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Abstract

Distinguishing the driver mutations from somatic mutations in a tumor genome is one of the major challenges of

cancer research. This challenge is more acute and far from solved for non-coding mutations. Here we present

OncodriveFML, a method designed to analyze the pattern of somatic mutations across tumors in both coding and

non-coding genomic regions to identify signals of positive selection, and therefore, their involvement in tumorigenesis.

We describe the method and illustrate its usefulness to identify protein-coding genes, promoters, untranslated regions,

intronic splice regions, and lncRNAs-containing driver mutations in several malignancies.
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Background
Massive cancer genomic initiatives promoted by the

advance of next generation sequencing technologies

have uncovered the landscape of somatic mutations in

cohorts of patients suffering from dozens of the most

common tumor types [1, 2]. These initiatives, focused

mostly on exome regions, demonstrated the pressing

need to develop methods to identify protein-coding can-

cer drivers from the wealth of mutated genes in tumor

genome [3]. Several methods that identify genes whose

mutational patterns significantly deviate from the

expected behavior have been developed and validated

[3–8]. These abnormal mutational patterns are caused

by positive selection acting on the mutations in driver

genes during the course of tumorigenesis and tumor

evolution [9]. A mutational frequency across a cohort of

tumors that is significantly higher than the background

mutation rate is the most intuitive and exploited signal

of positive selection, implemented for example by com-

putational approaches such as MuSiC [8] and MutSig

[4]. Nevertheless, the correct estimation of the back-

ground mutation rate of protein-coding genes requires

accounting for many known—and probably also yet

unknown—covariates, some of which can currently only

be approximated [10]. In 2012 we introduced a compu-

tational approach to detect a different signal of positive

selection in driver genes: the bias towards the accumula-

tion of high impacting mutations [5] across tumor

samples. We proved that the top-ranking genes in their

deviation of the average impact score of mutations

observed from the expected average impact score of the

same number of mutations in the given cohort—func-

tional mutation (FM) bias—were bona fide cancer

drivers.

Currently, the availability of hundreds of whole-

genome sequences from tumors presents us with the

unprecedented opportunity of identifying non-coding

genomic regions involved in cancer development upon

somatic mutations. Most of the approaches developed to

scan protein-coding genes involved in tumorigenesis

cannot be readily extended to the analysis of non-coding

regions [3], and only few approaches designed to detect

non-coding drivers have been recently proposed [11–14].

Moreover, catalogs of somatic mutations detected by

targeted sequencing specific regions of genomes are

accumulating as genome sequencing becomes routine in

the clinical practice of oncology. The Memorial Sloan

Kettering-Integrated Mutation Profiling of Actionable

Cancer Targets (MSK-IMPACT) [15], for example, has
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carried out the targeted deep sequencing of all exons

and selected introns of 341 key cancer genes of thou-

sands of tumors every year (https://www.sloanketter-

ing.edu/blog/expanding-impact-precision-medicine-fuel-

discoveries). Most current methods to detect drivers

rely on whole-exome or whole-genome sequencing

data to build their background models for analysis.

Therefore, they are unable to mine this rich data

accumulating from targeted sequencing to further

pinpoint the regions within cancer genes that ex-

hibit signals of positive selection in different tumor

types.

Here we propose a novel approach, OncodriveFML, to

estimate the accumulated functional impact (FI) bias of

tumor somatic mutations in genomic regions of interest,

both coding and non-coding, based on a local simulation

of the mutational processes affecting it. OncodriveFML

possesses two critical advantages over the current gener-

ation of methods aimed at identifying cancer drivers.

First, it can directly compute the FM bias—and thus

identify drivers—of any genomic element, provided only

that a score to assess the FI of somatic mutations can be

computed for that element. In the “Results” section, we

illustrate this versatility by employing different FI scor-

ing approaches to detect putative cancer drivers among:

(1) coding genes; (2) intronic splicing regions; (3) pro-

moter regions; (4) untranslated regions (UTRs) of mes-

senger RNAs (mRNA); and (5) long non-coding RNAs

(lncRNAs). This feature will prove crucial as more

cohorts of cancer tumors are sequenced at the whole-

genome range opening up the possibility to detect non-

coding elements involved in tumorigenesis. Second, the

FM bias of genomic elements can still be computed if

only one or few of them have been sequenced across the

cohort of patients, as is the case of targeted sequencing

aimed at informing clinical decision-making. This raises

the possibility of dramatically lowering the cost of

sequencing cohorts of tumors to carry out analyses such

as the identification of genes involved in specific cancer-

related processes, such as drug resistance, metastasis,

and tumor relapse. We provide the source code of a web

server to detect putative driver genomic elements, both

coding and non-coding on mutations data from cohorts

of tumors using OncodriveFML (http://www.intogen.

org/oncodrivefml).

Results

OncodriveFML computes a local FM bias

The rationale behind OncodriveFML is that the observa-

tion of somatic mutations on a genomic element (coding

gene, promoter, UTR, lncRNA, etc) across tumors,

whose average impact score is significantly greater than

expected for said element constitutes a signal that these

mutations have undergone positive selection during

tumorigenesis. This, in turn is considered as a direct

indication that this element drives tumorigenesis. We

call this deviation of the observed average impact

score of somatic mutation in a genomic feature from

its expected value, the functional mutation bias, or

FM bias. To measure the FM bias of a particular

element, OncodriveFML is required to: (1) be able to

compute a relevant score of the predicted impact of

the mutations in the genomic element; and (2) simulate

the mutational processes to compute the expected

average impact score.

Any approach to compute the impact of mutations,

however different depending on the type of genomic

element under analysis, may serve the purpose of com-

puting its observed FM bias (Fig. 1a). For instance, in

mutations in protein-coding genes, one could measure

the predicted impact on protein structure and function,

while in RNA genes or UTRs, one could compute the

impact of the mutations on RNA secondary structure,

which is known to be key to their function. Also in

UTRs, a useful measure of the FI of mutations could be

their effect on the binding of microRNAs (miRNAs) to

their target sites. In the case of promoters and en-

hancers, the effect of mutations on existing transcription

factor binding sites or the creation of new ones may be

assessed. Combined scores that take into account several

features to measure the FI, such as CADD [16], may also

be useful. The only requirements of the FI scoring

approach is that it is relevant for the function of the gen-

omic element under study and that it can be computed

for all possible mutations in the element. Here we

present implementations of OncodriveFML that use

several FI scoring metrics.

OncodriveFML consists of three steps illustrated in

Fig. 1b–d. In the first step, the average FI score of the

set of somatic mutations observed in the element of

interest across a tumor cohort is computed (Fig. 1b). In

the second step, sets of mutations of the same size as

the number of mutations observed in the element are

randomly sampled from the universe of all the variants

that it can possibly sustain (Fig. 1c). To accurately model

mutational processes in the tumor type of interest, the

sampling is done following the probability of mutation

of different tri-nucleotides, which can either be com-

puted from the mutations observed in each sample, in

cohort under analysis as a whole, or pre-computed from

previously analyzed tumor cohorts of the same or similar

type. This random sampling is iterated a number of

times (e.g. 10,000 times) to generate local expected aver-

age impact scores. Finally, OncodriveFML compares the

average impact score observed for each element to its

local expected average impact score resulting from the

sampling and computes a local FM bias, in the form of

an empirical p value which measures the deviation of
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the observed average score from the expected back-

ground (Fig. 1d). Elements with significant local FM bias

after the correction for false discovery rate are deemed

likely drivers.

OncodriveFML detects driver coding genes

To test its validity, we applied OncodriveFML to the de-

tection of drivers among all human protein-coding genes

using the set of somatic mutations detected by whole-

exome sequencing across the tumors of 19 cohorts,

(these and all datasets of somatic mutations employed

here are described in Additional file 1). First, through

quantile-quantile (QQ) plots comparing the expected

and observed distribution of the FM bias p values (Fig. 2a

and Additional file 2, section A), we demonstrate that

the latter follows the expected homogeneous distribution

of the null hypothesis, with the exception of the few

cases that correspond to genes with significant FM bias.

Among the top ranking genes identified by Oncodri-

veFML in the four cohorts presented as examples in

Fig. 2b and c, there are well-known cancer genes, such

as TP53, KEAP1, ARID2, and RUNX1. Mutations

observed in these genes exhibit a clear bias towards high

FI (Fig. 2b; whole list in Additional file 3).

Second, as a proxy of the true positives rate of the

method, we computed the fold enrichment in the pro-

portion of known cancer genes (genes in the Cancer

Gene Census (CGC) [17]) among its top ranking genes.

We found that OncodriveFML performs better in this

metric than the original version of OncodriveFM [5],

MutSigCV [4], and e-Driver [18] (Fig. 2c and Additional

file 2, section A) across the 19 cohorts of tumors ana-

lyzed. We also compared the results of OncodriveFML

with a newer version of MutSigCV run by its authors

[19], finding that there is an important overlap between

the genes identified by both methods and that each

method identifies additional true cancer genes missed by

the other, stressing the complementarity of the two

approaches (Additional file 2, section A). We next ap-

plied the OncodriveFML FM bias test to randomized

datasets of mutations, built by reshuffling the mutations

observed within each genome, following the rates of tri-

nucleotides and the constraints of number of mutations

per sample and per region. The number of genes de-

tected as putative drivers within these random datasets

of mutations would act as a proxy of the rate of false

positive elements detected by the FM bias test. We car-

ried out this analysis on the 19 whole-exome cohorts of

a b

c

d

Fig. 1 The OncodriveFML approach to detect signals of positive selection. a The functional impact (FI) of mutations may be computed in different

manners for different types of genomic elements. b The FI of somatic mutations occurring in a genomics element across tumors are computed.

c Mutation sets are randomly sampled from the element under analysis and the FI score of each simulated mutation is obtained. d The mean FI of the

mutations observed in the element (red dots) is compared to the distribution of FI means of randomly generated mutations (violin plots) to obtain an

empirical p value. On the left is shown an example of highly significant p value while the violin plot on the right illustrates a non-significant case
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Fig. 2 Results of the application of OncodriveFML to identify driver protein-coding genes across four cohorts of tumors. a Quantile-quantile

(QQ) plots comparing the expected and observed distribution of FM bias p values of genes. Gray dots denote p values obtained on the randomized

dataset that serves as negative control. Names in red indicate genes with FM bias q-value below 0.1, while names in black indicate genes with FM bias

q-value below 0.25. Names in bold denote genes annotated in the Cancer Gene Census (CGC). b Mutation needle-plots showing the distribution of

mutations along the sequences of the CDS of selected genes. The color of the circles follows the FI CADD score scale. The y-axis indicates the number

of tumor samples in the cohorts where mutations at each position have been observed. The behavior of the CADD FI score across the entire CDS is

shown below the needle-plot. c Fold increase in the proportion of CGC genes among sets with increasing number of top ranking genes detected by

four methods: OncodriveFML, OncodriveFM, MutSigCV, and e-Driver. (See details in the text.) QQ plots and fold CGC proportion increase graphs for

other 15 cohorts of tumors are available in Additional file 2, section A
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tumors that constitute the WE-4482 dataset. Oncodri-

veFML finds no significant gene in this dataset (gray

dots in Fig. 2a), as expected for an accurate method with

a low number of false positives. The whole list of driver

candidates appears in Additional file 3. Taken together,

the results presented in this section demonstrate that

OncodriveFML identifies putative protein-coding driver

genes with a sensitivity that outperforms five widely

employed methods developed for this task, while main-

taining a very low false positive rate.

OncodriveFML detects driver non-coding elements

One of the most interesting features of OncodriveFML

is its applicability to the detection of driver non-coding

genomic element. Therefore, we next tested its perform-

ance in the identification of putative driver promoter, 5′

UTR, splice intronic, and 3′ UTR regions of coding

genes containing mutations across 22 tumor cohorts

with whole-genome data sequenced by TCGA [12] or

other projects [20] (datasets WG-505 and WG-608,

respectively, in Additional file 1), as well as two pan-

cancer cohorts resulting from pooling the mutations de-

tected in all cohorts of each dataset (Figs. 3 and 4). Our

primary aim was to test OncodriveFML at the identifica-

tion of putative driver non-coding elements and com-

pare its performance with other two recently published

methods to the same effect [13, 14]. Due to the complete

absence of a curated gold standard of non-coding driver

elements, we limited the comparison to the assessment

of the rate of false positives detected by each method

through the analysis of the QQ plots of their observed

and expected distributions of p values and the analysis

of randomized datasets. We used CADD to score the FI

of mutations occurring in all aforementioned non-

coding elements, with the exception of 3′ UTRs, where

we used the score provided by RNAsnp to that effect

(see below). As with coding genes, the observed and

expected distributions of the FM bias p values of the

22—and pan-cancer—cohorts correlate very well, and

when applied to randomized mutation dataset it shows a

good control of false positives (Fig. 3a). In this regard,

OncodriveFML compares favorably with two recently

published methods in the identification of putative non-

coding elements across the cohorts of both the WG-505

and the WG-608 datasets (Additional file 2, section B).

In the following sections, we describe in detail the most

interesting candidate drivers of each type of non-coding

elements identified as significantly FM biased.

OncodriveFML uncovers putative driver promoters

and 5′ UTRs

In the pan-cancer cohort, comprising 505 tumors the

promoter regions with the most significant FM bias

comprise a shortlist of interesting candidate drivers,

such as those of TERT (details in Fig. 3b), SYF2,

ARGHEF18, and POLR2D. TERT encodes the reverse

transcriptase subunit of telomerase required to maintain

telomere length during tumor growth. Activating muta-

tions in TERT promoter have been found as drivers in

multiple types of cancer [12, 21, 22]. Other promising

novel candidates include the promoters of SYF2 (details

in Fig. 3c), an mRNA splicing factor thought to interact

with a cell cycle regulator [23], ARHGEF18, a Rho-

specific guanine nucleotide exchanging factor involved

in RhoA activation and cell motility [24], and POLR2D

(Fig. 3d), a subunit of the RNA polymerase, which

contains mutations very close to the transcription start

site (TSS) in melanoma samples [25, 26].

In a cohort of 18 lower grade gliomas, in addition to

the TERT promoter, OncodriveFML identifies the pro-

moter of SPN with a highly significant FM bias (Fig. 3e).

The expression of both genes is significantly higher in

samples bearing mutations in their promoters than in

non-mutated samples (Fig. 3f ), which provides founda-

tion to the idea that these mutations are positively se-

lected during tumorigenesis. SPN is normally produced

solely by white blood cells where it regulates functions

such as cell-cell adhesion, intracellular signaling, apop-

tosis, migration, and proliferation. Its ectopic expression

in solid tumors has been reported and proposed as a

target for immunotherapy [27]. In summary, in addition

to producing a very low rate of false positive results in

the detection of putative driver promoter elements,

OncodriveFML is able to identify already known and

putative interesting promoters with driver mutations,

even at very low mutational frequency. The whole list of

putative driver promoters (and other non-coding ele-

ments) appears in Additional file 3.

Among top-ranking FM biased 5′ UTR regions, we

found that of TBC1D12 (Fig. 3g). This gene encodes a

GTPase-activating protein for Rab family proteins. 5′

UTR mutations are recurrently found near the start

codon (Fig. 3h) and are detected in samples of different

tumor types. We detected it also as FM biased in

cohorts of the WG-608 dataset (Fig. 3i). The proximity

of the mutations to the start codon suggests that they

could have an effect on translational control. These mu-

tations were recently reported as significantly redundant

by [28], with 15 % of bladder tumor samples bearing

mutations using whole-exome data.

OncodriveFML uncovers genes with driver mutations in

splice intronic regions

We next analyzed with OncodriverFML the intronic re-

gions of coding genes, specifically, the 50 bps from

exon-intron boundary (intron-50 bps) using CADD as a

functional scoring framework to identify genes with

driver intron-splicing mutations. In the pan-cancer
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cohort, of the WG-505 dataset, OncodriveFML identifies

a shortlist of well-known tumor suppressor genes—TP53,

STK11, and NF1—as highly FM biased in their intron-

splicing mutations (Fig. 4a-b). TP53 contains 16 mutations

within the first 50 bps of its introns, seven of which appear

in breast cancer samples, while the others are distributed

across the cohorts of other tumor types (including

GBM, CRC, LUSC, SKCM, LUAD) (Fig. 4b). Interest-

ingly, eight of these mutations are within the first

2 bps of the intron-exon boundary. STK11 is a

serine/threonine-protein kinase known to act as a

tumor suppressor in the control of the activity of

a b c

d

g h i

e f

Fig. 3 Results of the application of OncodriveFML to identify driver promoters and 5′ UTRs. The results of OncodriveFML are illustrated on mutations

found across the pan-cancer cohort (a–d) and the cohorts of lower grade gliomas (e, f) and bladder urothelial carcinomas (g–i) of the WG-505 dataset.

a, e, g QQ plots comparing the expected and observed distribution of FM bias p values of promoters and 5′ UTRs mutated in the respective cohorts.

b–d, h Mutation needle-plots of selected promoters and 5′ UTRs, with a zoom at mutations located in the proximity of the transcription start site (TSS),

or the 5 bps of the 5′ UTR closer to the CDS, respectively. f Comparison of the expression of two genes with significantly FM biased promoters in the

cohort of lower grade gliomas in samples with mutations in the promoter and unmutated samples. In the boxplots the gene expressions of the

mutated samples (on the left) is compared to those of unmutated samples (on the right). The expression values are reported in RPKM (Reads Per

Kilobase of transcript per Million mapped reads) on the y-axis and the number of samples (mutated and normal) in each set are indicated with dots on

the boxplots. The significance of the differential expression between mutated and non-mutated samples is reported at the top of each plot (Wilcoxon

rank-sum test). I. Significance of the 5′ UTR of the TBC1D12 gene across several cohorts of both the WG-505 and WG-608 datasets
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AMP-activated protein kinase (AMPK) family mem-

bers, thereby playing a role in various processes such

as cell metabolism, cell polarity, apoptosis, and DNA

damage response, often bearing inactivating mutations

in in lung adenocarcinomas [29, 30]. Most of the mu-

tations (4 out of 6) observed in the pan-cancer cohort

of the WG-505 dataset falling within the first 50 bps

of its introns indeed correspond to lung adenocarcin-

oma samples and all are in close proximity to the

intron-exon boundary (Fig. 4c).

OncodriveFML identifies putative driver 3′ UTRs

Next, we employed OncodriveFML to identify driver

genes upon mutations in their 3′ UTR regions. In this

case, we used the impact of mutations on RNA second-

ary structure computed by RNAsnp as FI score to com-

pute the FM bias of mutations [31]. In the pan-cancer

cohort of the WG-505 dataset, OncodriveFML identified

BORA and CHAF1B as putative driver genes from the

mutations in their 3′ UTR regions (Fig. 4d–h).

Mutations contributing to the computed FM bias for

CHAF1B in the WG-505 dataset appear in BRCA, CRC,

LUAD, and UCEC. On the other hand, in the pan-

cancer cohort of the WG-608 dataset, where it also

appears as significantly FM biased, mutations appear in

BRCA and STAD samples (Fig. 4e). CHAF1B is a chro-

matin assembly factor implicated in DNA replication

and DNA repair [32]. BORA is an Aurora kinase activa-

tor, involved in the maturation of the centrosome, the

assembly of the spindle and asymmetric protein

localization during mitosis [33].

OncodriveFML identifies putative lncRNAs

We next employed OncodriveFML to explore the poten-

tial of a group of lncRNAs collected from the literature

the biological functions of which have been established

[34–36] (Additional file 4). The mutated lncRNAs

among these (across cohorts in the WG-505 and WG-

608 datasets) were thus analyzed by OncodriveFML and

those significantly FM biased in at least one cohort

BORA (WG-505) (3’ UTR)

BRCA - chr13:73329969:G>A 

UCEC - chr13:73329970:T>C 

STAD - chr21:37789595:C>T 

BRCA- chr21:37789983:C>T STAD - chr21:37791264:C>T 

BRCA- chr21:37790156:C>T 

CHAF1B (WG-608) (3’ UTR)

UCEC- chr21:37789593:T>C 

CRC - chr21:37789595:C>T 

CRC - chr21:37789597:C>T 

CRC - chr21:37789630:T>A 

CRC - chr21:37789921:C>G 

BRCA- chr21:37790268:T>G 

LUAD- chr21:37790906:G>T 

LUAD- chr21:37790905:G>T 

CHAF1B (WG-505) (3’ UTR)

WG-608 Samples
Total

Mutations

Mutated 

Samples
P-Value

BRCA

STAD

Pancancer

119

100

607

2

3

5

0.2839

1.2e-06

8.6e-06

2

3

5

CHAF1B (3’ UTR)

WG-505 Samples
Total

Mutations

Mutated 

Samples
P-Value

BRCA

CRC

LUAD

UCEC

Pancancer

96

42

46

47

505

1

2

1

1

5

0.6017

4.0e-04

0.192

4.5e-04

8.6e-06

1

4

2

1

8

CHAF1B (3’ UTR)

TP53 (intron-splicing)

<BRCA (2) - LUSC - chr17:7577610:T>C (-2bp)

LUSC - chr17:7576960:A>T (-34bp)

CRC - chr17:7576843:G>A (+10bp)

SKCM - chr17:7578176:C>T (+1bp)

GBM (2) - chr17:7578555:C>T (-1bp)

BRCA - chr17:7578370:C>A (+1bp)

BRCA - chr17:7577498:C>T (+1bp) LUAD - chr17:7578556:T>A (-2bp)

LUSC - chr17:7578590:G>T (-36bp)

BRCA - chr17:7579622:C>A (-32bp)

BRCA (2) - chr17:7579653:T>C (-32bp)

CRC- chr17:7580766:G>A (-21bp)

STK11 (intron-splicing)

LUAD - chr19:1220370:A>C (-2bp)

LUAD -chr19:1221211:G>T (-1bp)

LUAD - chr19:1221947:G>A (-1bp)

HNSC - chr19:1220350:G>A (-22bp)

LUSC - chr19:1222008:G>A (+3bp)

LUAD - chr19:1222006:G>A (+1bp)

B C

E

F G H

Pancancer (3’ UTRs)

BORA

CHAF1B

Pancancer (intron-splicing)

NF1

TP53

STK11

A

D

Fig. 4 Results of the application of OncodriveFML to identify driver splice intronic regions and 3′ UTRs. The results of OncodriveFML are illustrated on

mutations found across the pan-cancer cohort of the WG-505 dataset. a, d QQ plots comparing the expected and observed distribution of FM bias p

values of splice intronic regions and 3′ UTRs mutated in the pan-cancer cohort. b, c, f–h Mutation needle-plots of selected splice intronic regions and 3′

UTRs. e Significance of the 3′ UTR of the CHAF1B gene across several cohorts of both the WG-505 and WG-608 datasets
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appear in Additional file 4. As in the case of 3′ UTRs,

we computed the FM bias using an FI metric that esti-

mates the impact of mutation on the RNA secondary

structure [31]. We found that MALAT1, a lncRNA gene

previously shown to be involved in tumorigenesis of

lung adenocarcinomas [37], exhibits a slightly significant

FM bias in cohorts of both the WG-505 (p value 0.0138

in KIRC) and the WG-608 (p value 0.0104 in pan-

cancer) datasets. In addition, we detected a higher than

expected accumulation of high functional impacting

somatic mutations in MIAT, a non-protein-coding

transcript associated with myocardial infarction in the

WG-505 dataset (p value 0.0281 in CRC and p value

0.0163 in pan-cancer).

OncodriveFML detects positive selection from the

sequence of a gene panel

Finally, we analyzed the list of somatic mutations de-

tected in a panel of genes sequenced at high coverage

across 234 biopsies of sun-exposed epidermis [38] to

illustrate the use of OncodriveFML on the task of de-

tecting genes under positive selection in the case when

most mutations in the sample are unavailable to the

method. OncodriveFML detects nine genes with a FM

bias q-value <0.1 (Fig. 5a and b), which include the five

genes identified by the authors using a modified dn/ds

approach (NOTCH1, NOTCH2, FAT1, TP53, RBM10)

and four other bona fide drivers of tumorigenesis

(NOTCH3, ARID2, KMT2D, ARID1A). Six out of these

nine genes are detected as drivers of cutaneous squa-

mous cell carcinoma (cSCC), the tumor type that

develops more frequently upon the malignization of

sun-exposed epidermis. The results reveal the potential

of OncodriveFML in identifying genes under positive

selection among those sequenced as part of a panel.

We have made OncodriveFML available to cancer gen-

omics researchers both to download and install the code

and to run through a web application (http://www.into-

gen.org/oncodrivefml).

Discussion

OncodriveFML introduces the construction of a local

mutational background to compute the FM bias of

genomic elements, a fundamental innovation which

differentiates it from other methods designed to pick up

signals of positive selection in genes across tumor sam-

ples. The local background model ensures that factors

influencing the mutation rate in the large-scale—such as

chromatin compaction or replication timing—do not

result in over or underestimation of the FM bias of any

genomic element. Other factors that affect the back-

ground mutation rate locally may still disturb the cal-

culation of the FM bias of genomic elements and, as

they are discovered, they should be incorporated into

this local modeling, as is the case of transcription factor

binding sites [39]. The combination of this local-

background-building approach and the compliance with

the mutational signature in the construction of the back-

ground model for the FM bias result in very fine-tuned

statistical test that produces a very low rate of false posi-

tives, effectively outperforming the current generation of

methods to detect driver genomic elements, both coding

and non-coding, as we have demonstrated in this article.

Furthermore, in principle OncodriveFML could also be

used to detect negative selection in the pattern of

somatic or germline variants observed across cohorts of

samples taken from either tumors or normal tissues.
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Although the accuracy of OncodriveFML relies on the

predicted FI of mutations, these predictions need not be

accurate enough to correctly identify individual driver

variants, because the method computes the average FI of

mutations and compares it to the distribution of all

possible mutations in the region. Since FI scores are

more developed for coding mutations (as is the case

with CADD, which includes more information to score

coding mutations), OncodriveFML may currently lose

non-coding driver regions where the FI of mutations is

poorly assessed. Nevertheless, the development of new

methods aimed at scoring non-coding mutations as

more whole genomes of tumors are sequenced will

improve the quality of OncodriveFML in non-coding re-

gions. Furthermore, in all the results shown in this paper

in non-coding genomic elements, the FM bias has been

calculated exclusively based on nucleotide substitutions.

Finding a way of accurately scoring the FI of indels in

non-coding regions will probably contribute to uncover

new putative driver non-coding elements.

As the application of next generation sequencing tech-

nologies moves into the clinic, sequencing panels of

genes—or any genomic regions—rather than the whole

exomes or whole genomes of cohorts of tumors will

become the most frequent choice [40]. Sequencing gene

panels can also have important applications in research

to detect subsets of known cancer genes that act as

drivers or play other roles, such as drug resistance in spe-

cific cohorts of cancer patients. Here we have demonstrated

that due to the computation of the local FM bias of genes,

OncodriveFML is capable of detecting genes undergoing

positive selection even if the catalog of all exomic mutations

is not available for analysis. This capability will prove critical

to analyze the results of sequencing panels.

Conclusions

Here we describe OncodriveFML, a novel method able

to detect putative cancer driver genomic regions through

the computation of a local FM bias. As we have

shown, OncodriveFML is able to operate on both coding

and non-coding genomic regions, or any combination

thereof to reveal their involvement in tumorigenesis.

Furthermore, due to its unique local background model of

the FI of mutations it is able to detect signals of positive

selection in tumorigenesis when only the sequence of a

small portion of the genome is available, opening the op-

portunity to exploit data obtained from the interrogation

of gene panels.

Methods

Tumor mutations datasets

We analyzed a dataset of somatic mutations detected by

whole-exome sequencing (dataset WE-4482), two datasets

of somatic mutations detected by whole-genome

sequencing (datasets WG-608 and WG-505), and a dataset

of somatic mutations detected in a panel of genes se-

quenced at high coverage (dataset GP-234). The first data-

set (WE-4482) contains the somatic mutations of 19 cancer

types, the results of four of which (lung squamous cell

carcinoma, lung adenocarcinoma, skin cutaneous melan-

oma, and acute myeloid leukemia) are shown in Fig. 2. The

sources of the dataset are listed in Additional file 1. The

second dataset (dataset WG-608) contains the somatic mu-

tations of seven cancer types (breast invasive carcinoma,

chronic lymphocytic leukemia, liver cancer, lung adenocar-

cinoma, lymphoma B-cell, medulloblastoma, and pilocytic

astrocytoma) extracted from the work by Alexandrov et al.

[20] plus a supplementary stomach adenocarcinoma dataset

[41]. The third (dataset WG-505) contains the somatic mu-

tations of 14 cancer types determined by TCGA [12]. The

fourth dataset (dataset GP-234) contains the somatic muta-

tions detected in a panel of genes sequenced with high

coverage across 234 biopsies of sun-exposed epidermis

[38]. The datasets were filtered to discard all possible false

positives of the somatic mutations calling and we restricted

the analyses to single nucleotide substitutions (SNV) ex-

cluding from the study both insertions and deletions. The

number of samples and the number of mutations for each

dataset are listed in Additional file 1.

Definition of the coordinates of genomic elements

The genomic coordinates of both coding genes and

lncRNAs were obtained from the ENCODE website

(http://www.gencodegenes.org/), using Gencode re-

lease 19. Specifically, the coordinates of genes were

retrieved from ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_

human/release_19/gencode.v19.annotation.gtf.gz. We only

consider CDS of genes where both the “gene_type”

and the “transcript_type” metadata were annotated as

“protein-coding.” We defined intronic splice sites as

50 bp regions at the edges of protein coding introns.

We removed from the datasets of UTRs all overlap-

ping coding regions and short intronic splice sites of

10 bp. In addition, we removed from 5′ UTRs any

overlap with 3′ UTRs. Promoter regions were defined

as sequences 2500 bp upstream the TSS of protein-

coding genes. We also removed from the dataset of

promoters any region previously annotated as protein-

coding (CDS), as untranslated region (3′ UTR and 5′

UTR), or as short intronic splice site. Overlapping ele-

ments of the same type (CDS of the same gene, UTRs of

the same gene, intronic splice sites of the same gene, or

promoters of the same gene) were merged together. Fi-

nally, we manually discarded genomic elements that show

any evidence of erroneous annotation.

The genomic coordinates of lncRNAs were obtained

from ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/

release_19/gencode.v19.long_noncoding_RNAs.gtf.gz. We
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only considered the exons of lncRNAs where both the

“gene_type” and the “transcript_type” metadata were anno-

tated as “lincRNA.” We removed from the lncRNAs any

region previously annotated as protein-coding (CDS), as

untranslated region (3′ UTR and 5′ UTR), or as short

intronic splice site. and we merged together overlapping

exons of the same lncRNA.

Functional impact scoring metrics used in the analysis

The FI scores of all possible nucleotide changes in CDS

and promoters of genes were retrieved from the CADD

framework [16] version 1.0 (http://krishna.gs.washingto-

n.edu/download/CADD/v1.0/whole_genome_SNVs.tsv.gz).

This framework provides a score of deleteriousness for

every possible substitution of each nucleotide of the human

genome and can consequently be applied to every coding

or non-coding element of the genome. In the case of 3′

UTRs and lncRNAs, the FI for every possible substitution

in each position was calculated using RNAsnp [31] to

predict the impact of mutation on RNA secondary struc-

ture. The RNAsnp was executed with the “Mode 1” option

(with other parameters set to default) to compute the local

structural effect of mutations. For our analysis, we retrieved

the resultant Euclidean distance score, which represents

the difference between the base pair probabilities of

wild-type and mutant ensemble structures as the basis

to compute the FM bias.

OncodriveFML methodological details

OncodriveFML has the ability to use different scoring

frameworks, such as CADD [16] or RNAsnp [31]. Since

the method is independent of the scoring system used,

new scores can easily be incorporated to it as soon as

they become available.

For every coding or non-coding element OncodriveFML

proceeds with the following steps:

1. It first retrieves the FI score of all the mutations that

can occur in an element (for instance, a gene or a

UTR). The FI scores will vary depending on the

scoring framework used (CADD, RNAsnp, etc.).

2. It then calculates the mean of the FI scores of all the

observed mutations in the element across tumors.

3. It randomly takes from the pool of scores of all

possible nucleotide changes in the element under

analysis N samples of the same size as the number

of observed mutations. The higher the N, the more

resolution the derived empirical p values will have.

For every random-generated mutation, its FI score is

retrieved from the framework in use. The random

sampling procedure can vary depending on the

probability of each mutation to be sampled:

a) It can be assumed that all the random generated

mutations have equal probability to occur.

b) It can be assumed that the probability of each

mutation to occur is based on the mutational

signatures (i.e. tri-nucleotide composition)

observed in the dataset. For the analysis presented

in this study we computed matrices of tri-

nucleotide probabilities of the 96 possible changes

(e.g. probability of ATC to mutate to ACC,

probability of ATC to mutate to AGC, etc.). The

matrices are computed by counting all the

observed mutations in all the tumors. The

random sampling process will thus take into

account the different probabilities that each

mutation has to occur. For instance, if a dataset

show a higher frequency of the mutation ATT to

ACT, the same mutation will be more likely to be

sampled.

4. It computes the mean of each of the N random-

generated group of mutations. N random sampling

will generate a vector of N mean of FI scores.

5. It computes an empirical p value by comparing the

mean of the observed FI scores with the distribution

of means of the randomized FI scores. In brief, it

counts how many times the mean of the observed FI

scores is bigger than the means of the randomized

FI scores, and then normalizes this value by the

number of randomizations performed (N). For

instance, if 10,000 randomizations have been

computed (N is 10,000) and only two of these values

are bigger than the mean of the observed FI scores,

then the empirical p value would be 2/10,000, or

2*10–4. If the resulting p value is equal to 0, the

number of randomizations N can be increased in

order to gain a better p value resolution. The

obtained p value indicates how likely the mean of

the observed FI scores is expected by chance.

6. The resulting p values are then adjusted with a

multiple testing correction using the Benjamini–

Hochberg procedure. In the present study, we

adjusted the p values of regions mutated in at least

two samples in individual tumor types and five

samples in the pan-cancer dataset.

Comparison of OncodriveFML to other methods in the

identification of putative driver coding genes

The somatic mutations used in the comparison were

detected by whole-exome sequencing across the tumors

of 19 cohorts (4482 samples in total). The sources of the

data along with the number of samples and the number

of mutations of each cancer type are listed in Additional

file 1. The list of known cancer genes (CGC) [17] were

retrieved from the Catalog Of Somatic Mutations In

Cancer (COSMIC): sftp://sftpcancer.sanger.ac.uk/files/

grch38/cosmic/v72/cancer_gene_census.csv. MutSigCV

(version 1.4) was run using default parameters and using
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the full coverage file and the genes covariates provided

by the authors. OncodriveFM was run using default

parameters but setting the gene threshold (i.e. minimum

number of mutations per gene to compute the FM bias)

to 1. e-Driver was run with the mode option set to 1

(DOM). To compare OncodriveFML with the most

recent version of MutSigCV, not publicly available at the

time of writing, we obtained the list of significant genes

identified by MutSigCV as run directly by the authors

from the web http://tumorportal.org/. Since p values are

not provided, in this case it was not possible to compute

the proportion of known cancer genes among the top

ranking genes as in Fig. 2c, and instead we compared

the set of overlapping genes between both methods

(Additional file 2, section A). Further details of these

comparisons appear in the text in Additional file 2.

Generation of datasets of random mutations

For each dataset of somatic mutations analyzed, we

created a corresponding random dataset containing the

same number of samples and the same number of

somatic mutations (per sample) as the original dataset.

The simulated mutations were randomly repositioned

within windows of 50 Kb maintaining the original muta-

tional signature, i.e. the same tri-nucleotide composition.

The mutations whose reported reference allele was dif-

ferent from the corresponding position in the reference

genome (hg19) were not included in the simulation.

Needle plots

Figures 2, 3, 4, 5 show the linear distribution of muta-

tions along the sequence of a genomic element (gene,

UTR, promoter, etc.). The positions of the mutations

correspond to their relative location inside the element.

If an element is fragmented in different segments, these

are concatenated and the fragments are represented with

vertical dashed lines. The y-axis, and thus the height of

the dots, indicates how many mutations have been

observed in a given position (i.e. number of samples that

share the same mutation) and the color of the dots rep-

resents the functional impact (FI) score of each mutation

in the element. The color scale is normalized by the

range of scores presents in the element after considering

all the possible mutations. The “>” and “<” signs inside

the element denote its strand. The highest possible FI

score of each position of the element is represented

at the bottom of the needle plot. The p value of the

element is reported at the top-right of the plot.

Expression analysis

Precomputed expression data were retrieved from

Fredriksson et al. [12]. A detailed explanation of how

the expression level were determined is provided in

the original paper. In short, the authors obtained the

RNA-sequencing (RNA-seq) and copy-number data (Affy-

metrix SNP6) from the cgHub repository (https://cghub.

ucsc.edu). Gene expression level were subsequently deter-

mined by processing of raw sequencing data in BAM

format considering the coding and lncRNA subsets of the

GENCODE (v17) annotation and using HTSeq-count [42]

as described in Akrami et al. [43]. Copy-number ampli-

tudes were determined from segmented data (Affymetric

SNP6 platform) available from TCGA by considering

the minimum amplitude of all overlapping copy-number

segments for each gene.

The significance of the differential expression between

mutated and non-mutated samples was assessed using a

Wilcoxon rank-sum test. For a given gene and cancer type,

the test was performed only if at least 25 % of tumors had a

detectable expression (i.e. non-zero value). In addition, the

copy-number alteration data were taken into account and

copy number-altered samples were excluded from the ana-

lysis (i.e. absolute amplitude expressed in log2 scale >0.2).

After applying the filtering, we required at least ten

remaining samples per gene and cancer type in order to

compare the expression of the two groups.

Additional files

Additional file 1: An Excel file with a description of all datasets of

mutations used to test the performance of OncodriveFML in the detection

of putative driver genomic elements. Each tab in the file contains the

description of a separate dataset, with the first tab serving as a README.

(ODS 14 kb)

Additional file 2: A.pdf file containing a thorough description of methods

and results of the performance of OncodriveFML in comparison to other

common methods aim at the detection of driver genomic elements.

Section A describes the comparison with tools aimed at detection driver

coding genes; section B describes the same comparison in the case of

non-coding drivers detection tools. (PDF 4957 kb)

Additional file 3: An Excel file containing all significantly FM biased

genomic elements, both coding and non-coding detected across all

mutational datasets analyzed. The file is organized in tabs each

corresponding to the results in one dataset. (ODS 57 kb)

Additional file 4: An Excel file containing information on lncRNAs

probed for FM bias. The first sheet contains a README file with details on

the contents of the other two sheets. The second sheet contains the list

of all lncRNAs probed, a summary of their biological function, and the

original source from which we extracted them. The third sheet contains

the FM bias p value computed for each significantly FM biased lncRNA in

each cohort. (ODS 13 kb)
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