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Abstract

Normal breast epithelial cells require insulin and EGF for growth in serum-free media. We previously demonstrated that over
expression of breast cancer oncogenes transforms MCF10A cells to an insulin-independent phenotype. Additionally, most
breast cancer cell lines are insulin-independent for growth. In this study, we investigated the mechanism by which
oncogene over expression transforms MCF10A cells to an insulin-independent phenotype. Analysis of the effects of various
concentrations of insulin and/or IGF-I on proliferation of MCF10A cells demonstrated that some of the effects of insulin were
independent from those of IGF-I, suggesting that oncogene over expression drives a true insulin-independent proliferative
phenotype. To test this hypothesis, we examined metabolic functions of insulin signaling in insulin-dependent and insulin-
independent cells. HER2 over expression in MCF10A cells resulted in glucose uptake in the absence of insulin at a rate equal
to insulin-induced glucose uptake in non-transduced cells. We found that a diverse set of oncogenes induced the same
result. To gain insight into how HER2 oncogene signaling affected increased insulin-independent glucose uptake we
compared HER2-regulated gene expression signatures in MCF10A and HER2 over expressing MCF10A cells by differential
analysis of time series gene expression data from cells treated with a HER2 inhibitor. This analysis identified genes
specifically regulated by the HER2 oncogene, including VAMP8 and PHGDH, which have known functions in glucose uptake
and processing of glycolytic intermediates, respectively. Moreover, these genes specifically implicated in HER2 oncogene-
driven transformation are commonly altered in human breast cancer cells. These results highlight the diversity of oncogene
effects on cell regulatory pathways and the importance of oncogene-driven metabolic transformation in breast cancer.
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Introduction

Tumor cell metabolism is unlike that of normal cells. The

earliest recognized metabolic distinction for cancer cells is their

adaptation to metabolize glucose by glycolysis even when there is

sufficient oxygen to metabolize glucose via the Krebs cycle.

Known as the Warburg effect, it is a common feature of cancer

cells [1]. Compared to oxidative phosphorylation, aerobic

glycolysis produces less ATP per molecule of glucose, but it is

advantageous for cancer growth because of the increased

availability of glycolytic intermediates to produce biosynthetic

precursors, including amino acids, lipids and nucleotides. In

conjunction with aerobic glycolysis, increased fatty acid synthesis

and mitochondrial glutamine metabolism contribute to enhanced

tumor cell metabolism that provides an abundance of cellular

building blocks necessary for unmitigated cell growth and

proliferation [2,3,4]. Metabolic pathways and enzymes have been

identified as important regulators of cancer cell growth [5,6,7,8],

and what is already known of cancer cell metabolism has been

successfully exploited to image cancer in patients through

detection of enhanced uptake of 18F-deoxyglucose by positron

emission tomography (FDG-PET) [9]. Recently, metabolic

targeting has emerged as a therapeutic strategy resulting in novel

types of anticancer agents that could have broad therapeutic

applications [10].

Recent studies suggest that proto-oncogenes exert regulatory

effects on metabolism in normal cells, and that tumorigenic

mutations and genomic amplification of these genes contribute to

the metabolic autonomy observed in tumor cells [7]. Thus,

oncogene signaling not only activates cancer cell mitogenic

pathways that drive unchecked growth of cancer, but also

promotes a coordinated metabolic transformation of cancer cells

by activating metabolic pathways and transcriptionally regulating

metabolic enzymes. PI3K/AKT, Ras, cMyc and HER2 are

examples of oncogenes that promote growth factor-independent

growth and metabolic autonomy in cancer cells [11,12,13,14]. In

breast cancer cells, the HER2 oncogene activates signaling

pathways that regulate the activities of PI3K/AKT, Ras, mTOR,
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Src, and HIF1a [15,16,17]. Also, HER2 signaling has been shown

to transcriptionally up-regulate the glycolytic enzyme LDHA [12].

Reports describing cancer cell metabolism are abundant, but

aerobic glycolysis and many of the same metabolic pathways and

metabolic enzymes activated in cancer cells are also up-regulated

or activated in rapidly proliferating normal cells [5,18,19,20,21]. If

an anticancer strategy through metabolic molecular targeting is to

be realized it must be determined how cancer cell metabolism is

abnormally regulated compared to normal proliferating cells. But,

how the metabolism of normal proliferating cells and cancer cells

differ has not yet been completely elucidated.

In several studies from our laboratory, we have demonstrated

that oncogenes can transform normal cells to a state of insulin-

independence [22,23]. For many years, the acquisition of insulin-

independence was considered to be a surrogate for IGF-I

independence and was thus associated with the mitogenic effects

of the oncogenes. However, in the present study, we show that

oncogene-induced insulin-independence also represents a meta-

bolic transformation, which is a result of oncogene-regulated

changes to gene transcription. Thus, the ability to induce

metabolic transformation is a key feature of the HER2 oncogene

as well as other important breast cancer oncogenes,. In this report

we present novel methods to analyze an oncogene-regulated

transcriptome to identify dysregulated genes in a transformed cell

that participate in the emergence of metabolic changes associated

with insulin-independent proliferation, particularly genes related

to glucose uptake and glycolysis.

Results

Several years ago, we developed a serum-free cell culture system

that supports continuous proliferation of human mammary

epithelial (HME) cells. Using these culture conditions, we and

others found that HME cells in general, and MCF10A cells in

particular, have an absolute requirement for insulin and EGF for

continuous growth in serum-free media. More recently, we have

shown that MCF10A cells stably transduced to over express

known oncogenes no longer require insulin for proliferation,

though they still depend on EGF [22,23]. Among the oncogenes

that can transform cells to insulin-independence are HER2,

WHSC1L1, TC1, DDHD2 and FGFR2. Furthermore, these

oncogene over expressing, insulin-independent cells exhibit other

transformed phenotypes such as anchorage-independent growth

and disrupted epithelial architecture in three-dimensional mor-

phogenesis assays [22,23]. Of significance, we have observed the

insulin-independence phenotype in most of the human breast

cancer cell lines developed in our laboratory (Figure 1A).

The supraphysiological concentration of insulin used to

routinely culture MCF10A cells causes activation of both the IR

and IGF-IR [24]. To examine the relative contributions of

signaling from the IR and the IGF-IR in MCF10A cell

proliferation, we measured the proliferative response of MCF10A

cells to various concentrations of insulin in our serum-free culture

conditions, including low concentrations that do not bind the IGF-

IR. MCF10A cells cultured without insulin showed no significant

increase in cell number during the experiment. MCF10A cells

treated with insulin at the physiological concentration of 0.1 nM

demonstrated a 50% increase in cell number in 72 hours

(Figure 1B). Treatment with a 10-fold greater concentration of

insulin (1 nM) elicited no further increase in proliferation;

however, insulin at 100 nM resulted in a 110% increase in cell

number. IGF-I at the physiological concentration of 1 nM induced

a 160% increase in MCF10A cell numbers (Figure 1B), and co-

treatment with 0.1 nM insulin plus 1 nM IGF-I induced an

additional 45% increase in cell number. Cell proliferation induced

in co-treated cultures was equal to the response induced by a

supraphysiological concentration of IGF-I (200%), which binds

both the IR and IGF-IR. These results indicate that under normal

growth conditions, activation of both the IR and IGF-IR plays a

role in supporting cell proliferation under serum-free conditions.

To confirm the role of both receptors in the proliferative

response to insulin in MCF10A cells, we immunoprecipitated IR

and IGF-IR from cells treated with the standard supraphysiolog-

ical concentration of insulin, and probed the immunoprecipitates

for receptor abundance and for tyrosine phosphorylation. In the

same experiment we examined IR and IGF-IR tyrosine phos-

phorylation in insulin-independent MCF10HER2 cells (MCF10A

cells transformed by stable HER2 over expression). Figure 1C

shows that the IR and IGF-IR were readily detectable in MCF10A

cells cultured with and without insulin in serum-free media, and

removal of insulin from the medium resulted in loss of IR and

IGF-IR tyrosine phosphorylation (Figure 1C). In agreement with

this finding, immunobloting for tyrosine phosphorylated IRS1 and

IRS2, downstream targets of IR and IGF-IR kinase activity,

showed that tyrosine phosphorylation of IRS1 and IRS2 in

MCF10A cells was insulin-dependent (Figure 1D). In insulin-

independent MCF10HER2 cells cultured in serum-free, insulin-

free medium, tyrosine phosphorylated IR, IGF-IR, IRS1 and

IRS2 were not detected. These results indicate that insulin-

independent growth of the HER2 oncogene-transformed cell line

is not the result of constitutive activation of the IR or the IGF-IR.

Immunoblot analysis showed that IRS1 and IRS2 were also not

tyrosine phosphorylated in insulin-independent MCF10A cells

transformed by TC1 or FGFR2 cultured in serum-free media

without added insulin (Figure 1D).

Insulin regulates high-level glucose uptake by MCF10A
cells, oncogene-transformed cells show high-level uptake
independent of insulin
We observed that oncogene-transformed MCF10A cells ac-

quired independence of the mitogenic signal originating from the

IGF-IR and unlike nontransformed cells no longer required insulin

for proliferation in serum-free culture conditions. Next, we

examined how independence from a metabolic signal originating

from the IR related to glucose uptake in cultures of insulin-

independent oncogene-transformed cells. In insulin-dependent

cells, activated IR induces glucose uptake via facilitated transport

[25]. To measure the amount of glucose taken up by insulin-

dependent and insulin-independent cells, we quantified the

amount of glucose in the culture media collected at the start and

end of the experiment and expressed the difference relative to cell

number. Measurements were taken under conditions with or

without insulin added to the serum-free culture media. Results

graphed in Figure 2 show that over the course of 48 hours, the

amount of glucose taken up by nontransformed MCF10A cells in

the absence of insulin was 0.26 mg/ml/106 cells, and the presence

of insulin increased glucose uptake 5.4-fold. For MCF10A cells

transformed by over expression of HER2, TC1, DDHD2,

WHSC1L1 or FGFR2, glucose uptake in their routine insulin-

free, serum-free medium was equal to or greater than that

observed for parental MCF10A cells cultured in the presence of

insulin. Over expression of WHSC1L1 elicited the highest glucose

uptake in the absence of insulin, 2.03 mg/ml/106 cells. The

addition of insulin to the media caused an additional significant

increase in glucose uptake in cells over expressing HER2, TC1 or

DDHD2, indicating that these cells, despite being insulin-

independent, are still responsive to insulin. These data show that

in nontransformed breast epithelial cells, insulin was required for
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high-level glucose uptake, and that oncogene transformed cells

became insulin-independent for similar high-level glucose uptake.

Thus, in addition to their well know effects on mitogenic signaling,

oncogenes such as HER2 and others play a role in metabolic

transformation.

Status of facilitated glucose transporters in MCF10A and
MCF10HER2 cells
We hypothesized that the relatively high levels of glucose

uptake by insulin-independent MCF10HER2 cells was partly due

to increased expression of facilitated glucose transporters.

Glucose transporters 1 and 3 (GLUT1,GLUT3) are constitutively

expressed at the plasma membrane and contribute to basal levels

of glucose transport in most cell types, and both transporters have

been reported to be transcriptionally up-regulated in cancer cells

[26,27]. In addition, activation of IR signaling by insulin induces

translocation of glucose transporter 4 (GLUT4) largely from

perinuclear compartments to the plasma membrane in insulin

responsive cells [25]. We isolated plasma membrane-localized

proteins from MCF10A cells cultured in insulin-containing media

and from MCF10HER2 cells cultured in insulin-free media, and

immunobloted for GLUT1, GLUT3 and GLUT4. Under these

conditions, the amount of GLUT1 and GLUT3 detected in the

plasma membrane fraction of both cell types were similar

(Figure 3A). Comparing MCF10A and MCF10HER2 plasma

membrane GLUT4 levels shown in Figure 3A, higher levels of

this insulin-responsive transporter were observed in membrane

preparations from MCF10A cells cultured in the presence of

insulin, yet levels were readily detected in membrane prepara-

tions from MCF10HER2 cells maintained in the absence of

insulin. In a follow-up experiment, we compared MCF10A and

MCF10HER2 cells cultured with or without insulin and observed

that in each condition MCF10HER2 cells had higher plasma

membrane GLUT4 levels than MCF10A cells. In MCF10HER2

cells cultured without insulin basal levels of plasma membrane-

localized GLUT4 were 44% higher than basal GLUT4 levels

detected in the plasma membrane preparations from MCF10A

cells cultured without insulin. In both cell types, insulin treatment

induced an increase in GLUT4 at the plasma membrane

(Figure 3B). These results indicate that insulin induces GLUT4

translocation in both MCF10A and MCF10HER2 cells. Relative

to non-induced basal levels observed for MCF10A, there was an

Figure 1. Receptor activation and insulin-induced proliferation in breast cells. (A) A list of breast cancer cell lines indicating if they
proliferate without insulin in serum-free conditions, including the nontransformed breast epithelial cell line MCF10A. (B) The effects of a range of
insulin and IGF-I treatments on proliferation of MCF10A cells in 72 hours. Physiological concentrations of insulin and IGF-I increased MCF10A
proliferation (Bars, standard error). (C) Immunoblot analysis of phosphorylated IGF-IR and IR in MCF10A and MCF10HER2 cells. Receptors were
immunoprecipitated from 1 mg of whole cell lysate, 50% of the eluent was loaded per gel lane and either tyrosine phosphorylated (phospho, upper)
or total receptor (IP/IB, lower) levels were probed. (D) Immunoblot analysis of phosphorylated IRS1 and IRS2 in MCF10A and MCF10A-derived cell lines
transduced to stably over express HER2, TC1, and FGFR2 oncogenes. Samples were immunoprecipitated from 1 mg of whole cell lysate, 50% of the
eluent was loaded onto gel lanes and probed for either total IRS1 (IRS1 IP/IB) or phosphorylated (phospho-) IRS1 protein. Immunoprecipitated
phosphorylated IRS2 levels (phospho) and total IRS2 (IRS2 IP/IB) were similarly detected.
doi:10.1371/journal.pone.0017959.g001
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increase in non-induced basal GLUT4 localization at the plasma

membrane of MCF10HER2 cells, which could partly contribute

to their insulin-independent glucose uptake. Notably, the highest

levels of plasma membrane-localized GLUT4 were observed in

transformed cells exposed to insulin. The relative levels of plasma

membrane-localized GLUT4 in MCF10A and MCF10HER2

cells treated with and without insulin shown in Figure 3B

correlated with the relative amounts of glucose uptake shown in

Figure 2.

Interrogating dynamic gene expression data to discover
a mechanism for the altered metabolic phenotype in
HER2 transformed cells
The above results indicate that oncogene-transformed cells

acquire the ability to transport relatively high levels of glucose in

an insulin-independent manner, and also suggest that GLUT4

may in part play a role in this change. In order to understand the

mechanistic basis for this phenotype, we compared the HER2-

regulated transcriptome in MCF10A cells with the activated

Figure 2. Measurement of glucose uptake by cells cultured with or without insulin. Cell lines examined were MCF10A and MCF10A
transduced to over express the indicated oncogenes. Glucose uptake was determined by an enzymatic and colorometric-based absorbance assay of
glucose in fresh media and in spent media after 48 hours, the difference was normalized to the number of cells in 48 hour cultures. Glucose uptake
was substantially induced in MCF10A cell cultures containing insulin (+I, 5 mg/ml) compared to MCF10A minus-insulin culture conditions (-I). In
contrast, in MCF10A cells transformed by oncogene over expression relatively high-level glucose uptake was observed in both insulin-containing and
insulin-minus culture conditions. Relative to minus-insulin conditions glucose uptake was further significantly induced by insulin in transduced cells
over expressing HER2, TC1 and DDHD2. Bars, standard error of three experiments.
doi:10.1371/journal.pone.0017959.g002

Figure 3. Immunoblot analysis of facilitated glucose transporters in the plasma membranes of MCF10A and MCF10HER2 cells.
(A) Plasma membrane proteins were isolated from MCF10A cells cultured with insulin (5 mg/ml) and MCF10HER2 cells cultured without insulin.
Isolated membrane proteins were probed for GLUT1, GLUT3 and GLUT4. Transferrin receptor was used as a plasma membrane loading control.
Amounts of plasma membrane-localized GLUT1 and GLUT3 appeared to be similar in both samples. Although levels of the insulin-responsive
transporter GLUT4 were higher in membrane preparations from MCF10A cells cultured in the presence of insulin, GLUT4 was readily detectable at the
plasma membrane in MCF10HER2 cells maintained long-term in the absence of insulin in serum-free media. (B) MCF10HER2 cells were maintained in
serum-free media with out insulin and MCF10A cells were incubated for 18 hours in the absence of insulin in serum-free media, then both cell lines
were cultured with or without insulin for 30 minutes. Plasma membrane localized proteins were harvested and probed for GLUT4. In MCF10HER2 cells
cultured without insulin basal levels of plasma membrane localized GLUT4 were calculated to be 44% higher than basal GLUT4 plasma membrane
levels in MCF10A cells cultured without insulin. In both cell types, insulin induced an increase in GLUT4 at the plasma membrane. The highest levels
were observed in the MCF10HER2 cells plus insulin condition. (C) bands in (B) were quantified (optical density) by Quantity One software from Bio-
Rad Laboratories. Levels of GLUT4 were normalized to transferrin receptor levels in each context and expressed as a ratio. Relative normalized
expression is compared to MCF10A minus-insulin results.
doi:10.1371/journal.pone.0017959.g003
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HER2 oncogene-regulated transcriptome in MCF10HER2 cells to

identify changes in gene expression that could play a role in HER2

oncogene-driven increased insulin-independence. We treated

MCF10A and MCF10HER2 cells with the HER2-specific small

molecule kinase inhibitor (CP724,714, 1 mM) to block HER2

kinase activity, and thus HER2-directed gene expression, in both

cell types over the course of 45 hours. In that time mRNA was

collected every three hours (16 time points) and genome-wide

expression was analyzed by microarray. Time series gene

expression analysis showed dynamic gene expression level changes

that were regulated by HER2 as a function of time in each of the

cell lines.

We used differential dynamic gene expression analysis of the

time series expression data, described by Shirvani et al. [28] and

outlined in Materials and Methods, to discover which genes were

differentially regulated by the HER2 oncogene in MCF10HER2

cells compared to HER2 proto-oncogene regulation in the

MCF10A cells. We overlaid those genes that were uniquely

regulated in MCF10HER2 cells onto canonical pathways for

glycolysis and IR signaling (Figures S1 and S2). This analysis

resulted in the identification of several differentially regulated

genes that function in normal cell metabolism including, ATP

citrate lyase (ACLY) and pyruvate dehydrogenase kinase (PDK)

that have previously been shown to play a role in cancer cell

metabolism [29,30]. Time-dependent expression for these genes

and others regulated by the HER2 oncogene are shown in Figure

S3. In addition, we made the novel observations that the HER2

oncogene differentially regulated the expression of phosphoglyc-

erate dehydrogenase (PHGDH) and vesicle-associated membrane

protein 8 (VAMP8). PHGDG is an enzyme that commits a

glycolytic intermediate to serine biosynthesis [31], and VAMP8 is

known to function in the localization of GLUT4 to internal storage

vesicles in adipocytes [32,33]. Figure 4 shows how VAMP8 and

PHGDH expression were regulated throughout the time series

(Figure 4A). VAMP8 expression was repressed by HER2 signaling

in MCF10HER2 cells but not in MCF10A cells. PHGDH

expression was more similarly regulated by HER2 in both cell

types, however, steady-state levels (0 hours) were nearly 2-fold

higher in MCF10HER2 cells compared to MCF10A cells.

Furthermore, during the course of the experiment, PHGDH

expression changed 5.7-fold in MCF10HER2 cells, but only 2.2-

fold in MCF10A cells. The steady-state transcript levels for both

genes were verified by real-time RT-PCR (Figure 4B). Also, we

performed immunoblot analysis of whole cell lysates, which

showed that levels of VAMP8 and PHGDH protein correlated

with their gene expression levels (Figure 4C). Finally, results

similar to those from MCF10HER2 cells were observed in time-

series data obtained from the HER2-amplified SUM225 breast

cancer cell line (Figure 4D).

VAMP8 has a role in regulating GLUT4 localization in
MCF10HER2 cells
VAMP8 is a synaptobrevin that functions in GLUT4 plasma

membrane endocytosis [33,34]. According to microarray, immu-

noblot and real-time RT-PCR analysis VAMP8 was down-

regulated in MCF10HER2 cells compared to MCF10A cells.

This suggests that VAMP8 down-regulation contributed to higher

steady state levels of GLUT4 on the plasma membrane. We used a

lentiviral expression system to infect and over express VAMP8

mRNA and protein in MCF10HER2 cells to test if increased

VAMP8 levels would cause GLUT4 to localize to internal storage

sites in these cells, and reverse the insulin-independent growth

phenotype. When MCF10HER2 cells were transduced to over

express VAMP8 we found a dramatic decrease in their growth rate

in insulin-free culture conditions, but not insulin-containing

conditions. While the cells could still be cultured without insulin,

the population doubling time of the VAMP8 expressing cells was

increased two-fold. We looked at subcellular localization of

GLUT4 in MCF10HER2 cells over expressing VAMP8 and in

LacZ expressing control counterparts by indirect immunofluores-

cence staining and confocal microscopy. In LacZ expressing

MCF10HER2 cells, cultured with and without insulin, indirect

immunofluorescence detected GLUT4 both intracellularly and at

the plasma membrane (Figures 5A and 5B). In MCF10HER2 cells

transduced to express high levels of VAMP8 and cultured in

insulin-free media, GLUT4 was internally localized and not

observed at the plasma membrane (Figure 5C). To observe

GLUT4 at the plasma membrane of VAMP8-transduced

MCF10HER2 cells required the addition of insulin to the media

(Figure 5D). These confocal images provide evidence that VAMP8

has a role in partitioning GLUT4 in breast epithelial cells and just

as in adipocytes VAMP8 appears to function in localizing GLUT4

to intracellular storage sights. Forced over expression of VAMP8

in the context of HER2 over expression in MCF10HER2 cells

appears to have reinforced intracellular GLUT4 localization in the

absence of insulin and hampered insulin-independent proliferation

of MCF10HER2 cells.

Next, we examined VAMP8 expression in breast cancer-derived

cell lines and found that VAMP8 was expressed at low levels in a

panel of breast cancer cells lines compared to expression levels in

MCF10A cells (Figure 5E). Most of the breast cancer cell lines we

examined were insulin-independent for proliferation; the one

exception being the SUM44 cell line, which expressed high

VAMP8 levels and also required insulin.

PHGDH up-regulation by HER2 oncogene signaling has a
role in MCF10HER2 insulin-independent proliferation
PHGDH catalyzes the rate-limiting reaction that commits an

intermediate of the glycolytic pathway to L-serine biosynthesis,

which is a substrate for biosynthesis of lipids, proteins and

nucleotides [35]. Microarray, immunoblot and real-time RT-PCR

data showed that PHGDH was up-regulated in MCF10HER2

cells compared to MCF10A cells. We targeted PHGDH for

knockdown in MCF10HER2 cells to investigate if knockdown

would inhibit MCF10HER2 cell growth under insulin-free, serum-

free conditions. Two individual shRNA constructs effectively

knocked down PHGDH mRNA expression levels more than 80%,

although protein levels did not reach that level of knockdown

(Figure 6A and 6B). Based on the data in Figure 6B showing that

the level of protein was approximately reduced by only one half,

we conclude that an incomplete knockdown of PHGDH in

MCF10HER2 cells attenuated the growth of the cells by as much

as 60% compared to control cells transduced by a non-silencing

vector. The effect was greater for cells cultured in the absence than

in the presence of insulin (Figure 6C). The possible importance of

PHGDH up-regulation and L-serine biosynthesis in insulin-

independent proliferation of MCF10HER2 cells is underscored

by microarray data which showed that three of three enzymes in

the pathway of L-serine biosynthesis were also upregulated in

proliferating MCF10HER2 cells compared to proliferating

MCF10A cells (Figure S4); although phosphoserine phosphatase

and phosphoserine aminotransferase were not dynamically

regulated by the HER2 oncogene like PHGDH. We examined

mRNA from a panel of breast cancer cell lines by real-time RT-

PCR and found that compared to MCF10A, PHGDH was

expressed at higher levels in the majority, including SUM44 cells,

which required insulin for proliferation (Figure 6D).

Oncogenes in IGF1-Independence
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Discussion

In the present study, we have shown that in normal human

mammary epithelial cells insulin activates the canonical IR

pathway to increase glucose uptake, and that oncogene over

expression causes insulin-independence of transformed breast

epithelial cells, in part by allowing for high level glucose uptake in

the absence of insulin. In addition, our results indicate that

oncogenes such as HER2 influence the expression of several

genes that play a role in glycolysis. Collectively, our results

indicate that oncogene-mediated alterations in gene expression

play a direct role in metabolic transformation. The insulin-

independent phenotype described in this report represents a

qualitatively different metabolic condition that promotes tumor

cell growth. Furthermore, this study illustrates a novel approach

to investigate the oncogene-regulated transcriptome to under-

stand how an oncogene induces altered phenotypes such as

metabolic transformation.

It is important to recognize that the insulin-independence

phenotype that we have described in this report represents an

independence of the metabolic effects of insulin via the IR and

not an independence of the mitogenic effects of IGF-I via the

IGF-IR. In all of the insulin-independent cells we have studied,

there was no evidence of constitutive phosphorylation of the

insulin or IGF-I receptors. Furthermore, the IR and IGF-IR

substrates IRS1 and IRS2 were not tyrosine phosphorylated in

cells proliferating continuously in serum-free and insulin/IGF-I-

free media.

Our investigation of insulin-independent growth showed that in

addition to oncogenes that function as tyrosine kinases, such as

HER2 and FGFR2, functionally unrelated oncogenes like TC1,

LSM1 and WHSC1L1 also induce cell transformation to insulin-

independent glucose uptake and proliferation. While not all breast

cancer cells demonstrate the insulin-independent phenotype, 7 of 9

breast cancer cell lines we examined did. This indicates that

insulin-independence is a common in vitro phenotype of

oncogene-transformed human breast cancer cells. We also found

that oncogene-regulated genes that were implicated in insulin-

independence were also commonly altered in their expression in

human breast cancer cell lines.

Using isogenic model cell lines to compare nontransformed

breast epithelial cells and HER2 over expressing cells we learned

that, although the difference might be considered modest by

some assessments, non-induced plasma membrane-localized

GLUT4 levels were increased in HER2 transformed cells.

Moreover, induced plasma membrane levels were decidedly

higher in the transformed cells than the induced levels in the

nontransformed cells. Evidence to suggest the underlying

Figure 4. HER2 oncogene-regulated expression of PHGDH and VAMP8. (A) PHGDH and VAMP8 gene expression levels as a function of time
after HER2 kinase activity was inhibited by treatment with CP724,714 (1 mM) in MCF10A cells cultured in insulin-containing media and MCF10HER2
cells cultured in insulin-free media. mRNA was collected every three hours for 45 hours total, and measured by microarray. Data are log2 transformed
and mean-centered. (B) Steady-state expression levels of VAMP8 in MCF10A and MCF10HER2 cells were compared by real-time RT-PCR (bars, standard
deviation). (C) Immunoblot analysis of VAMP8 and PHGDH in whole cell lysates from MCF10A and MCF10HER2 cells. (D) VAMP8 and PHGDH
expression as a function of time in the HER2-amplified SUM225 breast cancer cell line treated with CP724,714 (1 mM) for 45 hours, these data are log2
transformed and mean centered.
doi:10.1371/journal.pone.0017959.g004
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mechanisms for how the HER2 oncogene caused both increased

basal and insulin-induced plasma membrane localization of

GLUT4, and the insulin-independent growth phenotype came

from our investigation of the transcriptome regulated by the

HER2 oncogene. Analysis of time series gene expression data,

after inhibiting HER2 activity, led to the discovery of several

genes that were differentially regulated by the oncogene in

transformed cells, such as ACLY, PDK, INSIG1, and SGK.

Notably, we did not find that LDHA was regulated by HER2 in

insulin-independent MCF10HER2 cells; however, we did find

that LDHA was regulated by HER2 in MCF10HER2/E7 cells

that are transformed to a fully growth factor-independent state

[36] (see Figure S3), which is consistent with the findings of Zhao

et al. [12]. The present data showing that HER2 represses PDK

expression does not necessarily contradict reports that show an

upregulation of PDK in cancer cells. In cancer cells PDK

expression is upregulated by the HIF1a transcription factor

[30,37], and HIF1a is not activated in the MCF10HER2 cells

that is by comparison only partly transformed [36,38]. Consid-

Figure 5. VAMP8 has a role in regulating GLUT4 localization in
MCF10HER2 cells. (A and B) MCF10HER2 cells transduced with a
control vector expressing LacZ show GLUT4 plasma membrane and
intracellular localization with or without insulin in serum-free media. (C)
Forced high-level expression of VAMP8 in MCF10HER2 cells causes
GLUT4 to be primarily localized to internal stores when insulin is absent
from the culture media and (D) the addition of insulin (5 mg/ml) to the
culture media shows GLUT4 at the plasma membrane of MCF10HER2
cells over expressing VAMP8. (E) VAMP8 expression levels were low
relative to MCF10A cells in 5 breast cancer cell lines, SUM225, SUM52,
SUM159, SUM185, and SUM229, which can be maintained without
insulin in serum-free conditions. Levels were unchanged when the cell
lines were cultured with insulin for 24 hours (bars, standard error).
Proliferation of the MCF10A line and SUM44 breast cancer cell line
requires insulin in serum-free conditions.
doi:10.1371/journal.pone.0017959.g005

Figure 6. PHGDH upregulation by the HER2 oncogene supports
insulin-independent proliferation of MCF10HER2 cells. (A and B)
Real-time RT-PCR and immunoblot analysis of pGIPZ shRNA-mediated
knockdown of PHGDH mRNA and protein expression (bars, standard
deviation). The experiment was done using two PHGDH-targeted
vectors and a non-silencing control vector. While mRNA levels were
reduced nearly 80%, the amount of protein appears to be decreased by
only one half. (C) PHGDH knockdown inhibits proliferation of
MCF10HER2 cells and the strongest effect, a 60% reduction, was
observed for the number 2 construct in minus insulin (-I) culture
conditions (bars, standard deviation). (D) PHGDH mRNA levels were
measured in a panel of breast cancer cell lines relative to MCF10A
expression by real-time RT-PCR. SUM225, SUM52, SUM159, SUM185,
SUM229 were cultured with and without insulin (5 mg/ml) in serum-free
media for 24 hours. PHGDH expression was upregulated in the majority
of breast cancer cell lines, including the insulin-dependent SUM44
cancer cell line (bars, standard error).
doi:10.1371/journal.pone.0017959.g006
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ering what was yet unknown in the current literature on cancer

cell metabolism we investigated two genes whose expression was

HER2 oncogene-regulated, VAMP8 and PHGDH, for their roles

in HER2 oncogene-driven insulin-independence. While VAMP8

plays a role in GLUT4 internalization in adipocytes [32], its

expression has not previously been reported to be regulated by an

oncogene in transformed cells. Furthermore, our data indicate

that oncogene-mediated VAMP8 down-regulation in breast

epithelial cells may disrupt the balance of mechanisms that

partition GLUT4 into internal storage and plasma membrane

locales, thus increasing the likelihood that GLUT4 will be plasma

membrane localized.

In addition to the HER2 oncogene-dependent down-regulation

of VAMP8, we discovered evidence to suggest that the HER2

oncogene-dependent up-regulation of PHGDH expression also

functions in promoting insulin-independent proliferation of HER2

transformed cells. PHGDH has recently been recognized to be

highly expressed in primary breast tumors [39]. PHGDH up-

regulation, which was observed in a majority of the breast cancer

cell lines we examined, increases glucose-derived serine production

[40]. This relates to an increased utilization of glucose, which

could contribute to an increased rate of facilitated glucose

transport into transformed cells. Also, increased PHGDH effects

increased biosynthesis, which is necessary for increased cell

proliferation. These results suggest that the phenotypic effects of

oncogene-driven transformation depend on a coordinated change

in the expression of many genes.

We recently published a study that more generally explores by

computational and systems-level analyses the entire transcriptome

that is dynamically regulated specifically by HER2 oncogene

signaling [38]. That report concludes that the activated HER2

oncogene directly regulates a transcriptome comprising more

than 2000 genes that is quantitatively and qualitatively different

from the transcriptome regulated by the proto-oncogene.

Further, the HER2 oncogene-regulated transcriptome impacts

on many different cellular systems and signaling pathways that

affect cancer cell behavior. In the current study, we focus on one

phenotype that can be observed in vitro, which distinguishes

transformed and cancer cells from nontransformed cells, i.e., the

insulin-independent proliferation of oncogene-transformed breast

epithelial cells and breast cancer cells in serum-free media.

Transcriptomic and pathways-level analyses lead us to further

investigate the role of two genes that before now did not have a

place in our understanding of the metabolic transformation of

breast cancer cells. The results of our pathways-level analysis here

reinforce the notion that no single gene can account for a

complicated disease such as cancer, moreover, it is unlikely that a

single gene can account for a single dysregulated function.

Through systems-level approaches we can begin to uncover

coordinated networks of genes that underlie transformed

phenotypes.

The results of this study are timely considering recent interest in

targeting the IR, or co-targeting the IR and IGF-IR, as an

approach to cancer therapy. There is strong evidence that insulin

promotes tumor cell growth via the IGF-IR and IR [41,42]. While

it is clear that insulin can promote growth of nontransformed

breast epithelial cells and breast cancer cell lines, results of our

study suggest how oncogene activation can affect gene expression

and induce insulin-independent proliferation and glucose uptake

in the absence of IR and IGF-IR activity. Since oncogenes

regulate so many aspects of the malignant phenotype, including

metabolic transformation, targeting activated oncogenes when

ever possible in clinical trials using targeted agents is of increasing

importance.

Materials and Methods

Cell Lines and Cell Culture Conditions
The MCF10A human mammary epithelial cell line [43] was

cultured in SFHIE medium (Ham’s F-12 medium supplemented

with 0.1% bovine serum albumin, fungizone (0.5 mg/ml), gen-

tamicin (5 mg/ml), ethanolamine (5 mmol/L), HEPES (10 mmol/

L), transferrin (5 mg/ml), 3,3,95-Triiodo-L-Thyronine (T3)

(10 mmol/L), selenium (50 mmol/L), hydrocortisone (1 mg/ml),

insulin (5 mg/ml or otherwise as indicated in figure legends), and

10 ng/ml epidermal growth factor (EGF)). MCF10HER2 cells,

derived from MCF10A cells by stable over expression of HER2

[44], were grown in the same culture media as MCF10A cells but

without insulin (SFHE); SUM225, SUM52, SUM159, SUM185,

SUM229 [45,46,47] and MCF10HER2/E7 [36], all previously

developed in our laboratory, were cultured in SFH medium

without EGF or insulin. The SUM44 cell line, also previously

developed in our laboratory [48], was maintained in SFH with

insulin. All cells were cultured at 37uC in a humidified incubator

containing 10% CO2 and were maintained free of mycoplasma.

CP724,714 was used at 1 mM (Pfizer Inc, Groton, CT).

Whole Cell Lysates and Plasma Membrane Protein
Isolation
For whole cell lysate preparation, cells were rinsed twice with ice

cold HBSS (Life Technologies, Grand Island, NY) and then lysed

on ice with a buffer consisting of Tris-HCl (50 mmol/L, pH 8.5),

NaCl (150 mmol/L), 1% NP40 (ICN Biomedical, Inc., Aurora,

OH), EDTA (5 mmol/L) supplemented with sodium orthovana-

date (5 mmol/L), phenylmethsulfonyl fluoride (50 mg/ml), apro-

tinin (20 mg/ml), and leupeptin (10 mg/ml). Lysates were spun at

14,000 x g at 4uC for 10 minutes and then analyzed for protein

using the Bradford method with reagents from Bio-Rad Labora-

tories (Hercules, CA). Plasma membrane proteins were isolated

from sub-confluent plates treated for 1/2 hour with or without

insulin using Pierce Cell Surface Protein Isolation Kit, according

to manufacturer’s instructions (Pierce, Rockford, IL). Briefly, cells

were washed twice with PBS then labeled with EZ-Link Sulfo-

NHS-SS-Biotin. Cells were subsequently lysed by sonication and

labeled proteins were isolated with Immobilized NeutrAvidin-

agarose beads. Bound proteins were released by incubating with

Laemmli sample buffer.

Immunoprecipitation and Immunoblotting
Immunoprecipitation and western blotting was performed as

previously described [36]. Cells were lysed in a buffer containing

20 mM Tris-HCl (pH 8.0), 137 mM NaCl, 1% NP40, 10%

glycerol, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride,

1% aprotinin, and 20 mg/ml leupeptin. Protein concentrations

were equalized using the Bradford method. For whole cell lysates,

Laemmli sample buffer was added and the samples were boiled.

For immuno-precipitation, 1 mg of antibody was added to 1 mg of

sample and incubated at 4uC for 1 h. Immune complexes were

then bound to protein A/G beads for 1 h at 4uC. Immunopre-

cipitates were washed three times in lysis buffer. Laemmli sample

buffer was added and the samples were boiled. IR and IGF-IR

immunoprecipitates (50% of eluent), whole cell lysates (100 ug)

and isolated cell surface proteins (25 ug) were separated on a 7.5%

SDS-polyacrylamide gels and transferred to PVDF membranes by

semi-dry electrophoretic transfer with a Bio-Rad Transblot SD

unit. Membranes were probed with primary antibodies following

supplier’s recommendation and secondary peroxidase-conjugated

antibodies (anti-mouse or rabbit) from Vector Laboratories

(Burlingame, CA). Immunoreactive protein was visualized by
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enhanced chemiluminescence with reagents from Pierce Labora-

tories/Thermo Scientific (Rockford, IL). Imaged by a Molecular

Imager and Universal Hood II, and Quantity One software from

Bio-Rad Laboratories (Hercules, CA). Required primary antibod-

ies: anti-Transferrin Receptor (Zymed Laboratories, South San

Francisco, CA), Phospho-tyrosine antibody P-Tyr (BIOMOL,

Plymouth Meeting, PA), anti-VAMP (Abcam, Cambridge, MA),

anti-PHGDH (Abcam, Cambridge, MA), anti-GLUT1,3,4 (Milli-

pore, Billerica, MA), anti-IRS1 and IRS2 (Millipore, Billerica,

MA), anti-IGF-IRb and anti-IRb (Santa Cruz Biotech, Santa

Cruz, CA).

Real-time RT-PCR
RNA was extracted from cells using the Qiagen (Valencia, CA)

RNeasy kit. RNA was converted into cDNA via a reverse

transcription reaction using oligo dt primers and the SuperScript

III First-Strand Synthesis System (Invitrogen, Carlsbad, CA).

Primer sets specific to approximately 100 bp sequences of target

genes and controls (PUM1 and GAPDH) were ordered from

Invitrogen. Real-time RT-PCR was done in 25 mL reactions, in

96-well plates, using 100 ng cDNA and the FastStart SYBR Green

Master Mix (Roche Diagnostics, Mannheim, Germany). Reactions

were done at minimum twice in triplicate using the Bio-rad iQ5

real-time PCR machine (Bio-Rad Laboratories, Hercules, CA).

Cycles to threshold values were normalized to values for GAPDH

and PUM1 and calibrated to MCF10A cell levels. Control wells

containing PCR master mix and primers without sample cDNA

emitted no fluorescence after 40 cycles. Relative expression data

were calculated as described by Livak and Schmittgen [49].

Primers are available on request.

Cell Proliferation and Glucose Uptake Assays
The number of nuclei or cells was determined the day after cell

plating and at subsequent indicated time points in parallel plated

cultures using the Beckman Coulter Z Series systems and

protocol (Beckman Coulter, Hialeah, FL). The glucose uptake

assay used a technique similar to that described previously [8].

Glucose concentrations in cell culture media were measured

enzymatically using the Glucose (GO) Assay kit (Sigma Aldrich,

Saint Louis, MO).

Lentivirus Vectors and Transduction of Cells
The lentiviral expression construct containing the human

VAMP8 gene (pLenti6-VAMP8) was established as described

earlier [50]. Briefly, the VAMP8 coding sequence was cloned by

RT-PCR from the MCF10A cell line using the pENTR/TOPO

vector kit (Invitrogen, Carlsbad, CA). Lentiviral expression

constructs were created using ViraPower Lentiviral Expression

System (Invitrogen, Carlsbad, CA). The construct was sequenced

to ensure that the sequence and orientation were correct.

Lentivirus was produced by cotransfecting the 293FT cell line

with the pLenti6 expression construct and the optimized

packaging mix (Invitrogen, Carlsbad, CA). MCF10HER2 cells

were transduced with lentivirus and selected with blasticidin.

VAMP8 expression levels were detected using real-time RT-

PCR and Western blotting. Parallel control infections were done

with a LacZ expressing construct, pLenti-LacZ. Lentivirus-

mediated shRNA knockdown of PHGDH gene expression was

done using the Expression Arrest GIPZ lentiviral shRNAmir

system (Thermo Scientific, Huntsville, AL). Lentivirus was

produced by transfecting 293FT cells with the combination of

the lentiviral expression plasmid DNA targeting PHGDH

(catalogue nos. RHS4430-98903591 and RHS4430-99137562)

or nonsilencing vector control and trans-lentiviral packaging mix

(Thermo Scientific, Huntsville, AL). MCF10HER2 cells were

transduced with pGIPZ-derived lentivirus and selected with

puromycin. PHGDH expression levels were detected using real-

time RT-PCR and Western blotting. Primers are available on

request.

Microarrays and Gene Expression Analysis
Gene expression networks from MCF10A, MCF10HER2 and

MCF10HER2/E7 cells were determined from an analysis of

global gene expression time series data. Cells were plated so that

they reached 75% confluency after 4 days. At this point cultures

were treated with the HER-2 kinase inhibitor CP724,714 (1 mM )

and RNA was isolated from parallel plated plates at 0, 3, 6, 9, 12,

15, 18, 21, 24, 27, 30, 33, 36, 39, 42, and 45 hours after addition

of inhibitor. Media was changed the day after plating and at the

start of treatment. Quantity measurement and the high quality of

all mRNA samples were assured by analysis with the NanoDrop

1000, Agilent Bioanalyzer and the Agilent RNA 6000 Nano Kit

(Agilent Technologies, Waldbronn, Germany). Expression levels at

each time point for each cell and treatment were determined by

microarray analyses using the Illumina human Ref8v2 array. Data

were processed for quality control and normalized across

compared arrays by quantile normalization. MIAME compliant

data are accessible through GEO Series accession number

GSE23176 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE23176).

2500 genes from MCF10HER2 cells, with 1.7 or greater

expression fold-change at any time point in the series, were

included in subsequent analysis to identify transcripts that are

differentially expressed in MCF10HER2 cells compared to

MCF10A. Differential time series gene analysis is previously

described [28], MCF10HER2 to MCF10A ratios of gene

expression were calculated for each probe at each time point,

then normalized to the expression ratio at the zero time point, and

finally expressed as the natural logarithm. Genes identified to be

differentially expressed had a minimum 2-fold expression ratio at

any time point. Ingenuity Systems Path Designer was used to make

graphical representations that show the relationships between

molecules in the insulin signaling and glycolytic pathways.

Molecules are represented as nodes, and a biological relationship

between two nodes is represented as an edge (line). All edges are

supported by at least 1 reference from the literature, from a

textbook, or from canonical information stored in the Ingenuity

Pathways Knowledge Base. The intensity of the node color

indicates the degree of up (red) or down (green) regulation by the

HER2 oncogene.

Immunohistochemical Analysis
Indirect immunofluorescence analysis was performed on

MCF10HER2 cells infected with Lacz or VAMP8 that were

plated on glass cover slips, cultured with or without insulin. Two

days after plating, cells were washed three times with Tris-

buffered saline (TBS), fixed for 3 min in cold 95% methanol,

rehydrated by three washes with TBS, and incubated 30 min at

37 C with primary antibody (anti-GLUT4 diluted 1:1000 in

TBS). Bound antibody was detected by staining with a secondary

goat anti-rabbit Alexa Fluor 488-conjugated antibody (Invitro-

gen, Carlsbad, CA) diluted 1:2000 in TBS, and incubated for

30 min at 37 C. Cover slips were fixed to slides with a drop of

ProLong Gold (Invitrogen, Carlsbad, CA) containing DAPI to

stain nuclei. Images were recorded using a Leica TCS SP5 Laser

Scanning Confocal Microscope (Leica Microsystems, Wetzlar,

Germany).
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Supporting Information

Figure S1 Diagram of the glycolytic pathway showing
genes that were differentially regulated by HER2
oncogene signaling in MCF10HER2 cells. Genes shaded

red were upregulated, green were repressed. These genes were

differentially regulated compared to HER2 proto-oncogene

activity in MCF10A cells.

(TIF)

Figure S2 Diagram of the insulin receptor signaling
pathway showing genes that were differentially regulat-
ed by HER2 oncogene signaling in MCF10HER2 cells.
Genes shaded red were positively regulated, and genes shaded

green were negatively regulated. These genes were differentially

regulated compared to HER2 proto-oncogene activity in

MCF10A cells.

(TIF)

Figure S3 Gene expression levels as a function of time
in transformed cells after HER2 kinase activity was
inhibited by treatment with CP724,714. mRNA was

collected every three hours for 45 hours total, measured by

microarray. Data are log2 transformed, mean-centered. (A)

Additional genes that were differentially upregulated by the

HER2 oncogene in MCF10HER2 cells. (B) Genes that were

differentially down-regulated by HER2 oncogene signaling in

MCF10HER2 cells. (C) Notable metabolism genes that were not

regulated by HER2 oncogene signaling in MCF10HER2 cells. (D)

Genes shown in panel C are regulated by the HER2 oncogene in a

transformed cell line that is completely growth factor independent,

MCF10HER2/E7.

(TIF)

Figure S4 Expression levels of L-serine biosynthesis

pathway enzymes in MCF10A and MCF10HER2 cells.

Data are the average of three independent microarrays (Bars,

standard error).

(TIF)
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