
ETH Library

Onboard IMU and Monocular
Vision Based Control for MAVs
in Unknown In- and Outdoor
Environments

Conference Paper

Author(s):
Achtelik, Markus W.; Achtelik, Michael; Weiss, Stephan; Siegwart, Roland

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-010025260

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010025260
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Onboard IMU and Monocular Vision Based Control for MAVs in

Unknown In- and Outdoor Environments

Markus Achtelik, Michael Achtelik, Stephan Weiss, Roland Siegwart

Abstract— In this paper, we present our latest achievements
towards the goal of autonomous flights of an MAV in unknown
environments, only having a monocular camera as exteroceptive
sensor. As MAVs are highly agile, it is not sufficient to directly
use the visual input for position control at the framerates
that can be achieved with small onboard computers. Our
contributions in this work are twofold. First, we present a
solution to overcome the issue of having a low frequent onboard
visual pose update versus the high agility of an MAV. This is
solved by filtering visual information with inputs from inertial
sensors. Second, as our system is based on monocular vision,
we present a solution to estimate the metric visual scale aid of
an air pressure sensor. All computation is running onboard and
is tightly integrated on the MAV to avoid jitter and latencies.
This framework enables stable flights indoors and outdoors
even under windy conditions.

I. INTRODUCTION

The research in autonomous micro helicopters is advanc-

ing and evolving fast. Even though a lot of progress has been

achieved in this topic during the past years, the community

is still striving to achieve simple autonomous flights in

unknown and GPS denied environments. Only after solving

this issue, high level tasks such as autonomous exploration,

swarming, and large trajectory planning can be tackled.

Stable flights and navigation with GPS are well explored

and work out of the box [1]. However, GPS is not a reliable

service as its availability can be limited by urban canyons

and is completely unavailable in indoor environments. The

alternative of using laser range finders is not optimal since

these sensors have a restricted perception distance and are

still heavy for MAVs.

Considering the above mentioned and to be independent

of the (quality of the) GPS signal, a viable solution is to nav-

igate with a vision based system. This ensures operations of

the MAV indoors as well as outdoors. Recently we presented,

to the best of our knowledge, the first vision based solution

for completely autonomous flights in unknown and GPS

denied environments [2]. In that work, the vision algorithms

ran off-board on a ground station transferring the control

commands wireless back to the helicopter. Since wireless

communication is not always reliable, there is a strong need

for computing all tasks of the control framework onboard.

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n. 231855 (sFly). Markus Achtelik and
Stephan Weiss are currently PhD students at the ETH Zurich (email:
{markus.achtelik, stephan.weiss}@mavt.ethz.ch). Roland Siegwart is full
professor at the ETH Zurich and head of the Autonomous Systems Lab
(email: r.siegwart@ieee.org).

Michael Achtelik is CEO of Ascending Technologies GmbH, Germany
(email: michael.achtelik@asctec.de)

Fig. 1. Outdoor autonomous flight using only onboard IMU aided
monocular vision.

In this work, we develop our previous system to an

onboard solution. As exteroceptive sensor, we still use one

single camera because stereo vision loses its effect for

large distances and small baselines. However, we include

the onboard IMU more tightly as in the previous work, to

tackle the issue of low-frequent vision updates. Also, we

added a pressure sensor to estimate the absolute scale of the

visual pose measurements. Finally, we optimized the visual

framework for an embedded solution in order to cope with

the limited calculation power onboard.

II. RELATED WORK

Previous work on position control using visual input has

been done in several ways. Stable flights were shown using

onboard cameras and landmarks placed in the environment

such as blobs or other artificial markers in [3]. However,

these approaches only work in controlled environments

whereas we focus on stable flights without having any prior

information about the environment nor GPS signals. This

was successfully shown in [4] using a lightweight laserscan-

ner and/or cameras in a stereo configuration and off-board

computation. Offloading sensor data to a ground station has

major drawbacks. Not only become delays a significant issue,

but also the high bandwidth datalink has to be granted at

any time. Compressing large data chunks (such as images)

diminishes the issue but introduces artefacts. Furthermore,

in the mentioned approach the stereo camera and the laser

scanner have a limited range of operation.

An alternative approach is to use cameras for the lo-

calization task. However this vast information has to be

processed accordingly. The most simple way is to install



a number of external cameras with known location and to

have them track the MAV [5], [6], [7]. This method is very

efficient for testing purposes and can be used to evaluate

other approaches as ground truth reference. However it is not

suitable for missions where the installation of an appropriate

infrastructure is not feasible.

This approach can also be implemented the other way

round: the camera is mounted on the helicopter and tracks

a known pattern on the ground [8]. Hamel et al. [9] imple-

mented a visual servoing based trajectory tracking to control

an UAV with a camera observing n fixed points. Further

methods have also been developed by fusing the visual data

with IMU data [10].

Alternatively, stabilizing controllers can be built by means

of optical flow considerations [11]. Herisse et al. [12] use

an optical flow based PI-controller to stabilize a hovering

MAV. They also implemented an automatic landing routine

by contemplating the divergent optical flow. Hrabar et al. [13]

developed a platform able to navigate through urban canyons.

It was based on the analysis of the optical flow on both

sides of the vehicle. Also, by having a forward looking stereo

camera, they were able to avoid oncoming obstacles. Most

recently, cheap systems sold as toys [14] were presented,

performing stabilization based on optical flow and ultra sonic

height sensors onboard.

An approach with offboard vehicle tracking equipment

was implemented by Ahrens et al. [15]. Based on the

visual SLAM algorithm of Davison et al. [16], they build

a localization and mapping framework that is able to pro-

vide an almost drift-free pose estimation. With that they

implemented a very efficient position controller and obstacle

avoidance framework. However, due to the simplification

they used in their feature tracking algorithm, a non-negligible

drift persists. Also, they used an external Vicon localization

system to control the aerial vehicle with millimeter precision

(a system of external cameras that tracks the 3D pose of the

vehicle). So far, they did not use the output of the visual

SLAM based localization system for controlling the vehicle.

In this paper, we discuss the thorough implementation

of a vision based controller framework onboard a micro

helicopter. Compared to optical flow based approaches that

drift over time, we focus on a solution that enables absolute

position control. Note that we do not claim to have developed

a novel controller. This has already been discussed in previ-

ous work [17], [7]. Rather, we highlight the issues of a full

onboard implementation and their solutions. More precisely,

our contributions are the following. First, we present a frame-

work to tackle the issue of a very slow visual pose update

versus the high agility of the micro helicopter. We solve

this issue with filtering the visual information with inputs

from inertial sensors at 1 kHz onboard the helicopter. This

high frequency also enables us to estimate a reliable speed

information that is crucial for such agile platforms. Since

our visual framework consists of only one single fisheye

camera, our second main contribution is to demonstrate how

to recover the absolute scale of the visual pose estimation.

We do so by filtering the visual pose with an onboard

pressure sensor. The filter also compensates for the pressure

sensor’s drift. Last, we discuss a fast implementation of the

visual framework [18] onboard the micro helicopter.

Our implementation of an onboard monocular vision-

based MAV controller can be used in an unknown environ-

ment without the aid of any infrastructure based localization

system, any beacons, artificial features, or any prior knowl-

edge on the environment. In other words, our platform does

not need any external assistance in order to navigate through

an unexplored region and is not bound to a ground station.

All our implementations are based on the Robot Operating

System (ROS) [19]. This makes our work reusable for the

community and represents as such a valuable contribution

towards the fast development of autonomously flying MAVs.

The remainder of the paper is organized as follows: In

Section III, we describe the platform we used. In Section

IV, we present the algorithm and the implementation of the

system. Experimental results and the evaluation are shown

in Section V. Conclusions are given in Section VI.

III. PLATFORM DESCRIPTION

A. Hardware

The MAV we use is a so-called quadrocopter, a helicopter

driven by for rotors, symmetric to the center of mass. The

control of the quadrocopter is performed solely by changing

the rotation speed of the propellers and is described in more

detail in [20]. For our experiments, we use the “AscTec

Pelican” quadrocopter [1], which is a further development

of the one described in [20]. The quadrocopter is equipped

with rotors with 10” diameter which allow to carry a payload

of about 500 g. Depending on battery size and payload, flight

times between 10 and 20 minutes can be achieved. Further

key features are the Flight Control Unit (FCU) “AscTec

Autopilot” as well as the flexible design enabling one to

easily mount different payloads like computer boards or

cameras. The FCU features a complete Inertial Measurement

Unit (IMU) as well as two 32Bit, 60MHz ARM-7 micro-

controllers used for data fusion and flight control. One of

these microcontrollers, the Low Level Processor (LLP) is

responsible for the hardware management and IMU sensor

data fusion. An attitude and GPS-based position controller is

implemented as well on this processor. The LLP is delivered

as a black box with defined interfaces to additional compo-

nents and to the High Level Processor (HLP). To operate

the quadrocopter, only the LLP is necessary. Therefore, the

HLP is dedicated for custom code. All relevant and fused

IMU data is provided at an update rate of 1 kHz via a

highspeed serial interface. In particular, this comprises body

accelerations, body angular velocities, magnetic compass,

height measured by an air pressure sensor and the estimated

attitude of the vehicle.

For the computationally more expensive onboard process-

ing tasks, we outfitted the helicopter with a 1.6 GHz Intel

Atom Based embedded computer, available from [1]. This

computer is equipped with 1 GB RAM, a MicroSD card slot

for the operating system, a 802.11n based miniPCI Express

WiFi card and a Compact Flash slot. The miniPCIE WiFi



Fig. 2. Overview of the Pelican quadrocopter

card is preferred over USB to keep the USB bus free for

devices like the cameras we use. We furthermore use a

high speed CF-card that allows us data logging with up to

40 MByte/s.

As camera, we use a Point-Grey USB Firefly camera with

a resolution of 752×480 px and a global shutter. The camera

faces the ground with a 150◦ field-of-view lens since we are

expecting the most stable features trackable over longer time

in this configuration.

In this work, a position controller and the position data

fusion algorithms are implemented on the HLP, based on the

vision input from the onboard computer and the inertial data

provided by the LLP. On the LLP, the attitude controller is

used as inner loop. A GPS-based position controller is used

as a fall-back in case of any failures on the HLP during

outdoor experiments.

B. Software

To provide a maximum portability of our code and to

avoid potential (binary) driver issues, we installed Ubuntu

Linux 10.04 on our onboard computer which makes tedious

crosscompiling unnecessary. Since we are running a couple

of different subsystems that need to communicate between

each other, we use the ROS [19] framework as a middleware.

This is also used to communicate to the ground station over

the WiFi datalink for monitoring and control purposes. The

FCU is interfaced via a ROS node communicating over a

serial link to the FCU’s Higlevel Controller with firmware

we developed for our purposes.

Software development on the HLP is done based on a SDK

available for the AutoPilot FCU providing all communication

routines to the LLP and a basic framework. The HLP com-

municates with the ROS framework on the onboard computer

over a serial datalink and a ROS FCU-node handling the

serial communication. This node subscribes to generic ROS

pose messages with covariance, in our case from the vision

framework, and forwards it to the HLP. Moreover, it allows

to monitor the state of the fusion filter and the position

controller, and to adjust their parameters online via the

“dynamic reconfigure” functionality of ROS.

For the implementation of the position control loop and

data fusion onboard the HLP, a Matlab/Simulink framework

is used in combination with the Mathworks Real-Time

Workshop Embedded Coder. The framework provides all

necessary tools to design the control structure in Simulink,

optimize it for fixed point computing, as well as compiling

and flashing the HLP.

IV. ONBOARD VISION BASED POSITION CONTROL

A. Overview

In this section, we describe the essential components that

we used to enable autonomous flights running all compu-

tation onboard. The basic structure can be seen in Fig. 3.

We obtain absolute position estimates by a monocular visual

SLAM (VSLAM) framework and estimate the absolute scale

with the help of an air pressure sensor. Since this process

(approx. 10Hz) is slow compared to the motion of the MAV,

we fuse this information with inertial sensor data (angular

rates and body acceleration) provided by the IMU at a rate

of 1 kHz. The outputs of that filter are finally fed into a

position controller based on nonlinear dynamic inversion.

While the computationally expensive VLSAM is run on the

Atom onboard computer at approximately 10Hz, the fusion

filter and the position controller are executed on the HLP

(see Section III-A) at 1 kHz – just when new IMU readings

arrive. This ensures minimum possible delays and allows us

to handle the fast movements and disturbances of the MAV.

The ground station is solely used for monitoring or sending

highlevel commands such as waypoints.

B. Visual framework

The approach presented in this paper uses the visual

SLAM (VSLAM) algorithm of Klein and Murray [18] in

order to localize the MAV with the aid of a single camera

Fig. 3. System overview



Fig. 4. Screenshot of Klein and Murray’s SLAM algorithm. On the left, the tracking of the FAST corners can be observed, this is used for the localization
of the camera. On the right, the 3D map that was build by the mapping thread is shown. The 3-axis coordinate frames represent the location where new
keyframes where added.

(see Fig. 4). In short, the authors split the simultaneous

localization and mapping task into two separately-scheduled

threads: the tracking thread and the mapping thread. Splitting

the SLAM algorithm into a mapping and a tracking part

brings the advantage that both can run at different speeds.

The tracker can thus yield fast pose updates while the

mapper can use more powerful (slower) map optimization

techniques. Compared to frame-by-frame SLAM the mapper

does not process every camera frame. This eliminates to a

great extend redundant information processing during slow

movements or hovering. Furthermore, it is very easy to

adapt and optimize independently each of the threads to our

specific needs on the flying platform. These are the main

reasons we choose this SLAM algorithm. We describe our

modifications in the following.

As our whole framework uses ROS as middleware, we

modified the VSLAM such that it exports the 6-DOF pose

estimate, the map information and tracking quality as ROS

messages to the HLP over the FCU-node. Similarly, we

modified it to accept initialization and reset commands as

ROS services such that we can remote control the algorithm

from the ground station. Note that only during the VSLAM

initialization phase these commands are sent from the ground

station to the MAV. The VSLAM framework itself runs

completely on the onboard computer.

The tracking part of the VSLAM algorithm is already well

designed for our needs. We set it to use a maximum of 300

features per frame. For successful MAV navigation we only

need our vincinity to be consistent, that is, it is sufficient to

have only a local map well aligned with the gravity vector.

The FCU’s gravity estimate and the air pressure sensor can be

used to compensate for map and scale drifts respectively (see

Section IV-C). More important is that we do not have to store

a global map. In fact only a few keyframes are sufficient for

a local consistent pose estimate. Here, we limit the number

of keyframes retained in the map. When a new keyframe is

requested, the keyframe furthest away in the euclidean space

is deleted. Also, all features corresponding to that keyframe

are removed from the map. This ensures constant speed in

map maintenance since only N keyframes and M features

take part in the nonlinear map refinement. Also, it ensures

constant speed in tracking in already explored areas since

the number of features M is roughly constant.

With these modifications, the VSLAM algorithm runs

approximately at 10Hz on the onboard computer. The fram-

erate can temporarily drop down to 5Hz during a nonlinear

map refinement when a new keyframe is added. Of course a

loss of the local map or textureless regions are fatal for the

here presented algorithm. However, failure of the VSLAM

algorithm can be detected. In that case, the data fusion

algorithm from Section IV-D is not updated any more. The

vehicle will then drift away slowly since position information

just relies on integration of acceleration sensors. This still

leaves enough time for a safety pilot to take over control

or for switching back to an alternative localization. Thus

far, we experienced that in outdoor environments we rarely

lack of features. Known difficult scenarios are environments

like self-similar paved roads or uniform indoor floors, while

natural scenes, such as bushes or unpaved roads usually

provide sufficient texture.

C. Scale Estimation

Observe that, because we are using a single camera,

the VSLAM framework can give us only the direction of

translation but not its magnitude, that is, the absolute scale.

To recover the absolute scale—in order to pass proper

position information to the fusion filter—there are basically

two solutions. The first solution consists in measuring the

size of an element in the scene. This quickly gets computa-

tionally infeasible on our setup and is very likely prone to

errors. The other solution is to use additional sensors that

provide absolute measurements. For instance, previous work

has been done with ultrasonic range sensors. This works

well in principle but limits the maximum operating height of

the vehicle which is about 2− 5m for commonly available

sensors.

Therefore, we use the accelerometers and the air pressure

sensor of the FCU to recover the scale. The pressure sensor

has the advantage of almost unlimited height, but the draw-

backs are drift and noisy measurements. Simply using the



ratio of the height measured by the air pressure sensor and

the (also noisy) height from VSLAM would lead to inaccu-

rate results. Potential issues with taking measurements from

the air pressure sensor are twofold. First, the zero height of

the pressure sensor does not align with the VSLAM reference

frame. Second, the measurements of the pressure sensor are

drifting over time due to changing weather conditions. We

solve these problems by designing an EKF using the pressure

sensor as well as the accelerometers, and incorporating the

scale and pressure sensor drift in the states.

The state x consists of the absolute height pz , the climb

rate vz , the absolute scale λ and the pressure sensor bias

b. As process input, we chose the acceleration az expressed

in world coordinates. To gain the acceleration a in world

coordinates from the measured body acceleration abody ,

we need to transform it by the attitude R ∈ SO(3) of

the vehicle, estimated by the FCU. Finally, a needs to be

corrected for the gravity.

a =
[

ax ay az
]T

= R · abody −

[

0 0 g
]T

(1)

As measurement z, we chose the height from VSLAM pz,v
and the height measured by the air pressure sensor pz,p. To

summarize:

x =
[

pz vz λ b
]T

z =
[

pz,p pz,v
]T

(2)

The differential equations governing the state are:

ṗz = vz ḃ = nb (3)

v̇z = az + na λ̇ = nλ (4)

The noise na of the acceleration measurement is assumed

to be white gaussian noise. Bias b and scale λ are modeled

as random walks with their derivatives being white gaussian

noise na and nλ respectively. We have two measurements

arriving not synchronized and at different rates, therefore we

need measurement prediction functions hv(x) and hp(x) for

the scaled height measurement pz,v from the vision algorithm

and the absolute height measurement pz,p from the pressure

sensor:

ẑv = hv(x) = pz · λ; z̃v = pz,v − hv(x) (5)

ẑp = hp(x) = pz + b; z̃p = pz,p − hp(x) (6)

State update, Kalman gain and process covariance are finally

computed following the standard EKF scheme. To estimate

the bias properly, motion of the vehicle in the z axis is

required, otherwise the scale will not be correctly estimated.

The performance of the filter will be evaluated in Section V

D. Data Fusion

Fast data fusion algorithms are essential to match the

high bandwidth of the quadrocopter’s system dynamics. The

attitude angles and angular rates of the quadrocopter are

already provided by the LLP at 1 kHz update rate. For

position control, fast data fusion algorithms of all kinematic

measurements are needed. The LLP provides acceleration

measurements at 1 kHz update rate and the vision system

provides position and heading information at 5 − 10Hz. A

position filter has been developed taking into account the

computational limitations of the microcontroller hardware

where a full state Kalman filter working at an update rate of

at least 500Hz is not feasible. This high update rate is needed

to enable a high update rate in the position control loop

to match the quadrocopter’s system dynamics. In particular,

the aim of the filter is to combine both the vision and the

acceleration sensor to achieve a fused signal, featuring fast

reactions on disturbances based on the high update rate of the

acceleration sensors and steady state accuracy based on the

vision signal. The filter is designed decoupled for all three

axes x, y, z and works in a global (0-) frame. In the following,

only the filter for the x-axis is described and applies for

the other axes respectively. The body-fixed accelerations are

rotated in the global frame by a simple rotational matrix

based on the attitude angles provided by the LLP, as shown

in (1). The filter is based on a Luenberger observer [21]

with the position px, speed vx, and the acceleration sensor

bias bx as state. The acceleration notated in the global (0-

) frame, separated for each axis, is the system input. The

measurement can be any (absolute) position input, which in

our case is the position pvλ = pv/λ from the VSLAM,

corrected by the scale estimated with the method described

in Section IV-C.

x =
[

px vx bx
]T

u =
[

ax
]T

y =
[

px,vλ
]T

(7)

Again, we use a linear motion model to describe the system.

Since this filter runs at 1 kHz, we consider this as continuous

time system.

˙̂x = A · x̂+L (y − ŷ) +B · u (8)

ŷ = H · x̂ (9)

with:

A =





0 1 0
0 0 1
0 0 0



 B =





0
1
0





H =
[

1 0 0
]

L =
[

L1 L2 L3

]T

The elements of the matrix L are calculated based on

considerations on the eigenvalues of the error dynamics. The

state error is defined as x̃ = x − x̂ and the error dynamics

can be calculated as:

˙̃x = (A−LH) x̃ (10)

We used Simulink and the Mathworks Real-Time Work-

shop Embedded Coder to implement the data fusion filter on

the HLP (see Section III-B). All calculations are optimized

for fixed point arithmetics and unnecessary matrix operations

are dropped. Relevant parameters such as L as well as the

states are connected to communication channels that can be

accessed through ROS messages and services (see Section

III-B) for debugging and parameter changes. In future, it is

planned to use this functionality to extend the observer to a

full state Kalman filter by computing the update step on the

onboard computer to find optimal values for L when a new

measurement arrives.



In a last step, methods were implemented to reset, hold

and reinitialize the filter’s integrators in case of loss or re-

initialization of the input from VSLAM. The output of this

position filter are position and speed signals. The filter is

able to react fast to disturbances measured by the acceleration

sensors far before it is possible to observe these disturbances

by the visual sensor.

E. Position Controller

For position control, a cascade structure is used. As inner

loop, the well tested attitude loop provided by the LLP

of the FCU is used (see Section III-A). The outer loop is

the position loop, and is implemented on the HLP based

on the concept of nonlinear dynamic inversion. With an

adequate knowledge of the plant dynamics, this control ap-

proach can transform the nonlinear system into an equivalent

linear system without any simplification, through exact state

transformation and suitable control inputs [22]. Based on this

input-output linearization, standard linear control strategies

like PD controllers can be applied. For the quadrocopter

position controller, a control structure of relative degree two

is implemented. That means, position and speed control are

performed in one control loop on the onboard hardware.

Fig. 5 shows the control structure including the rates of the

different parts.

Fig. 5. Structure of the position controller. Subscript 0 denotes coordinates
w.r.t a global frame, B w.r.t the current body frame. The names in braces
denote on which physical device the corresponding part is executed

Input commands of the attitude loop are desired atti-

tude angles roll, pitch and yaw
[

Φ Θ Ψ
]T

des
and the

thrust Tdes commanded by the position loop. Outputs are

the commanded rotational velocities
[

n1 . . . n4

]T
of the

four rotors. This control loop is implemented on the LLP,

delivered with the FCU and is not the focus of this paper.

For the position control loop, the quadrocopter translation

dynamics need to be modeled and inverted. The world

frame (denoted by 0) is used as inertial frame in order to

apply to Newton’s law. Furthermore, the data fusion and

the generation of reference trajectories, as described later,

is performed in this frame. To simplify the inversion, the 0̄-

frame has been introduced as a leveled frame with the same

yaw angle Ψ as a local body frame denoted by B. In a first

step, desired accelerations in the 0-frame can be transformed

into the 0̄-frame by a simple rotation through the azimuth Ψ.

Applying Newton’s second law results in:

m · a0̄ = f
0̄
+ fg,0̄ = M 0̄B · fB + fg,0̄ (11)

m denotes the mass of the quadrocopter, a the acceleration

expressed in the 0̄-frame, f the forces on the quadrocopter

in the 0̄-frame and the B-frame respectively, fg the gravi-

tational vector and M 0̄B denotes the transformation matrix

between the 0̄ and B-frame. Solved for the roll angle Φ, the

pitch angle Θ and the thrust T, we get:

T = m ·

√

a2x + a2y + (az − g)2 (12)

Φ = arctan
may
T

(13)

Θ = arctan
ax

az − w
(14)

Where g is the gravitational constant. By these equations,

a transformation is given transforming so called pseudo

controls ν = a into the controls of the system Φ, Θ, T .

Therefore, a linear dynamic between the inputs, the position

commands and the pseudo controls is achieved and linear

control methods can be applied.

As only the second time derivatives of the position

commands pc can be commanded as pseudo controls, the

command trajectory needs to be smooth such that its second

time derivative exists. Therefore, linear reference models are

used to generate the reference trajectories pR, computed in

the 0-frame and governed by the following equation:

p̈R = ω2

0
· (pc − pR)− 2ζω0 · ṗR (15)

The reference dynamics can be set by the natural frequency

ω0 and the relative damping ζ. For the controller presented in

this paper, the damping is set to 1 to ensure aperiodic behav-

ior and the natural frequency to 2.5 based on experiments.

The error controller, computing the pseudo controls can now

be designed and is governed by the following equation:

ν = p̈R + (ṗR − ṗ) · kd + (pR − p) · kp (16)

Where p is the filtered position and ṗ the filtered velocity

from Section IV-D. kp, kd are the proportional and differen-

tial gains for the error controller.

At this point, one advantage of the system becomes

obvious: Commanding a step signal for the position, a

trajectory for acceleration, speed and position is computed.

The trajectory for the acceleration is directly commanded

to the vehicle and the trajectories for speed and position are

controlled by the error controller. This results in acceleration

at the beginning with maximum allowed value and slowing

down with exactly the maximum available acceleration as

well. An example of the generated reference trajectories is

shown in Fig. 6

For the implementation, the Simulink framework is used

as well, and all calculations are optimized for fixed-point

arithmetics. Furthermore, limitations are introduced to limit



Fig. 6. Response of the reference model on an input step, in our case
a change in the desired position. Note that the model outputs a negative
acceleration after t = 2 s to slow the vehicle down in advance in order to
arrive the desired position fast and without overshoot. The acceleration was
limited to 4m/s2

accelerations and attitude angles to reasonable values. A

command filter was also implemented, giving the MAV’s

safety pilot the possibility to steer speed signals in the 0̄-

frame with the sticks of his RC transmitter.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the pre-

sented system, in particular of the scale filter and the position

controller. The indoor experiments were made in the “Flying

Machine Arena” [23] equipped with a Vicon motion captur-

ing system which provided us ground truth with millimeter

resolution at 200Hz. The outdoor experiments took place

in a small park with grass and stones on the ground which

provided sufficient texture.

The top plots of Fig. 7 show the height estimated by our

filter (blue) compared to the raw measurements of the air

pressure sensor (red) and the raw estimated height from the

VSLAM in “VSLAM-units” (green). The middle plots show

the estimated scale compared to the ratio of the mean height

from the air pressure sensor and from the VSLAM. The

estimated bias to compensate for the drifts of the air pressure

sensor can be seen in the bottom plots. We initialized

the filter with constant parameters at different height to

verify that it still converges under different conditions. We

unfortunately did not have ground truth accurate enough

for these experiments. Therefore, we can only evaluate the

plots qualitatively. What can be observed is that the filter

converges after approximately 1 s. For the pressure sensor

bias, comparable drifts are observable when the vehicle is

left on the ground over the same period of time.

For the position controller, the RMS error while hovering

and the response to external disturbances or step inputs

respectively is of interest. Fig. 8 and Fig. 9 show the

trajectories of in- and outdoor flights. To gain the RMS

error for the outdoor experiments, we computed the mean of

the hovering phases and computed the error relative to this

mean. Obviously, the RMS error outdoor is larger than indoor

which is a result of the higher altitude and the less controlled

environment, but the vehicle is still able to navigate stably.

It can also be observed that the RMS error in the z-axis

Fig. 7. Results of the scale filter for different heights. Top: estimated height
from the filter (blue), raw height from VSLAM (green) and the raw height
from the pressure sensor for comparison (red). Middle: absolute estimated
scale compared to the average scale of the whole flight. Bottom: estimated
sensor bias. Note the different scales on the plots

is significantly smaller than in the x/y-plane as depicted

in Table I. This is because of the controller structure and

dynamics of the MAV. While we can directly command

acceleration in the z-axis through the thrust of the propellers,

commands in the x/y-plane need to go through the attitude

control loop first, and then result in acceleration (see Section

IV-E, Fig. 5).

TABLE I

RMS ERROR WHILE HOVERING

Type RMS error [m] Height [m]

indoor x/y 0.069 1.4

indoor z 0.009 1.4

outdoor x/y 0.44 3.3

outdoor z 0.11 3.3

The left plot of Fig. 10 shows disturbances at t = 6 s
and t = 20 s in the y-axis from pushing the vehicle. Note

that the vehicle directly returns to its desired setpoint within

the RMS with almost no overshoot. This is a result from

the fast data fusion and of the position controller based on

nonlinear dynamic inversion (see also Fig. 6). The middle

Fig. 8. Indoor hovering



Fig. 9. Outdoor hovering

plot of Fig. 10 shows a longer term disturbance at t = 14 s
by pulling the vehicle and holding it for 3 s. Again, the

vehicle returns directly to the desired setpoint with almost no

overshoot. The disturbances applied in the z-axis on the right

plot of Fig. 10 look rather small. Because of the direct thrust

command as explained above, the helicopter was massively

working against the disturbance. Even though we disturbed

the vehicle with reasonably strong impulses, we did not

manage to deflect it more than 20 cm.

Fig. 10. Short and long disturbances in the y-axis on the left and the
middle. Disturbances in the z-axis on the right. Note the different scale on
the right plot

VI. CONCLUSIONS

We successfully stabilized a highly dynamic aerial vehicle

based on onboard vision computation at a rate of only

10Hz, data fusion with IMU data and a well designed

implementation. With the frameworks we developed, we are

now able to try out relatively easy new control approaches on

a real working system. This system can perform autonomous

flights in unknown in- and outdoor environments, solely

having a monocular camera as exteroceptive sensor while

all computation is completely running onboard.

VII. ACKNOWLEDGMENTS

We like to thank Prof. Raffaello D’Andrea and his group

for giving us access and support for their “Flying Machine

Arena” [23] to obtain ground truth for the indoor exper-

iments. We also like to thank Prof. Florian Holzapfel of

the Institute of Flight System Dynamics at the Technische

Universität München and The Mathworks for their great

cooperation concerning the used Simulink Framework for

the microprocessor of the onboard FCU and the nonlinear

control structures for the quadrocopter.

REFERENCES

[1] Ascending Technologies GmbH, website, http://www.asctec.de.
[2] M. Bloesch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based

mav navigation in unknown and unstructured environments,” in IEEE

International Conference on Robotics and Automation, 2010.
[3] D. Eberli, D. Scaramuzza, S. Weiss, and R. Siegwart, “Vision based

position control for mavs using one single artificial landmark,” in
International Conference & Exhibition on Unmanned Aerial Vehicles

(UAV), 2010.
[4] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Stereo

Vision and Laser Odometry for Autonomous Helicopters in GPS-
denied Indoor Environments,” in Proceedings of the SPIE Unmanned

Systems Technology XI, 2009.
[5] E. Altug, J. Ostrowski, and R. Mahony, “Control of a quadrotor

helicopter using visual feedback,” in International Conference on

Robotics and Automation, May 2002, pp. 72–77.
[6] S. Park, D. Won, M. Kang, T. Kim, H. Lee, and S. Kwon, “Ric (robust

internal-loop compensator) based flight control of a quad-rotor type
uav,” in International Conference on Intelligent Robots and Systems,
Aug. 2005, pp. 3542–3547.

[7] S. Klose, J. Wang, M. Achtelik, G. Panin, F. Holzapfel, and A. Knoll,
“Markerless, Vision-Assisted Flight Control of a Quadrocopter,” in
International Conference on Intelligent Robots and Systems, October
2010.

[8] B. Ludington, E. Johnson, and G. Vachtsevanos, “Augmenting uav
autonomy,” IEEE Robot. Automat. Mag., vol. 24, no. 5, pp. 63–71,
Sept. 2006.

[9] T. Hamel, R. Mahony, and A. Chriette, “Visual servo trajectory track-
ing for a four rotor vtol aerial vehicle,” in International Conference

on Robotics and Automation, May 2002, pp. 2781–2786.
[10] T. Cheviron, T. Hamel, R. Mahony, and G. Baldwin, “Robust nonlinear

fusion of inertial and visual data for position, velocity and attitude
estimation of uav,” in International Conference on Robotics and

Automation, Apr. 2007, pp. 2010–2016.
[11] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “Mav obstacle

avoidance using optical flow,” in International Conference on Robotics

and Automation, May 2010.
[12] B. herisse, F. Russotto, T. Hamel, and R. Mahony, “Hovering flight

and vertical landing control of a vtol unmanned aerial vehicle using
optical flow,” in International Conference on Intelligent Robots and

Systems, Sept. 2008, pp. 801–806.
[13] S. Hrabar, G. Sukhatme, P. Corke, K. Usher, and J. Roberts, “Com-

bined optic-flow and stereo-based navigation of urban canyons for a
uav,” in International Conference on Intelligent Robots and Systems,
Aug. 2005, pp. 3309–3316.

[14] Parrot S.A., “AR.Drone,” website, http://ardrone.parrot.com.
[15] S. Ahrens, D. Levine, G. Andrews, and J. How, “Vision-based guid-

ance and control of a hovering vehicle in unknown, gps-denied envi-
ronments,” in International Conference on Robotics and Automation,
May 2009.

[16] A. Davison, I. Reid, N. Molton, and O. Strasse, “Monoslam: Real-
time single camera slam,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 29, no. 6, pp. 1052–1067, June 2007.

[17] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode
techniques applied to an indoor micro quadrotor,” in International

Conference on Robotics and Automation, Apr. 2005, pp. 2247–2252.
[18] G. Klein and D. Murray, “Parallel tracking and mapping for small ar

workspaces,” in International Symposium on Mixed and Augmented

Reality, Nov. 2007, pp. 225–234.
[19] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[20] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and
D. Rus, “Energy-efficient autonomous four-rotor flying robot con-
trolled at 1 khz,” in IEEE International Conference on Robotics and

Automation, Roma, Italy, Apr. 2007, pp. 361 – 366.
[21] K. Narendra and A. Annaswamy, Stable Adaptive Control. Prentice

Hall, 1990.
[22] A. Isidori, Nonlinear Control Systems, 3rd ed. Springer, 1995.
[23] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple

learning strategy for high-speed quadrocopter multi-flips,” in IEEE

International Conference on Robotics and Automation, May. 2010.


