21] D. Munoz, N. Vandapel, and M. Hebert, Onboard 3-D Point Cloud

Classification with Associative Markov Networks. manuscript in
preparation, 2009.

[22] J. A. Bornstein and C. Shoemaker, “Army ground robotics research
program,” Proceedings of the SPIE - The International Society for

Optical Engineering, vol. 5083, no. 1, pp. 303 – 310, 2003.

