

Desalination and Water Treatment www.deswater.com

1944-3994 / 1944-3986 © 2010 Desalination Publications. All rights reserved.
doi: 10.5004/dwt.2010.1314

Once through multistage flash desalination: gPROMS dynamic and steady state modeling

Hala Al-Fulaij^{a*}, Andrea Cipollina^b, David Bogle^c, Hisham Ettouney^a

^aDepartment of Chemical Engineering,College of Engineering and Petroleum,Kuwait University, P.O. Box 5969, Safat 13060, Kuwait email: engrhala@yahoo.com ^bDipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università di Palermo, Italy

^cDipartimento al Ingegneria Chimica del Processi e dei Materiali, Università di Palermo, 11 ^cUniversity College London, Gower Street, London, WC1E 6BT, UK

Received 30 April 2009; Accepted 31 January 2010

ABSTRACT

This study focuses on modeling the steady state and dynamic behavior of the multistage flash desalination process (MSF) using gPROMS. This modeling tool allows for simultaneous coding of the system dynamics and steady state performance. In addition, it allows the use of the most effi cient solvers for a set of non-linear differential and algebraic equations describing the MSF process. The system model and analysis are based on actual plant data that includes 21 flashing stages and a capacity of 378 kg/s (32,000 m³/d). The simulated unit is part of a massive MSF installation in Doha, Kuwait. System's dynamic behavior is simulated by a step change in the input values of the main operating parameters, such as the feed fl ow rate and the top brine temperature. Finally, the analysis of model predictions for both steady-state operation and system dynamics have been compared to actual plant data, showing a good agreement between predicted and measured trends.

Keywords: Desalination; Modeling; Multistage flashing; Steady state; Dynamics; Control

18 (2010) 46–60 June

* Corresponding author.