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ABSTRACT

Cutaneous T-cell lymphomas (CTCLs) are extremely symptomatic and still 

incurable, and more effective and less toxic therapies are urgently needed. ONC201, 

an imipridone compound, has shown efficacy in pre-clinical studies in multiple 
advanced cancers. This study was to evaluate the anti-tumor activity of ONC201 on 
CTCL cells. The effect of ONC201 on the cell growth and apoptosis were evaluated in 
CTCL cell lines (n=8) and primary CD4+ malignant T cells isolated from CTCL patients 

(n=5). ONC201 showed a time-dependent cell growth inhibition in all treated cell 
lines with a concentration range of 1.25-10.0 μM. ONC201 also induced apoptosis 
in tested cells with a narrow concentration range of 2.5-10.0 μM, evidenced by 
increased Annexin V+ cells, accompanied by accumulated sub-G1 portions. ONC201 

only induced apoptosis in CD4+ malignant T cells, not in normal CD4+ T cells. The 

activating transcription factor 4 (ATF4), a hallmark of integrated stress response, 

was upregulated in response to ONC201 whereas Akt was downregulated. In addition, 
molecules in JAK/STAT and NF-κB pathways, as well as IL-32β, were downregulated 
following ONC201 treatment. Thus, ONC201 exerts a potent and selective anti-tumor 
effect on CTCL cells. Its efficacy may involve activating integrated stress response 
through ATF4 and inactivating JAK/STAT and NF-κB pathways.

INTRODUCTION

Cutaneous T-cell lymphomas (CTCLs) are a 

heterogeneous group of extranodal non-Hodgkin’s 

lymphomas. They are characterized by skin-homing 

malignant clonal T-lymphocytes. Mycosis fungoides (MF) 

and Sézary syndrome (SS) are two most common forms 

of CTCLs. MF can be chronic and indolent or progress to 

involve the blood, lymph nodes, and other internal organs 

[1]. SS is characterized by erythroderma and the presence of 

Sézary cells in the blood, which are immunophenotypically 

CD4+CD26- or CD4+CD7- T cells [2]. There are currently 

limited treatment options for patients with advanced CTCL, 

and approved therapies have response rates of around 30% 

[3, 4]. The currently available agents are expensive and 

have toxicity including immunosuppression predisposing 

to infections. Disease recurrence and therapy resistance are 

common. Thus, there remains an unmet need for novel and 

safe therapies to treat CTCL.

ONC201 or TIC10 is a chemical compound 

referred to as 7-benzyl-4-(2-methylbenzyl)-1,2,6,7,8,9-

hexahydroimidazo[1,2-a]pyrido[3,4-e]pyrimidin-5(4H)-

one. It is the first-in-class member of the imipridone 
class of anti-cancer compounds and a highly selective G 

protein-coupled receptor (GPCR) antagonist [5]. This oral 

small molecule is currently in clinical trials for advanced 

cancers [5]. Although it is known that ONC201 induces 

apoptosis in refractory tumor cells in a p53-independent 
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manner, its other potential mechanisms of action that lead 

to anti-tumor activity are still under investigation [6, 7]. 

A prior report on the mechanism (s) of action of ONC201 

in preclinical solid tumor models implicated a late stage 

inactivation of Akt and ERK leading to Foxo3a-mediated 

induction of TRAIL and its pro-apoptotic receptor DR5 

[7]. Recent studies have also implicated the integrated 

stress response (ISR) as an early stage mechanism 

of ONC201 that may lead to its previously observed 

downstream anti-cancer effects [8]. ONC201 activates 

the integrated stress response that attenuates protein 

translation and upregulates activating transcription factor 

4 (ATF4), which causes induction of genes that lead to 

apoptosis.

The signal transducers and activators of transcription 

(STAT) family members, such as STAT3, are commonly 

activated in CTCL [9]. STATs can be phosphorylated by 

one of four upstream Janus kinases (JAKs) following 

cytokine stimulation. Upon nuclear translocation, 

phosphorylated STAT3 (pSTAT3) directly regulates 

expression of key target genes, including cell cycle genes 

(Cyclin D and myc), regulators of apoptosis (BCL-2/

BAX), cytokines (e.g. IL-5 and IL-13), and suppressors 

of cytokine signaling (SOCS3) that work together to 

promote carcinogenesis [10-13]. Constitutive activation 

of STAT1, STAT3 and STAT5 has been observed in both 

early and late stages of CTCL [9]. In addition, STAT3 

indirectly regulates gene expression by inducing DNA 

methyltransferase 1 (DNMT1), thereby promoting the 

epigenetic silencing of tumor suppressor genes [14]. 

Thus, constitutively active STAT3 can increase survival 

and resistance to apoptosis in malignant T cells in CTCL.

Meanwhile, the dysregulated nuclear factor κB (NF-
κB) pathway has also been implicated in CTCL. NF-κB 
is a key transcriptional regulator of cytokines controlling 

cell survival, differentiation, proliferation, angiogenesis, 

metastasis, and inflammatory responses [15]. In early 
stages of CTCL, autocrine tumor necrosis factor alpha 

(TNFα) expression increases NF-κB activation that leads 
to cellular proliferation and resistance to apoptosis [16, 

17]. In addition to TNFα, the epidermis in patients with 
CTCL contains increased levels of NF-κB-dependent pro-
inflammatory cytokines IL-1β, IL-8, IL-17, and IL-32 
suggesting a role for these cytokines in the pathogenesis 

of CTCL [18-21]. Increased NF-κB activity in CTCL 
is also responsible for increased resistance to apoptosis 

by up-regulating the anti-apoptotic cellular inhibitor of 

apoptosis proteins (cIAP) and BCL-2 [22]. Thus, NF-κB 
plays a key role in CTCL by promoting inflammation and 
by inhibiting apoptosis.

It is reported that STAT3 and NF-κB often 
cooperate to promote the development and progression of 

solid cancers [23]. Both NF-κB and STAT3 are rapidly 
activated in response to various stimuli including stresses 

and cytokines, although they are regulated by different 

signaling mechanisms. Once activated, NF-κB and STAT3 

can independently and/or synergistically control the 

expression of anti-apoptotic, pro-proliferative and immune 

response genes [23].

Based on the preclinical profile of ONC201 and the 
need for novel, safe and effective therapies for CTCL, this 

study was undertaken to evaluate the effect of ONC201 

on CTCL cells and to understand its mechanism of action.

RESULTS

ONC201 inhibits cell growth in CTCL cell lines

We first assessed the anti-proliferative effect of 
ONC201 on CTCL cells by the CellTiter Cell Proliferation 

Assay (MTS). Eight CTCL cell lines were treated with 

ONC201 at 0, 1.25 μM, 2.5 μM, 5.0 μM, and 10.0 μM, 
respectively, over 48 hours (48 hrs), 72 hours (72 hrs), 

and 96 hours (96 hrs). As shown in Figure 1, the cell 

growth was inhibited in all 8 cell lines, but with different 

sensitivities. HH cells were the most sensitive with the cell 

growth inhibited from 1.25 μM of ONC201 treatment at 
48 hrs (42.4%), to a maximum at 96 hrs (62.2%, p<0.05). 

The growth of MJ cells was inhibited at 2.5 μM, sustained 
at 5.0 μM or 10 μM, and reached a maximum at 96 hrs. 
Interestingly, the cell growth inhibition in 3 other cell 

lines (Mac2A, MyLA, and PB2S) was not significantly 
enhanced when ONC201 doses were increased from 

5.0 μM to 10.0 μM. H9 cells were least sensitive, as the 
inhibition was only seen at 10 μM of ONC201. These 
results suggest that ONC201 has an anti-proliferative 

effect on CTCL cells, and it inhibits cell growth within a 

narrow concentration range from 1.25 μM to 10.0 μM in a 
time-dependent manner.

ONC201 induces apoptosis in CTCL cell lines

We next determined the pro-apoptotic effect of 

ONC201 on 8 CTCL cell lines treated with similar doses 

of ONC201 and at similar time points. The apoptotic 

cells were analyzed by flow cytometry using Annexin 
V/propidium iodide (PI) staining. ONC201 was able 

to induce apoptosis in all 8 cell lines at different doses 

(Figure 2). Again, HH cells were the most sensitive to 

ONC201, at concentrations starting at 2.5 μM over a 
longer 72-hour period. Apoptosis occurred in 47.9% of 

HH cells at 2.5 μM of ONC201 over 72 hours of treatment, 
which was increased by 7.6-fold in comparison to 1.25 μM 
at 72 hrs (6.3%), and was also doubled in comparison to 

2.5 μM for a 48-hour treatment (20.3%, p<0.05). Hut78 
and MJ cells had increased numbers of apoptotic cells at 

2.5 μM, for a 96-hour of treatment, with low levels at early 
time points. ONC201 also induced apoptosis in 4 other 

cell lines (H9, Mac2A, MyLA, and SeAx cells) at a higher 

dose of 5.0 μM over a 96-hour of treatment. Compared to 
other cells, PB2S cells were the least sensitive to ONC201, 

and the induction of apoptosis was only observed at 10 
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Figure 1: ONC201 inhibits cell growth in CTCL cell lines. H9, HH, Hut78, Mac2A, MJ, MyLa, PB2S, and SeAx cells were 

cultured in 96-well culture plates (5×104/well) with or without 1.25, 2.5, 5.0, and 10.0 μM of ONC201 for 48, 72, and 96 hrs, respectively. 
Cell viability was determined using CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS). Data for 8 cell lines were 

presented with different doses at 3 time points (mean ± SD of triplicate determinations). *significant difference, p < 0.05.

Figure 2: ONC201 induces apoptosis in CTCL cell lines. H9, HH, Hut78, Mac2A, MJ, MyLa, PB2S, and SeAx cells (5×105/ml) 

were treated with or without 1.25, 2.5, 5.0, and 10.0 μM ofONC201 for 48, 72, and 96 hrs. Apoptotic cells were assessed by flow cytometry 
using the Annexin V-FITC Detection Kit. Data were presented as the percentage of Annexin V+ cells for all 8 cell lines with different doses 

at 3 time points (mean ± SD of triplicate determinations). *significant difference, p < 0.05.
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μM. These results suggest that ONC201 induces CTCL 
cell apoptosis within a very narrow concentration range 

from 2.5 μM to 10.0 μM in a time-dependent manner.
We next examined the effect of ONC201 on cell-

cycle sub-G1 and/or apoptosis by flow cytometry in 3 
cell lines: SS-derived HH, Hut78 cells, and MF-derived 

MJ cell lines. As shown in Figure 3A&3B, sub-G1 

populations were increased in all 3 cell lines in a time- and 

dose-dependent manner. Significant increases of sub-G1 
populations were seen from 2.5 μM over 96 hrs. HH cells 
showed the highest sensitivity, followed by Hut78 and 

MJ cells, consistent with our results from Annexin V/PI 

staining suggesting that the cells are undergoing apoptosis.

ONC201 selectively induces apoptosis in primary 

Sézary cells

One reason that ONC201 was selected as a lead 

compound for clinical development is its lack of toxicity 

in normal cells [5]. We next examined the pro-apoptotic 

effects of ONC201 on primary Sézary cells in comparison 

to normal CD4+ T cells from healthy donors. Primary 

CD4+ malignant T cells were isolated from the peripheral 

blood of 5 patients with MF/SS who had > 60% circulating 

CD4+CD26- T cells of total lymphocytes (Table 1, Patient 

#1 - #5). Cells were incubated with or without ONC201 

at concentrations ranging from 1.25 to 10 μM for 48 hrs 
and 72 hrs. The apoptotic cells were then assessed by 

flow cytometry using Annexin V/PI staining. Similar to 
HH and Hut78 cells, apoptotic CD4+ malignant T cells 

were dramatically increased at 2.5 μM (19.4% at 48 hrs; 
33.7% at 72 hrs, n=5), in comparison to 1.25 μM (5.8% 
at 48 hrs; 4.1.0% at 72 hrs, n=5). There was no significant 
enhancement when ONC201 doses were increased from 

5.0 μM to 10.0 μM (Figure 4A). In contrast, normal CD4+ 

T cells showed little response to ONC201, with an average 

apoptosis rate of 0.3% at 1.25 μM and 2.0% at 10 μM after 
a 48-hour treatment, and 0.4% to 2.4% after a 72-hour 

treatment (n=6). Representative flow plots for Annexin 
V+ apoptotic CD4+ T cells from a healthy donor (left) and 

Patient #5 (right) are presented in Figure 4B. As shown in 

Table 1, the number of CD4+CD26- malignant T cells in 

the blood of Patient #5 was 3332/μL representing 79.1% 
of all lymphocytes in the blood. Our results suggest that 

Figure 3: ONC201 induces accumulation of sub-G1 portions in CTCL cell lines. HH, Hut78 and MJ cells (5×105) were treated 

with or without 1.25, 2.5, 5.0, and 10.0 μM of ONC201 for 48, 72, and 96 hrs. Cells were stained with PI, and sub-G1 distributions were 
determined by flow cytometry. (A) The percentages of sub-G1 portions for HH, Hut78, and MJ cells were presented with different doses 

at 3 time points (mean ± SD of triplicate determinations). *significant difference, p < 0.05. (B) Plots for representative paired cells with or 

without 5.0 μM of ONC201 for 96 hrs were presented. The % of sub-G1portion in each plot was indicated.
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ONC201 selectively induces apoptosis in primary Sézary 

cells but not in normal CD4+ T cells.

ONC201 activates integrated stress response 

through ATF4 in CTCL cells

The results above suggest a potent anti-tumor 

activity of ONC201 on CTCL cells, and we next 

investigated its mechanism(s) of action. Activation of 

the integrated stress response (ISR) induced by ONC201 

has recently been implicated as the driver of its late 

downstream anti-tumor effects [5, 8, 24]. ISR activation 

often results in phosphorylation of eukaryotic initiation 

factor eIF2α,upregulation of certain transcription factors, 
such as activating transcription factor 4 (ATF4), an 

apical hallmark of the integrated stress response, and 

downregulation of the general protein synthesis [25]. In 

addition, ONC201-mediated Akt/ERK inactivation and 

TRAIL upregulation are implicated in colorectal cancer 

models [5]. We first assessed the protein expression 
of eIF2α, p-eIF2α, ATF4, Akt, and TRAIL by western 
blot in cells treated with or without 1.25 or 5.0 μM of 
ONC201 for 72 hrs. As expected, ONC201 induced ATF4 

protein expression at 5.0 μM of ONC201 in 3 tested 
cell lines (Figure 5A) as well as PBMCs from 3 MF/SS 

patients (Figure 5B, Table 1, Patient #6-8). However, 

the expression of total eIF2α and p-eIF2α proteins were 
unchanged or slightly down-regulated in 3 treated cell 

lines. Akt protein levels were decreased in Hut78 cells and 

in PBMCs from 3 MF/SS patients starting at 1.25 μM, 
and enhanced at 5.0 μM. TRAIL protein expression was 
increased in HH and MJ cells at 1.25 and 5.0 μM of 
ONC201 treatment. In further support of apoptosis induced 

by this pharmacological manipulation, a striking increase 

in BAX, another pro-apoptotic protein, and caspase-

mediated cleavage of poly (ADP-Ribose) polymerase 

(C-PARP) were documented following ONC201 treatment 

(Figure 5A&5B). These results suggest that ONC201 

Table 1: Clinical demographics of patients with MF/SS

Patient # Age/Gender* Diagnosis** CD4+CD26- T-cells 

of total lymphocytes (%)

Absolute CD4+CD26- 

T-cells (/μL)

1 80/M SS 91.6 2800

2 72/M MF 60.5 708

3 66/M MF 66.9 2295

4 62/F SS 67.5 2588

5 63/F SS 79.1 3332

6 73/F MF/SS 40.4 190

7 79/F MF/SS 94.0 6612

8 59/F MF/SS 82.6 13629

*Gender: M – male, F – female; **Diagnosis: SS – Sézary syndrome, MF – mycosis fungoides

Table 2: Changes in mRNA levels of related molecules in 3 CTCL cell lines treated with ONC201

HH MJ HuT78

ONC201 for 72 h 0 μM 1.25 μM 5.0 μM 0 μM 1.25 μM 5.0 μM 0 μM 1.25 μM 5.0 μM

eIF2S1 1.00 1.07 5.78 1.00 1.04 1.55 1.00 1.12 2.35

ATF4 1.00 1.78 11.80 1.00 1.23 2.17 1.00 1.26 2.08

AKT1 1.00 1.24 2.02 1.00 1.56 2.29 1.00 1.40 2.15

BAX 1.00 1.41 6.81 1.00 1.43 2.69 1.00 0.85 1.69

JAK3 1.00 1.79 5.76 1.00 1.56 1.69 1.00 1.20 2.25

STAT1 1.00 2.56 7.07 1.00 0.96 0.75 1.00 1.49 1.35

STAT3 1.00 1.28 4.21 1.00 1.44 1.59 1.00 1.33 2.55

IRF7 1.00 2.16 15.93 1.00 1.02 2.52 1.00 0.82 1.57

NF-κB 1.00 1.43 3.30 1.00 1.06 1.39 1.00 1.18 1.38

IL32 1.00 1.25 3.59 1.00 1.09 1.84 1.00 0.72 0.61
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works on CTCL cells by activating ISR through inducing 

the expression of ATF4. Other mechanisms of action 

such as inactivation of Akt and induction of TRAIL, as 

previously reported in solid tumors [7], are also involved 

in mechanisms of action of ONC201 in CTCL cells. But, 

the induction of ATF4 in ONC201-treated CTCL cells may 

be independent of phosphorylation of eIF2α.

ONC201 inactivates the JAK/STAT pathway in 

CTCL cells

Constitutive activation of the JAK/STAT pathway 

has been demonstrated in CTCL, and is critical for cell 

proliferation and survival [9, 26]. The robust activity of 

ONC201 on CTCL cell growth and apoptosis induction 

suggest that ONC201 may affect the JAK/STAT pathway 

in CTCL cells. Recent studies have revealed that 

STAT3 is negatively regulated in response to TRAIL 

[27]. Expression of JAK3, pJAK3, STAT3, pSTAT3, 

and pSTAT1 protein levels were examined by western 

blot in cells treated with or without ONC201. Levels 

of these proteins were decreased in ONC201-treated 

HH and Hut78 cells (Figure 6A). Their levels were also 

dramatically decreased in PBMCs treated with 5.0 μM 
of ONC201 (Figure 6B). Surprisingly, pJAK3 protein 

was undetectable in PBMCs from MF/SS patients, but 

was present in 3 cell lines. Of note, MJ cells showed a 

reduction of pSTAT1 protein but not STAT3 and pSTAT3 

proteins as shown in Figure 6A.

In order to further explore the connection between 

integrated stress responses and a decreased JAK/STAT 

pathway, we assessed another molecule, interferon 

regulatory factor 7 (IRF7). ATF4 has been identified as a 
negative regulator of IRF7 and inhibits the transcription 

and phosphorylation of IRF7 [28]. As shown in Figure 

6A&6B, HH and Hut78 cells and PBMCs from 3 MF/SS 

patients had decreased expression of IRF7 after ONC201 

treatment, but not MJ cells. The expression of p-IRF7 

expression was decreased in all 3 tested cell lines and 

PBMCs from 2 MF/SS patients (#7 and #8).

Our results support that ONC201 inactivates the 

JAK/STAT pathway and downregulates IRF7 in both 

Figure 4: ONC201 selectively induces apoptosis in CD4+ malignant T cells. CD4+ T cells (5×105) from MF/SS patients and 

healthy donors were treated with or without 1.25, 2.5, 5.0, and 10.0 μM of ONC201 for 48 and 72 hrs. Apoptotic cells were assessed by 
flow cytometry using the Annexin V-FITC Detection Kit. (A) The percentages of Annexin V+ cells were presented for normal CD4+ T cells 

(mean, n=6) and malignant CD4+ T cells (mean, n=5; Patient #1 - #5) with different doses at two time points. (B) Dot plots for representative 

CD4+ T cells from a healthy donor (left) and Patient#5 with or without 5.0 μM of ONC201 for 72 hrs were presented.
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Figure 5: ONC201 upregulates ATF4, downregulates Akt, and induces TRAIL in CTCL cell lines and primary Sézary 
cells. HH, Hut78, and MJ cells (A), and PBMCs from 3 MF/SS patients (Patient #6 - #8) (B) were treated with (1.25 or 5.0 μM) or without 
ONC201 for 72 hrs. The protein expression of eIF2α, p-eIF2α, ATF4, Akt, TRAIL, BAX, and C-PARP were assessed by western blot. The 
protein level of β-actin served as housekeeping gene control. All protein levels were semi-quantified using ImageJ system (NIH), and the 
levels in treated cells were compared with untreated control cells which were considered as 100%.
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Figure 6: ONC201 downregulates JAK/STAT in CTCL cell lines and primary Sézary cells. HH, Hut78, and MJ cells 

(A), and PBMCs from 3 MF/SS patients (Patient #6 - #8) (B) were treated with (1.25 or 5.0 μM) or without ONC201 for 72 hrs. The 
protein expression of JAK3, pJAK3, STAT3, pSTAT3, pSTAT1, IRF7, and pIRF7 were assessed by western blot. Protein levels were semi-

quantified as above, and the protein levels in treated cells were compared with untreated control cells which were considered as 100%.
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CTCL cell lines and primary Sézary cells. IRF7 may be 

a connection molecule between integrated stress response 

and the downstream Jak3/STAT3 signaling axis.

ONC201 downregulates the NF-κB pathway in 
CTCL cells

It is well documented that constitutive activation of 

the NF-κB pathway plays a role in the development of 
CTCL and is related to cell resistance to apoptosis [26]. 

Therefore, we also analyzed protein expression of NF-κB 
family members (p65, RelB, C-Rel and p105) by western 

blot in ONC201 treated cells. ONC201 significantly 
decreased the protein levels of all four NF-κB members 
in three CTCL lines (Figure 7A) and in PBMCs from 3 

MF/SS patients (Figure 7B) at 5.0 μM, compared to 1.25 
μM and empty controls. Our results suggest that ONC201 
inactivates not only the JAK/STAT pathway, but also the 

NKκB pathway in CTCL cells. These effects may underlie 
the therapeutic effects of ONC201 on CTCL cells.

ONC201 downregulates IL-32β expression in 
CTCL cells

IL-32 is known as a pro-inflammatory cytokine 
that is likely involved in the lymphomagenesis of CTCL 

[29]. We recently reported that both IL-32 transcripts 

and cellular IL-32β protein were highly increased in 
both CTCL cell lines and malignant T cells from MF/SS 

patients [30]. Of interest, NK-κB, NF-κB1, and STAT3 are 
key transcription factors regulating IL-32 gene expression. 

We found decreased levels of IL-32β protein in all 
ONC201-treated cells, in parallel with downregulation of 

NK-κB proteins as indicated in Figure 7A&7B.

Down-regulation of JAK/STAT and NF-κB 
pathways is not transcriptionally mediated

We next addressed whether the changes in protein 

expression after ONC201 treatment are a consequence of a 

transcriptional regulation or not. The mRNA levels of most 

aforesaid molecules in 3 CTCL cell lines with or without 

ONC201 at 72 hrs were examined by real-time PCR. As 

summarized in Table 2, only IL-32 in Hut78 cells and 

STAT1 in MJ cells were slightly reduced after treatment 

with ONC201 for 72 hours. The mRNA levels of the rest 

of the molecules increased slightly in treated cell lines, 

especially in HH cells with a concentration at 5.0 μM. For 
ATF4, the mRNA levels were slightly increased at 1.25 μM, 
and dramatically increased by 11.8-fold in HH cells at 5.0 

μM. These results suggest that the effect of ONC201 on 
the down-regulation of JAK/STAT and NF-κB pathways is 
not transcriptionally mediated. The slightly elevated mRNA 

levels may be a consequence of attenuation of protein 

translation that occurs with ISR activation.

DISCUSSION

We present pre-clinical data showing that ONC201 

as a single agent demonstrated potent anti-cancer activity 

in CTCL cells by inhibiting cell proliferation and strongly 

inducing apoptosis in CTCL cell lines and primary 

lymphoma cells. The activity of ONC201 occurred in the 

low micromolar range, which is achievable in vivo based 

on prior animal experiments and results from the first-
in-human trial [7, 31]. Importantly, ONC201 was more 

effective in primary Sézary cells and SS-derived cell lines 

that are more aggressive and refractory, which consistent 

with prior published findings [7, 32] and highlights its 
potential clinical utility in advanced stage patients. Our 

study confirms that ONC201 works on CTCL cells also by 
activating ISR through inducing the expression of ATF4, 

inactivation of Akt, and induction of TRAIL, as previously 

reported in solid tumors. In addition, we are first to show 
that ONC201 can inactivate the JAK/STAT pathway as 

well as the NK-κB pathway in CTCL cells.
Clinical management of MF/SS starts with skin 

directed therapies, then addition of retinoid or interferon, 

targeted therapy, and radiation. Chemotherapy is used 

in the setting of transformed MF or nodal involvement. 

We previously reported that bexarotene and histone 

deacetylase inhibitors (HDACi), vorinostat and 

romidepsin, induce apoptosis of CTCL cells in vitro and 

are also active in CTCL patients [3, 33, 34]. Patients 

with advanced CTCL usually develop resistance to 

available treatments leading to disease progression and 

opportunistic infections [35]. Thus, more effective and 

less immunosuppressive anti-cancer agents are urgently 

needed for advanced CTCL patients.

In accordance with prior studies in other tumor 

types [36], ONC201 also induced the pro-apoptotic ligand 

TRAIL in CTCL cells, a critical effector mechanism 

in the immune surveillance of cancer. Vorinostat, a 

HDAC inhibitor approved for CTCL [34, 37], also 

upregulates transcription of TRAIL [38, 39]. It is 

promising that ONC201 induces the same pro-apoptotic 

ligand as a clinically approved agent in CTCL, although 

the mechanism of vorinostat-mediated TRAIL gene 

upregulation is distinct from that of ONC201 [40].

Previous studies suggest that ONC201 activates 

ISR by upregulating ATF4 [5, 8, 24, 41]. ATF4 has also 

been identified as a negative regulator of IRF7, which 
is mediated by direct binding interactions in addition 

to inhibition of the transcription and phosphorylation 

of IRF7 [28]. Activation of IRF7, a master regulator 

of interferon gene expression, triggers the induction of 

IFNα/β, type I interferons, which binds to receptors to 
activate the JAK/STAT pathway [42]. Thus, ONC201-

mediated inactivation of the JAK/STAT pathway may be 

a consequence of ATF4 induction that can block IRF7 

activation, resulting in decreased induction of interferons 
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Figure 7: ONC201 downregulates NF-κB and IL-32 expression in CTCL cell lines and primary Sézary cells. HH, Hut78, 

and MJ cells (A), and PBMCs from 3 MF/SS patients (Patient #6 - #8) (B) were treated with (1.25 or 5.0 μM) or without ONC201 for 72 hrs. 
The protein expression of NF-κB members and IL-32β were assessed by western blot. The protein level of β-actin served as housekeeping 
gene control. The protein levels were semi-quantified and the levels in treated cells were compared with untreated control cells which were 
considered as 100%.
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and decreased subsequent activation of the JAK/STAT 

pathway. JAKs can phosphorylate tyrosines on receptors 

that ultimately stimulate the Ras signaling cascade, 

thereby activating Akt and ERK at a downstream level 

[42]. Prior studies with ONC201 in solid tumors have 

demonstrated a late stage inactivation of Akt and ERK, 

which results in less phosphorylated Foxo3a that can 

then enter the nucleus to upregulate TRAIL and other 

target genes. Thus, disruption of the JAK/STAT pathway 

by ONC201 may contribute to decreased activation of 

Akt and ERK as a late stage event of ONC201-induced 

signaling. However, the experiments to isolate the role 

of each target/pathway need be performed to understand 

the importance of each down-regulated pathway (NF-κB, 
JAK/STAT, and Akt) on anti-tumor effects by ONC201 

on CTCL cells.

ISR activation often results in phosphorylation 

of eIF2α and upregulation of certain transcription 
factors, such as ATF4. However, in this study, we 

only found an induction of ATF4 in ONC201-treated 

CTCL cells, but no induction of eIF2α and p-eIF2α 
proteins in ONC201-treated CTCL cells. In fact, while 

eIF2α-dependent ATF4 induction has been shown 
with ONC201 in several settings, there have been a 

few exceptions where we have seen eIF2-independent 

ATF4 upregulation [8]. Ishizawa et al found that 

ONC201 induced an atypical integrated stress response 

in mantle cell lymphoma and acute myeloid leukemia 

cells, and the increase of ATF4 in ONC201-treated 

hematopoietic cells promoted apoptosis and did not 

depend on increased phosphorylation of eIF2α [8]. 
Thus, the induction of ATF4 in ONC201-treated CTCL 

cells may be independent of phosphorylation of eIF2α. 
Recent studies report that ONC201 also antagonizes 

the dopamine receptor D2 (DRD2)-like subfamily of 

G protein-coupled receptors (GPCRs) [43, 44]. DRD2 

antagonism increases cyclic AMP and subsequently 

activates cAMP response element-binding protein 

(CREB). CREB has a positively regulating binding site 

on the ATF4 promoter [45]. Future studies on DRD2 

and the cAMP signal pathway in ONC201-treated 

CTCL cells may help us disclose the mechanism(s) of 

action of ONC201 on CTCL.

The JAK/STAT pathway has been successfully 

targeted with small molecule inhibitors. Clinical trials are 

ongoing for Pacritinib and AZD9150 for the treatment 

of refractory colorectal cancer (NCT02277093) and 

hepatocellular carcinoma/non-Hodgkin’s lymphoma 

(NCT01563302) [46]. In CTCL, preclinical studies have 

shown that the pharmacological inhibition of STAT3 

promotes apoptosis [47, 48]. For example, the potent 

JAK/STAT3 inhibitor, cucurbitacin I, decreases STAT3 

phosphorylation, resulting in apoptosis of Sézary cells 

[49, 50]. Further studies in CTCL could explore the 

combinatorial efficacy of ONC201, which was recently 
revealed to be broadly synergistic [51].

In the past year, our group and others published 

findings of heterogeneous driver mutations and loss 
or gain of chromosomal regions using whole exome 

sequencing with or without RNA-seq that should 

ultimately advance our understanding of CTCLs [52-

54]. Loss of tumor suppressor genes is the most common 

findings, particularly loss of chromosome 10q region 
[52, 55, 56], which encodes tumor suppressor genes such 

as PTEN, MXI1, and DMBT1, and loss of 17p region, 

encoding p53 and CRK [55]. Since mutations in p53 are 

among the most common mutations found in SS patients, 

ONC201 may be ideal for SS patients because its anti-

tumor activity is independent of p53 [5].

ONC201 shows limited effects of anti-proliferation 

and apoptosis induction at 48 hours in treated CTCL cell 

lines, and the maximum activity was observed at 96 hours 

after single dose incubation. It is noticed that ONC201 

has a short half-life, about 11 hours in humans [44], but 

its pharmacodynamics (PD) typically lasted several hours 

after single-dose administration that persists far beyond 

its pharmacokinetics (PK) [5]. This disconnect between 

PK and PD is now considering in designing combination 

therapy. ONC201 administered one to two days prior to 

another anti-cancer drug has demonstrated synergistic 

efficacy in preclinical models [8, 57].
In summary, ONC201 appears to be an active 

agent that impacts key signaling pathways in aggressive 

and refractory CTCL preclinical models through an 

apparently unique mechanism. The confirmation of robust 
activity in refractory patient samples is a good indicator 

that the anti-cancer activity of ONC201 will translate to 

the clinic. This notion is further supported by the fact that 

ONC201 modulates signaling pathways that have been 

successfully targeted in CTCL and other malignancies. 

ONC201 exhibits an uncommonly benign safety profile in 
preclinical settings and in early clinical trial experience. 

Advanced CTCL patients with limited tolerance for toxic 

regimens may be a suitable indication for ONC201 to offer 

therapeutic value. Another advantage of ONC201 is that 

it can be given as a pill taken once weekly. Along with 

the preclinical efficacy evidence and absence of toxicity, 
the coordinate disruption of key signaling pathways 

by ONC201 that are of highly significant relevance 
in the pathophysiology of CTCL warrants the clinical 

examination of ONC201 in advanced CTCL.

MATERIALS AND METHODS

Reagents

ONC201 was obtained from Oncoceutics, Inc. 

(Philadelphia, PA), dissolved in DMSO to a stock 

concentration of 20 mM, and stored at -20 °C for further 

use. Serial dilutions (1.25, 2.5, 5.0 and 10 μM) were made 
in RPMI-1640 Medium (Sigma-Aldrich, St Louis, MO) 

for this study.
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Cells and cell culture

Human CTCL cell lines derived from SS (HH, 

Hut78) and MF (MJ) were purchased from ATCC 

(American Type Culture Collection, Rockville, MD). 

PB2S, H9, SeAx, MyLa, and Mac2A, were kindly 

provided by Dr. Ivan Litvinov (Department of Medicine, 

McGill University, Canada). The peripheral blood 

was collected from 6 healthy donors and from 8 MF/

SS patients who had high counts of blood CD4+CD26- 

malignant T-cells (Table 1). Peripheral blood mononuclear 

cells (PBMCs) were isolated, and followed by CD4+ T 

cell selection using CD4+ T cell isolation kit (Miltenyi 

Biotec, San Diego, CA). The purity was analyzed by 

flow cytometry. This study was conducted according 
to the Declaration of Helsinki Principles. The study 

was approved by the institutional review board of the 

University of Texas MD Anderson Cancer Center. All 

CTCL cells were grown in RPMI-1640 Medium (Sigma-

Aldrich, St. Louis, MO) supplemented with 10% heat-

inactivated FBS (Atlanta Biologicals, Norcross, GA), 

2mM HEPES, and 1% penicillin-streptomycin in a 

humidified atmosphere with 5.0% CO
2
 at 37°C.

Cell proliferation assay

Cells were seeded in 96-well plates at a density of 

5 x 104 cells/well in 200 μL of complete medium, and 
incubated with (1.25, 2.5, 5.0 and 10 μM) or without 
ONC201 treatment for 48, 72, or 96 hrs, respectively. The 

cell viability was then determined using the CellTiter 96 

Aqueous One Solution Cell Proliferation Assay (MTS) 

(Promega, Madison, WI) as previously described [33]. 

Absorbance was measured at 490 nm using the μQuant 
plate reader (Biotek, Winooski, VT). Experiments were 

performed in triplicate.

Apoptosis analysis by flow cytometry

Cells were incubated at 5 x 105 cells/mL with (1.25, 

2.5, 5.0, and 10 μM) or without ONC201 treatment for 48, 
72 or 96 hrs, and then harvested. The apoptotic cells were 

analyzed by flow cytometry using the Annexin V-FITC 
Detection Kit I (BD Pharmingen, San Diego, CA) as 

previously described [33].

Cell cycle analysis by flow cytometry

Cells were incubated at 5 x 105 cells/mL with 1.25, 

2.5, 5.0, and 10 μM or without ONC201 treatment for 48, 
72 or 96 hrs, and then harvested. After washing with cold 

phosphate-buffered saline (PBS), cells were fixed in cold 
100% ethanol and stored at -20°C for 1 hour. They were 

then treated with DNase-free RNase (Roche Diagnostics, 

Basel, Switzerland) and stained with 50 μg per mL of 
propidium iodide (PI) (Sigma-Aldrich, St. Louis, MO). 

Distribution of cell cycle phases by varying DNA content 

was determined with a FACSCalibur flow cytometer 
(Becton Dickinson). Analyses of cell cycle distribution, 

including of sub-G1 populations, were performed as 

previously described [33].

Western blot and semi-quantification analysis

The cellular proteins (5 or 10 μg) extracted from 
treated cells were subjected to 4-20% Mini-Protean 

TGX gel (Bio-Rad, Hercules, CA) electrophoresis and 

transferred onto nitrocellulose membranes (Whatman 

GmbH, Dassel, Germany). The membranes were blocked 

in 5.0% milk in TBST (50 mM Tris pH 7.5, 150 mM 

NaCl, 0.05% Tween 20) for 1 hour at room temperature, 

then incubated with primary antibodies overnight at 4 °C 

in 5.0% milk in TBST. Then membranes were incubated 

with 1:2,000 peroxidase-conjugated anti-mouse or anti-

rabbit secondary antibodies (Cell Signaling, Beverly, MA) 

for 1 hour at room temperature. The primary antibodies 

and dilutions used in this study were listed as follows: 

eIF2α 1:1000, p-eIF2 1:1000, ATF4 1:2000, AKT 1:2000, 
TRAIL1:2000, BAX1:2000, cleaved-PARP 1:2000, JAK3 

1:1000, pJAK3 1:1000, STAT3 1:2000, pSTAT13 1:2000, 

pSTAT1 1:2000, IRF7 1:2000, p-IRF7 1:1000, NF-κB 
p65 1:2000, RelB 1:1000, c-Rel 1:1000, IL-32β 1:1000, 
β-Actin 1:5000 (Cell Signaling, Beverly, MA). Protein 
bands were visualized using the Super Signal West Pico 

Chemiluminescence Substrate kit (Thermo, Rockford, IL). 

Equivalent loading of proteins in each well was confirmed 
by β-actin and Ponceau staining. For semi-quantification 
of protein expression, target bands were scanned. Then, 

scanned images were converted to 8-bit format images 

using ImageJ software (NIH). Density of each band was 

used for further calculation. The levels of each protein in 

treated cells were compared with untreated control cells 

which were considered as 100% [26].

Quantitative real-time PCR for mRNA 

expression

Total RNA was extracted by RNeasy Mini kit 

(Qiagen, Valencia, CA) from HH, MJ, and Hut78 cells 
with ONC201 treatment at 0, 1.25 μM, and 5.0 μM for 48 
hours and 72 hours. First strand cDNA was synthesized 

from 1000 ng of total RNA with an oligo (dT) 12–18 

primer using Superscript IV reverse transcriptase (Life 

Technologies Inc., Gaithersburg, MD). Pre-formulated 

TaqMan primers and probes for eIF2S1 (Hs00187953_

m1), ATF4 (Hs00909569_m1), Akt1 (Hs00178289_m1), 

BAX (Hs00180269_m1), JAK3 (Hs00354555_m1), 

STAT1 (Hs01013996_m1), STAT3 (Hs00374280_m1), 

IRF7 (Hs01014809_m1), NFKB1 (Hs00765730_m1), 

IL-32(Hs00992441_m1), were used. Glyceraldehye-3-

phosphate dehydrogenase (GAPDH, Hs02786624-g1) was 

used as endogenous control gene. Quantitative PCR was 
run in the ABI Prism 7000 Sequence Detection System 

using the default protocol by the manufacturer (Applied 
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Biosystems, Foster City, CA). The relative levels of 

mRNA expression were quantitated based on the Ct value 

and then normalized to GAPDH. Relative fold changes 

were finally calculated [58].

Statistical analysis

The differences in cell viability, apoptosis, and 

sub-G1 of cell cycle in ONC201 treated cells were 

compared with the untreated cells or vehicle controls. 

Statistical significance was determined by Student’s or 
paired t-test. The minimum level of significance was 
p<0.05. Experiments were repeated twice and carried out 

in triplicate.
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