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Abstract

A key goal of cancer therapeutics is to selectively target the
genetic lesions that initiate and maintain cancer cell proliferation
and survival. While most cancers harbor multiple oncogenic muta-
tions, a wealth of preclinical and clinical data supports that many
cancers are sensitive to inhibition of single oncogenes, a concept
referred to as ‘oncogene addiction’. Herein, we describe the clinical
evidence supporting oncogene addiction and discuss common
mechanistic themes emerging from the response and acquired
resistance to oncogene-targeted therapies. Finally, we suggest
several opportunities toward exploiting oncogene addiction to
achieve curative cancer therapies.
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Introduction

Cancer is a disease resulting from the acquisition of somatic

genetic alterations. The results of extensive cancer genome

sequencing and myriad preclinical in vitro and in vivo functional

studies have underscored that cancers are initiated and main-

tained by recurrent ‘driver’ oncogene and/or tumor suppressor

gene mutations. Established cancers in humans harbor, on aver-

age, approximately 30–60 mutations capable of altering protein

function, with cancers such as melanoma bearing roughly 200

protein function-altering mutations per tumor [1]. A key goal of

cancer therapeutics development is to selectively target somatic

cancer mutations—however, targeting all of these alterations in

any one cancer seems a daunting task. Although cancer develops

through progressive gene mutations that activate a variety of

oncogenic functions, compelling evidence from preclinical studies,

and most importantly from cancer patients treated with oncogene-

targeted therapeutics, suggests that cancer cell survival relies on

relatively few key genetic driver events. The term ‘oncogene

addiction’ was coined to describe this phenomenon of exquisite

cancer cell dependence on individual oncogenes to sustain the

malignant phenotype [2].

Clinical evidence for oncogene addiction

As we focus herein on the clinical evidence for oncogene addiction,

we direct the reader to excellent reviews of the preclinical data

supporting oncogene and non-oncogene addiction [3,4]. A prime

clinical example of oncogene addiction is in CML. CML is driven by

the BCR-ABL mutant oncogene, produced as a result of chromosome

9:22 translocation, otherwise known as the ‘Philadelphia’ chromo-

some [5,6]. While preclinical studies provided evidence that

BCR-ABL was a bona fide oncogene both in vitro and in vivo [7,8],

addiction of CML to BCR-ABL was demonstrated in patients through

the profound clinical responses attained with the kinase inhibitor

imatinib, which targets BCR-ABL. This addiction was further

reinforced by the description of genetic mechanisms of resistance

that largely led to reactivation of BCR-ABL kinase activity (described

in more detail below). These observations in aggregate provided a

transformative proof-of-concept for oncogene-targeted cancer

therapy [9]. As summarized in Table 1 (and referenced therein), the

strategy of targeting mutant oncogenic kinases has now been

repeated many times over in a variety of cancer types. The common

theme from these studies is a marked improvement in initial patient

responses when oncogene-targeted therapies, tested in the correct

oncogene-mutated patient population, are compared head-to-head

with prior standard of care therapeutics.

The oncogene-addicted phenotype is not unique to mutated

kinases. One of the earliest examples of targeted therapy (albeit one

where clinical efficacy was established prior to molecular cloning of

the causative oncogene) was the use of ATRA in APL. APL bears

characteristic translocations affecting the retinoic acid receptor,

generating fusion proteins such as PML-RARA that interfere with

normal cell differentiation [10]. ATRA binds to the ligand-binding

domain of PML-RARA, which inhibits its oncogenic function [11].

An additional example is the use of antiandrogens for the treatment

of prostate cancers, which are ‘lineage-addicted’ [12] to AR and bear

recurrent AR amplifications or mutations upon resistance to first-

line therapies [13,14]. Finally, recent cancer genome sequencing has

revealed a prevalent novel class of mutated oncogenes involved in

the regulation of epigenetic states [15]. Examples include oncogenic
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point mutations or chromosomal translocations affecting EZH2,

NSD2, BRD4, IDH1, and IDH2. Given the aforementioned history of

cancer addiction to mutated driver oncogenes, as well as emerging

preclinical studies demonstrating the dependence on these oncoge-

nes for tumor maintenance, drugs targeting these lesions have been

rapidly developed [16–20]. Several of these have already entered

early clinical investigation, with encouraging initial responses [21–24].

Together, these striking results demonstrate that the concept of

oncogene addiction indeed translates into clinical responses.

Therapeutic resistance reveals oncogenic
pathway addiction

Despite the robust initial clinical responses described above, chronic

exposure to most targeted therapeutics often gives way to relapse,

and cures remain elusive. Does this argue against oncogene addic-

tion? Answers lie in the observed clinical mechanisms of resistance

to oncogene-targeted therapeutics. As detailed below, three common

themes emerge upon resistance to many oncogene-targeted thera-

pies; these themes demonstrate that most cancers retain an underly-

ing addiction to oncogene-induced signaling pathways, if not a

monolithic addiction to the originally mutated oncogene.

Secondary alterations of the oncogene drug target

Single-agent BCR-ABL inhibition often results in cancer cell apopto-

sis and profound long-term responses [9,25]; however, a significant

fraction of patients show resistance to existing therapies. The main

observed mechanism of resistance to BCR-ABL inhibition is the

acquisition of second-site mutations in BCR-ABL itself [26]. Predom-

inant among these is mutation of the ATP-binding pocket at the

‘gatekeeper’ residue threonine 315. Mutation at this site prevents

optimal binding of imatinib and other inhibitors, while still allowing

ATP hydrolysis, and hence restoring BCR-ABL signaling in the pres-

ence of inhibitors (Fig 1A). Treatment of lung cancers with drugs

targeting mutant EGFR, ALK, and ROS1 also results in a significant

Glossary

ADC antibody–drug conjugate
AKT Ak thymoma kinase, key member of the PI3K pathway
ALK anaplastic lymphoma kinase, activated by gene

translocation in cancer
APL acute promyelocytic leukemia
AR androgen receptor, lineage driver of prostate cancer
ATP adenosine triphosphate
ATRA all-trans retinoic acid
BCR-ABL B-cell receptor–Abelson kinase, oncogenic fusion

protein that drives CML
BRAF v-Raf murine sarcoma viral oncogene homolog B,

activated by point mutations in cancer
BRD4 bromodomain containing 4, chromatin modulator

activated by translocation in cancer
BTK Bruton’s tyrosine kinase, key member of oncogenic

B-cell receptor signaling
CCLE cancer cell line encyclopedia
CGP cancer genome project
CML chronic myelogenous leukemia
CRAF v-Raf murine sarcoma viral oncogene homolog B
CRISPR/CAS9 clustered regularly interspaced short palindromic

repeats/Cas9 nuclease; eukaryotic gene editing
technology derived from a prokaryotic viral immune
editing system

DM1 maytansine derivative, toxic payload often linkered to
ADC’s

DNA deoxyribonucleic acid
DUSP dual specificity phosphatase, negative regulator of

MAPK pathway
EGFR epidermal growth factor receptor, activated by point

mutation and small deletions in cancer
ER estrogen receptor, lineage driver for breast and other

cancers
ERK extracellular signal-regulated kinase, member of MAPK

pathway
EZH2 enhancer of zeste homolog 2, activated by point

mutation in cancer
FGFR fibroblast growth factor receptor, activated by gene

fusion and point mutation in cancer
FLT3 Fms-like tyrosine kinase 3, activated by ITD and point

mutation in cancer
GIST gastrointestinal stromal tumor

HER2 human epidermal growth factor receptor 2
HER3 human epidermal growth factor receptor 3
IDH1 isocitrate dehydrogenase 1, activated by point

mutation in cancer
IDH2 isocitrate dehydrogenase 2, activated by point

mutation in cancer
IGF-1R insulin-like growth factor 1 receptor, feedback

activator of oncogenic signaling
IL-6 interleukin 6 cytokine
ITD internal tandem duplication, a common mutation of

the FLT3 oncogene
KIT v-kit Hardy–Zuckerman 4 feline sarcoma viral

oncogene homolog
KRAS Kirsten RAS viral oncogene homolog, activated by

point mutation in cancer
MAP2K1 mitogen-activated protein kinase kinase 1
MAP2K2 mitogen-activated protein kinase kinase 2
MEK MAPK/ERK kinase, alternate common name for

MAPK2K1, MAPK2K2, and/or MAPK pathway
MAPK mitogen-activated protein kinase
MITF microphthalmia-associated transcription factor,

lineage driver for melanoma
MYB v-myb avian myeloblastosis viral oncogene homolog
NRAS neuroblastoma RAS viral oncogene homolog, activated

by point mutation in cancer
NSCLC non-small cell lung cancer
NSD2 Wolf–Hirschhorn syndrome candidate 1
PI3K phosphoinositide 3-kinase (pathway)
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase,

catalytic subunit alpha, activated by point mutation in
cancer

PTEN phosphatase and tensin homolog, tumor suppressor
and negative regulator of PI3K pathway

RAS rat sarcoma viral oncogene; generic name for KRAS,
NRAS, HRAS oncogenes, and/or the signaling pathway

RNAi RNA interference
ROS1 ROS proto-oncogene 1
RTK receptor tyrosine kinase
SPRY Sprouty homologs (e.g., SPRY1, SPRY2), negative

regulators of RTK signaling
TERT telomerase reverse transcriptase, activated by

promoter point mutations in cancer
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fraction of resistant disease bearing second-site oncogene mutations

that restore oncogene function in the presence of drug. These

acquired mutations often occur within the highly conserved gate-

keeper residue (Table 1). The HER2 oncogene commonly develops

resistance to the humanized HER2 antibody trastuzumab in a

slightly different fashion; in this case, the trastuzumab-binding

epitope is lost, while oncogene function is retained [27]. BRAF

obtains resistance to kinase inhibitors, at least in part, through

either kinase amplification or truncations that further activate

kinase activity [28,29]. Outside of kinases, AR, PML-RAR, and ER (a

lineage driver for many breast cancers) acquire mutations in their

ligand-binding domains that reduce or abrogate drug efficacy

(Table 1 [30]) while restoring oncogene function. The common

theme of treatment-acquired secondary oncogene alterations is that

they provide resistance to therapy while reinstating oncogene func-

tion—this clinically observed resistance mechanism makes the most

compelling argument for oncogene addiction.

Activating mutations in oncogenic pathway components

Acquired resistance to oncogene-targeted drugs also occurs via

mutation of alternate components of oncogene-induced signaling

pathways. For example, mutant BRAF signals through the MAPK

signaling pathway to promote melanoma growth. As such, one key

resistance mechanism to BRAF inhibitors such as vemurafenib

is the acquisition of activating mutations in other known MAPK

signaling pathway components such as NRAS [31], or more rarely

MAP2K1, and MAP2K2 [31,32]; loss of function mutations in the

negative MAPK pathway regulator NF1 [31,33]; or amplification and

activation of the MAPK pathway target gene MITF, a lineage driver

of melanoma [31]. All of these mutations restore MAPK oncogenic

pathway signals despite continued pharmacological inhibition of

mutant BRAF (Fig 1B). This theme recurs in NSCLC, where activa-

tion of RTKs such as EGFR and ALK are key driver events. RTKs

signal through several intracellular pathways, including the MAPK

and PI3K pathways. As such, acquired resistance to HER2-, EGFR-,

and ALK-targeted therapies includes selection for activating muta-

tions in the MAPK or PI3K pathways (Table 1 and references

therein). As with second-site mutation of the oncogene itself,

resistance mutations in key members of an oncogenic signaling

pathway highlights that many cancers retain dependence upon

specific oncogenic pathways, if not always the oncogene itself.

Induction of bypass pathway signaling

The third common theme in acquired resistance is the induction of

bypass signaling pathways. A key example is observed in resistance

to BRAF inhibitors. RAF family proteins normally function as

dimers; common oncogenic mutations in BRAF (e.g., V600E) allow

monomeric BRAF proteins to activate downstream signaling path-

ways in the absence of upstream activating signals [28]. This activ-

ity is blocked by selective BRAF kinase inhibitors. However, CRAF,

GROWTH GROWTHARREST/APOPTOSIS

GROWTH GROWTHARREST/APOPTOSIS

MAP2K1C121S

C121S

A Second-site mutation: BCR-ABL

C Bypass pathway induction: EGFR

B Oncogenic pathway mutation: BRAF

ARREST/APOPTOSIS

BCR-ABL

ATP Imatinib

Gefitinib

METEGFR ex19 EGFR ex19 EGFR ex19

ATP

GROWTH GROWTH

T315I BRAFV600E

ATP Vemurafinib

Gefitinib

Figure 1. Common mechanisms of resistance to oncogene-targeted therapeutics.
(A) Second-site mutations can reinstate oncogene function while abrogating inhibitor activity, as exemplified by BCR-ABL gatekeeper mutations as an inhibitor resistance
mechanism. (B) Mutations in oncogene pathway components can reinstate pathway signaling despite continued oncogene inhibition, as exemplified by MAP2K1mutations
as a resistance mechanism for BRAF inhibitors. (C) Mutational or non-mutational activation of bypass signaling pathways can render cancer cells independent of the original
oncogene, as exemplified by MET activation as a resistance mechanism for EGFR inhibition.
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another key RAF isoform, can still activate the MAPK pathway in

the presence of upstream pathway signals. This commonly occurs

through the induction of growth factor-dependent and/or RAS-

dependent signals [34]. Such upstream activating signals are often

paradoxically induced by oncogene inhibition, as discussed in more

detail below. Despite mutant BRAF inhibition, upstream pathway

activation can still signal through CRAF to reinstate MAPK pathway

signaling. This is facilitated through the activation of CRAF homodi-

mers, or through CRAF:BRAF heterodimers that are stabilized in the

presence of some BRAF inhibitors [34–36].

Induction of oncogene bypass signaling is not unique to BRAF

inhibitors. As discussed in more detail below, acquired resistance to

EGFR-, HER2-, and ALK-targeted therapeutics commonly occurs

through the upregulation or amplification of alternate RTK’s

(Table 1). This bypasses the need for the mutated oncogene, but

often reinstates the original downstream signaling pathways. A key

example is the selection for activated MET signaling as a resistance

mechanism to EGFR-targeted therapies [37,38] (Fig 1C). As another

recent example, resistance to the AR inhibitor enzalutamide can be

caused by glucocorticoid receptor (GR)-dependent bypass of AR

signaling [39]. While many bypass resistance mechanisms reinstate

the same signaling pathways originally activated by the oncogene,

this is not always the case. For acquired resistance to BRAF inhibi-

tors in melanoma, mutational activation of the PI3K-PTEN-AKT

pathway has been identified as a prevalent mechanism in bypassing

tumor dependence on MAPK signaling [29,40].

In summary, despite the apparent mechanistic diversity of

acquired resistance to oncogene-targeted therapies, the three major

themes of resistance outlined above demonstrate that most cancers

retain addiction to specific oncogene-activated pathway signals.

This suggests that the key dependencies of cancer cells remain trac-

table despite acquired resistance and that a better knowledge of

resistance mechanisms can lead to rational therapeutic strategies

that reduce or prevent resistance in the clinic.

‘Oncogenic shock’ as a model to understand response
versus resistance to therapy

While many oncogene-addicted cancers show striking initial

responses to targeted therapies, the heterogeneity of response within

and across cancers must be noted. Why is the proportion of

response and resistance so different between different oncogenes—

for example, why are durable single-agent responses often seen with

BCR-ABL inhibition in CML, while inhibitors of FLT3-ITD in AML

appear to only provide transient benefits [41,42]? Similarly, why

does inhibition of the same oncogene have divergent responses in

different cancer types—as exemplified by a ~50% response rate to

BRAF inhibitors in BRAF mutant melanoma, but a less than 5%

response rate in BRAF mutant colorectal cancers [43]? Such incon-

sistencies could be explained by an inability to achieve complete

and sustained target inhibition in different tumor types, due to phar-

macological limitations across different drugs and among different

patient populations [44]. However, emerging data demonstrate that

intrinsic biological differences across oncogenes and tumor types

also exist.

A useful paradigm to understand the biological diversity of

responses to oncogene inhibition is that of ‘oncogenic shock’

[45,46]. This hypothesis builds on the knowledge that activated

oncogenes promote proliferation and survival, but at the same time

paradoxically activate signals that promote arrest or apoptosis [47–51].

Upon acute inactivation of oncogene signaling, the timing of how

these two pathways respond may differ for different oncogenes, or

in different contexts. If the oncogenic pathway is quickly blocked by

a drug, while the paradoxical oncogene-activated growth inhibitory

pathway is slow to turn off, then apoptosis, or oncogenic shock,

prevails. Conversely, if the paradoxical growth inhibitory signals

from the oncogene can quickly reset, this provides a scenario where

cells may survive to become resistant to oncogene inhibition. This

differential in pathway response, presumably due to differences in

the turnover of signaling proteins such as phosphatases that nega-

tively regulate discreet prosurvival or proapoptotic pathways [46],

may explain why some oncogenes show more profound responses

than others upon acute inhibition. What are the mechanisms that

allow oncogenic shock phenotypes to occur—or to be bypassed—

and are they common among cancers?

An early view into the mechanism of paradoxical oncogene-

induced growth inhibitory pathways in cancer cells was afforded by

a study of the differential sensitivity of BRAF mutant versus RTK-

activated cancer cells to MAPK pathway inhibition [52]. This study

suggested that mutant BRAF activates a unique ERK-dependent

transcriptional output, including the upregulation of DUSP phospha-

tases and the SPRY family of secreted RTK inhibitory proteins, both

of which negatively regulate MAPK pathway signaling [53,54].

BRAF inhibition blocks MAPK-dependent growth signaling, but

also shuts off MAPK-dependent SPRY expression, which relieves

SPRY-dependent inhibition of HER-family-, FGFR-, and/or IGF-1R-

dependent responsiveness to exogenous growth factors [55,56].

Such feedback appears to be particularly active in BRAF mutant

colorectal cancers via the rapid activation of EGFR upon BRAF

inhibition [57]. While this explains the limited efficacy of BRAF

inhibitors in this indication, it also provides the rationale for dual

inhibition of BRAF and EGFR in BRAF mutant colorectal cancers

[43,57]. In melanoma, paradoxical feedback pathway activation (as

well as most other clinically observed resistance mechanisms) rein-

states MAPK signaling, providing the rationale for dual BRAF/MEK

inhibition [58,59].

While BRAF signaling inhibition has become a paradigm for

paradoxical feedback pathway activation, oncogenic alterations

in EGFR, HER2, ALK, and MET also function through a MAPK-

dependent feedback pathway to block IL-6-facilitated activation of

STAT3 and PI3K pathway-mediated survival signals [60]. Also like

BRAF, BCR-ABL and FLT3-ITD oncogenes can block the expression

of growth factor receptors via a MAPK pathway-dependent feedback

mechanism [61]. The contrasting behavior of BCR-ABL- and FLT3-

ITD-dependent feedback responses noted in an isogenic cell

background [61] is of particular interest for the oncogenic shock

hypothesis: pulsed inhibition of BCR-ABL rapidly shuts down BCR-

ABL-dependent downstream survival signaling (including MAPK

pathway signaling), but BCR-ABL- and MAPK pathway-dependent

inhibition of normal growth factor-dependent signaling is slow to

revert back to its basal state. This creates a window of time where

no prosurvival signals are present, resulting in apoptosis. While

pulsed FLT3 inhibition in FLT3-ITD mutant expressing cells simi-

larly inhibits oncogenic signaling, MAPK pathway-dependent

negative feedback is rapidly lost and growth factor-dependent
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signaling pathway signaling is quickly restored. In this setting, there

is not enough time for apoptosis to be induced before the FLT3-ITD-

inhibited cells restore functional growth factor receptor-dependent

signaling.

Together, these data provide evidence that oncogene-dependent

feedback inhibition of growth factor-dependent signaling may be

pervasive across many cancers (even BCR-ABL mutant CML). These

studies furthermore suggest that the turnover rate of these feedback

mechanisms in different cancers dictates the fine line between onco-

genic shock versus the activation of bypass resistance mechanisms

(e.g., BCR-ABL inhibition in CML versus BRAF inhibition in colorec-

tal cancer). Finally, the data implicate the MAPK pathway as a key

node regulating the oncogene-induced feedback inactivation of

growth factor receptor signaling (Fig 2).

While MAPK pathway-dependent feedback may commonly

attenuate oncogenic shock responses across cancers, alternate

mechanisms have been reported. First, altered epigenetic regulation

can generate ‘drug-tolerant’ states that allow for the survival of

small subpopulations within otherwise treatment-sensitive cancer

cells; despite this alternate mechanism of resistance, survival is still

generated through the upregulation of growth factor receptors such

as IGF-1R [62]. Second, PI3K-AKT-dependent feedback pathways

have also been reported [63,64]—once again, resistance is driven

through relief of oncogene-induced negative feedback regulation of

growth factor receptors. A particularly interesting case is in prostate

cancer—oncogenic PI3K and AR activation exists in a vicious cycle

where inhibition of either pathway results in feedback upregulation

of the other, via a mechanism that induces EGFR family RTK signal-

ing [65]. As above, knowledge of these feedback pathways sheds

light onto rationally designed therapeutic combinations to prevent

resistance—in this case, dual inhibition of AR and PI3K signaling

pathways shuts down paradoxical bypass signaling and achieves

remarkable efficacy in preclinical models.

A Road map for targeting oncogene addiction

The clinical benefits observed with agents targeting mutated oncoge-

nes provide hope that the ‘one-step remedy’ to oncogene addiction

initially proposed by Weinstein [2] may be attainable for some

cancers. However, the common patterns of resistance to oncogene-

targeted therapies must be anticipated and intercepted in order to

achieve deep and sustained clinical benefit, and ultimately cures.

The road map to curative therapy will require a rationally designed

‘one-two punch’ with combinations of targeted agents, rather than a

one-step remedy. Below, we offer some suggestions to reach this

goal.

Genetically define all cancers

Classical characterization of cancer subtypes include distinctions

based on tissue type, histology, pathology, and level of differentia-

tion, characteristics that are open to biased interpretation [66].

Targeted therapies require a genetic definition for the patient popu-

lations most likely to respond. The most straightforward example is

that of CML, where the BCR-ABL fusion defines the disease better

than any histologic distinction. This is precisely because the genetic

lesion directly impacts the therapeutic strategy (i.e., sensitivity to

BCR-ABL inhibitors). This paradigm extends to other tumor types

with more heterogeneous genetic etiology. Clinical trials of the

EGFR inhibitor gefitinib in otherwise non-selected NSCLC patients

originally failed to show strong differences in overall survival. It

was not until the ‘outlier’ patients who responded to therapy [67]

were retrospectively analyzed for EGFR mutations that the patterns

of response in NSCLC could be rationalized [68–70]. EGFR mutant

NSCLC is therefore a key clinical subtype. This initial finding now

extends to other mutations in NSCLC that are paired with targeted

therapeutics (e.g., ALK translocations and ceritinib). An initially

homogeneous histological subtype of lung cancer is therefore
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Figure 2. Oncogenic shock versus feedback reactivation of growth factor receptor signaling.
(A) Many oncogenes actively suppress growth factor receptor (GF-R)-dependent signaling in addition to activating oncogenic pathway signaling. (B) Oncogenic shock may
predominate when GF-R survival signaling is slow to reinstate after oncogene inhibition (tortoise), creating a window where cells have no prosurvival signals. (C) Bypass
resistance may predominate when GF-R responsiveness is quickly reactivated upon oncogene inhibition (hare).

ª 2015 Novartis Institutes for BioMedical Research EMBO reports Vol 16 | No 3 | 2015

Raymond Pagliarini et al Understanding and exploiting oncogene addiction EMBO reports

285



redefined into a mutation-stratified spectrum of diseases that

dictates different therapeutic options [71]. Many other tumor types

such as glioma and glioblastoma are being similarly redefined based

on molecular subtypes [72].

An extreme version of the mutation-driven definition of cancer is

apparent in so-called basket trials (e.g., NCI-MATCH and the Novar-

tis Signature trial), where both the histological and even lineage

definitions of tumors break down. Patients with the mutation that

predicts sensitivity to the disease are entered into a trial regardless

of tumor type or lineage [73]. The utility of such studies requires

the sequencing of large panels of actionable oncogenes across all

tumor types, with the affordability and rapid turnaround to routi-

nely impact clinical decision-making.

To best pair the mutant oncogenes with targeted therapies, we

need to complete our understanding of the genetic underpinnings of

all cancers. Our knowledge of the key driver mutations across many

cancers is approaching saturation for genes mutated at a frequency

> 10%. However, our knowledge of important driver mutations is

rapidly expanding for oncogenes mutated at lower frequency [74].

Elucidating lower frequency oncogenes will uncover new molecular

driver events and could highlight common signaling pathways that

can be exploited therapeutically. In some cancers however, it has

been challenging to define key oncogenic driver mutations. An

extreme example of this is in pediatric ependymomas of the poster-

ior fossa, where zero recurrent driver mutations in either oncogenes

or tumor suppressor genes have been identified [75]. Identifying

driver mutations could be aided by improving our ability to

sequence difficult regions of the genome, or by improving the analy-

sis of existing cancer genome sequences [76,77]. In addition,

improvements can be made in the analysis of genetic or epigenetic

alterations in the ‘dark matter’ of noncoding DNA sequence [1].

Regulatory sequence mutations can drive oncogenic function, as has

been recently shown for TERT promoter mutations [78,79], as well

as somatic enhancer mutations that activate MYB oncogene binding

[80]. Similar mutations or epigenetic alterations that exist in other

DNA regulatory sequences remain to be uncovered, as the charac-

terization of these dark regions of the genome is only starting to

come to light [81,82].

Address tumor heterogeneity

A key consideration for proper molecular diagnosis of cancers is to

account for inter- and intratumor heterogeneity. Issues with

correctly diagnosing oncogene alterations from patient to patient

could be influenced by the particular test used, as has been noted

for expression-based tests for HER2 amplification [83]—diagnostics

focused on the specific detection of somatic cancer mutations will

likely prove superior. Tumor biopsies can be biased by analyses of a

small portion of the tumor that does not appropriately reflect intra-

tumor heterogeneity, as has been documented in glioblastoma [84–86],

or that does not capture the mutational heterogeneity of dissemi-

nated disease [1,31]. More systematic methods of identifying onco-

gene mutations and acquired resistance mutations, such as with the

analysis of circulating tumor DNA [87], may provide a more holistic

view of actionable mutations in a patient’s disease, particularly in

the case of treatment resistance.

Understanding intratumor heterogeneity is critical not just for

diagnosis, but also for choosing the best targets for durable antitu-

mor responses. The acquisition of mutations upon the progression

of individual tumors resembles a phylogenetic tree, where ‘trunk’

mutations are initiating mutations present in every cancer cell,

‘branch’ mutations occur later during tumor progression and are

present in distinct subregions, and ‘private’ mutations occur only in

small individual regions of the disease. Patterns of trunk versus

branch mutations are seen across a wide variety of cancer types

[88–91]. Targeting trunk mutations, while unfortunately reducing

the universe of possible drug targets, may provide key benefit in

that it reduces the contribution of intratumor mutational heteroge-

neity in engendering resistance to treatment. Understanding branch

mutations in parallel may allow one to recognize independently

arising but convergent resistance mechanisms.

Address therapeutic resistance early

Due to the widespread heterogeneity of most cancers, the alterations

promoting ‘acquired’ therapeutic resistance are almost certainly

preexisting in most cancers [1]. Therefore, resistance should be

expected to arise as a by-product of any single-agent-targeted ther-

apy, and as such should be addressed up-front. Resistance may be

minimized by using multiple drugs targeting the same oncogene or

oncogenic pathway in combination, as the chance any one tumor

cell bears resistance mutations to multiple agents is small (discussed

in more detail below). Resistance may also be minimized by

expediting the use of novel targeted therapies in treating earlier

stage cancers versus advanced metastatic disease. The chance of

earlier stage tumors bearing resistance mutations is likely reduced,

and therefore, responses may be more durable. To this point, the

movement of trastuzumab into the adjuvant and neoadjuvant

settings for early-stage HER2-positive breast cancer has demon-

strated significant benefits [92,93]. On the other hand, the durable

responses and long-term improvements in overall survival seen in

chronic-phase CML upon BCR-ABL inhibition [94] are much less

apparent in CML that has progressed to the accelerated phase or

blast crisis [95,96].

Two key areas of research are essential. First, it is critical that

wherever feasible, serial biopsies from untreated tumors and result-

ing treatment-refractory tumors are analyzed for mutations and

other alterations in oncogenic signaling pathways. Such studies have

already revealed a broader picture of resistance mechanisms [31].

As mentioned above for initial cancer diagnoses, systemic analyses

of resistance in patients through methods such as circulating tumor

DNA analyses [97] may aid in rapidly identifying clinically relevant

resistance mutations. Second, prospective studies to identify

acquired drug resistance mechanisms should be undertaken in the

laboratory [98], even before resistance is seen in the clinic. Where

performed comprehensively, such studies can guide subsequent

analyses in clinical samples, as has been seen for enzalutamide-

resistant prostate cancers [99–101] and BRAF and MEK inhibitor-

resistant melanoma [102]. Similarly, comprehensive functional

genomic screens to identify novel combination targets with existing

therapeutics, or screens to identify novel nodes to target treatment-

resistant disease, should be actively explored [103,104].

While, as described above, most cancers acquire therapeutic

resistance through common themes that retain addiction to core

oncogene pathways, an insidious emerging exception must be

noted. Upon treatment with EGFR inhibitors, a substantial propor-

tion of EGFR mutant lung cancers makes histological transforma-

tions to a small cell/neuroendocrine or mesenchymal phenotypes

EMBO reports Vol 16 | No 3 | 2015 ª 2015 Novartis Institutes for BioMedical Research

EMBO reports Understanding and exploiting oncogene addiction Raymond Pagliarini et al

286



[105–107]. This is not unique to NSCLC; prostate cancers transform

to small cell/neuroendocrine phenotypes in order to evade androgen

deprivation therapies, and there is growing concern that this may be

an increasing issue for antiandrogen therapies such as enzalutamide

and abiraterone [108]. GISTs can also transdifferentiate, in this case

to a rhabdomyoblastic state, upon imatinib resistance [109].

Recently, a change in melanoma cell state has also been suggested

as a novel resistance mechanism for MAPK pathway inhibition

[110]. Changes in cell state can completely abrogate dependencies

on the signaling pathways present in the original tumor, negating

most previously known therapeutic options. As targeted inhibitors

(and combinations thereof) become more potent and selective, the

transformation of cancers to a different cell type may become a

more commonly observed phenomenon to bypass oncogene addic-

tion. A better understanding of this phenomenon, and how to

prevent it, is highly warranted.

Make better inhibitors

For many oncogenes, incomplete antitumor response and/or resis-

tance can be facilitated simply by incomplete target inhibition.

Incomplete inhibition could be due to insufficient drug potency,

suboptimal pharmacokinetics, or poorly tolerated side effects that

either preclude dosing to maximum efficacy or limit patient compli-

ance. There are several clinical examples of more potent and selec-

tive ‘next-generation’ inhibitors showing responses superior to

those of their predecessors. These include the efficacy of nilotinib

and other next-generation BCR-ABL inhibitors in imatinib-pretreated

CML [111–113], and the benefit of vemurafenib and dabrafenib in

BRAF mutant melanoma, where the RAF/multikinase inhibitor

sorafenib had previously failed [58,114]. Enzalutamide, a more

potent androgen receptor (AR) antagonist, has shown clinical effi-

cacy in castration-resistant prostate cancer, further validating

continued addiction of these cancers to AR-dependent signaling

[115]. The more potent and selective ALK inhibitors ceritinib and

alectinib show efficacy in crizotinib-resistant NSCLC [116,117]. It is

anticipated that next-generation PI3K inhibitors with an optimized

selectivity profile will show benefit in PIK3CA mutant cancers,

where many earlier generation drugs have not yet shown durable

responses [118,119]. Well-optimized next-generation inhibitors

therefore are not merely ‘me too’ drugs, but an essential part of our

cancer therapeutic armamentarium.

As inhibitors become more potent and selective for their

intended targets, an upper limit can be reached where the dose-

limiting toxicity is due to inhibition of the normal physiological

function of the wild-type proto-oncogene. For example, earlier

generation EGFR inhibitors are associated with diarrhea, skin rash,

and other likely ‘on-target’ toxicities due to inhibition of physiologi-

cal EGFR-dependent functions in epithelia [120,121]. Acquired resis-

tance mutations such as those at the T790M gatekeeper residue

increase the affinity of the mutant enzyme for ATP and further tip

the balance of early generation EGFR inhibitors in favor of blocking

wild-type over mutant oncogenic EGFR function [122]. To address

this issue, third-generation EGFR inhibitors have been designed to

enhance the targeting of mutant EGFR isoforms, including the

T790M gatekeeper mutation. These inhibitors show remarkable

selectivity for mutant EGFR versus wild-type and therefore can be

dosed more optimally to fully inhibit mutant EGFR signaling with a

reduced liability of affecting physiological EGFR function in normal

tissues [123,124]. This reduction in on-target side effects is a land-

mark step toward improving the efficacy of oncogene-selective

drugs. Mutant-selective inhibition, wherever possible, should be a

goal. Evidence suggests that this can be feasible for other oncoge-

nes, as has been reported with the discovery of mutant-selective

inhibitors of the IDH1 and IDH2 oncogenes [18,19].

Develop different modes (and nodes) of target inhibition

For many oncogenes, it is likely that there is more than one way to

pharmacologically inhibit protein function—all potential therapeutic

options should be explored, as there is no a priori notion of which

mode of target inhibition is best. For example, most BCR-ABL inhib-

itors work through similar mechanisms, and therefore, all eventu-

ally engender resistance through kinase domain mutations such as

the gatekeeper T315I alteration. Recently, allosteric BCR-ABL inhibi-

tors have been discovered, which show a different spectrum of

secondary resistance mutation versus ATP-binding site inhibitors

[125]. Therefore, the combination of two different modes of inhibi-

tion targeting the same protein in parallel could dramatically reduce

the occurrence of any one type of resistance mechanism. Allosteric

kinase inhibition is not unique to BCR-ABL, as allosteric inhibition

of other kinases such as MEK and AKT is attainable [126,127].

Indeed, allosteric MEK inhibitors that lock RAF:MEK protein

complexes in an inactive state may provide a novel opportunity for

more effective inhibition of BRAF- and MEK-dependent MAPK

pathway signaling [128].

An alternate example of combining different therapeutic strate-

gies against the same target is with the HER2 oncogene in breast

cancer. Combination of HER2 targeting using both trastuzumab (tar-

geting the extracellular domain) and lapatinib (targeting kinase

activity) has shown significant improvements in pathological

complete responses versus either agent alone [129], presumably

because each drug targets a different part of the HER2 oncogene.

Similarly, the HER2 antibody pertuzumab, which works in a mecha-

nism complementary to trastuzumab, also shows combination bene-

fit [130]. In addition, the observation that HER2 expression is

maintained in trastuzumab-resistant breast cancer has spurred the

use of T-DM1, an ADC that delivers the cytotoxic microtubule

inhibitor DM1 to cancers via HER2-dependent internalization. This

modality has shown remarkable efficacy in patients previously

treated with trastuzumab and taxanes [131]—therefore, a combina-

tion of functional antibody and ADC approaches could reduce

resistance.

Insight into oncogene-addicted signaling pathways affords the

opportunity to discover key signaling nodes that can be exploited

to more potently kill tumor cells. As mentioned above, most of

the treatment-acquired resistance mechanisms to BRAF inhibitors

in melanoma occur via restoration of MAPK pathway signaling.

Thus, ‘vertical’ combination therapies simultaneously targeting

different signaling nodes of the MAPK pathway (e.g., BRAF-, MEK-,

ERK-, RTK-dependent signals) could overcome mutational or feed-

back-mediated resistance mechanisms and increase response to

therapies. Indeed, results from clinical studies comparing single-

agent RAF inhibitors versus RAF plus MEK inhibitor combinations

demonstrate an increased rate of progression-free survival with the

combination treatments [58,59]. Attacking multiple nodes in the

HER2 signaling pathway may also provide benefit [132,133]. Some

cancers may require ‘parallel’ combinations targeting different
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oncogenes in order to see any benefit; this may be due either to

comutation, rapid feedback upregulation, or other mechanisms. As

examples, combined up-front BRAF and EGFR inhibition may

blunt the rampant feedback pathway signaling present in BRAF

mutant colorectal cancers [57]; co-inhibition of the MAPK and

PI3K pathways may be required to see clinical benefit in many

cancers with co-activation of these pathways [134]; and intrinsic

resistance to EGFR-targeted therapies may occur through baseline

upregulation of potentially targetable factors such as CRIPTO1

[135] Finally, improved knowledge of oncogenic signaling in B-cell

malignancies provides the rationale for BTK inhibition, which

has shown dramatic clinical benefit; analysis of resulting resis-

tance mutations further suggests vertical combinations within the

same pathway that could address or hopefully prevent resistance

[136].

Make data-driven decisions on optimal dosing regimens

While complete inhibition of oncogene pathways is a key goal, this

does not always warrant continuous exposure to a drug, particularly

if complete pathway inhibition engenders an oncogenic shock

response. In these cases, intermittent dosing might effectively kill

tumor cells while also reducing any on- or off-target side effects that

could occur through continuous dosing. To this point, the BCR-ABL

inhibitor dasatinib can induce apoptosis upon pulse dosing in BCR-

ABL mutant CML cells, both in preclinical models and in CML

patients [137]. These findings in CML were also extended, at least

preclinically, to EGFR mutant cells treated with the EGFR inhibitor

erlotinib [137]. Together, these results suggest high pulse doses of

inhibitors could indeed unleash oncogenic shock phenotypes in

cancer cells. Intermittent dosing could also prevent the induction of

bypass resistance mechanisms. A recently reported primary mela-

noma xenograft model of vemurafenib resistance shows that in

some instances, melanomas can become vemurafenib dependent.

Vemurafenib withdrawal causes regression of such tumors, and an

intermittent dosing strategy keeps both the drug-sensitive and drug-

resistant cancer cell populations in check, leading to extended effi-

cacy [138]. This finding is not unique to BRAF or the preclinical

setting—resistance mutations in AR cause antagonists such as fluta-

mide to become partial agonists [139]. Also, patients with acquired

EGFR T790M resistance mutations who are taken off drug demon-

strate loss of this mutation in their tumors, which may explain why

these patients respond upon retreatment with EGFR inhibitors that

do not target the T790M mutation [105,140]. Similar retreatment

effects are also seen with crizotinib [141,142]. Such findings must

be interpreted carefully, as drug holidays prior to the acquisition of

resistance may actually speed the resistance process [143]; however,

in total, these results suggest the optimization of dosing regimens

for oncogene-targeted therapeutics is never ‘one size fits all.’ Opti-

mal dosing schedules should be actively explored in preclinical

models and inform the clinical testing of distinct dosing hypotheses

in patients.

Challenge our notions of what is druggable

Cancer drug discovery has been rightly focused on kinases due to

their clear genetic links to cancer, as well as their “druggability”—

which simply means a proven ability to be inhibited by small mole-

cules or antibodies. However, without the perspective of history,

kinase druggability is not self-evident—the kinase pocket is highly

conserved in paralogous proteins and the high intracellular

concentration of ATP substrate could raise concerns for at least

ATP-competitive inhibitors. Similar questions can be raised for

virtually any novel target, and a priori notions of druggability

should be avoided. While new classes of oncogenes will certainly

not be easy to target, challenging mechanisms of target inhibition

such as protein–protein interactions have yielded important break-

throughs with the discovery of p53/Mdm2 interaction inhibitors

[144], BCL2 inhibitors [145], and SMAC mimetics [146], among

others. The discovery of allosteric or induced-fit pockets on a

protein may be a path forward for challenging cancer targets such

as phosphatases [147] and metabolic enzymes [148]. This warrants

a fresh look at well-validated but historically undruggable oncogene

targets such as Ras oncogenes [149] and transcription factors

[150,151]. If a target truly proves undruggable, systematic efforts to

find potential synthetic lethal signaling nodes, as described below,

are highly warranted.

Comprehensively identify all liabilities of oncogene-addicted cells

While a plethora of functional genomics screens have reported

novel synthetic lethal targets to exploit oncogene (and non-onco-

gene) addiction, most studies rely on addressing single hypothesis

in only one or a few cell lines. It is not uncommon that many such

discoveries do not pan out in additional cell line or tumor models.

In addition, many functional genomics studies rely on an RNAi

approach—due to the known off-target effects of this method, it is

essential that studies are sufficiently powered with multiple RNAi

constructs per gene to avoid false-positive results. Most studies are

underpowered in this regard. As such, the industry validation rate

of many novel targets identified through ‘one-off’ functional

approaches has been poor [152]. A few studies have begun to

address such issues by either increasing the number of cell lines

used [153] or increasing the number of RNAi constructs used per

gene [154]. Studies that combine both, while labor-intensive, will be

better powered to identify the best targets within and across

cancers. In addition, novel approaches such as gene editing via the

CRISPR/CAS9 system [155] could and should be explored as target

identification methods, as the off-target profile of such approaches

may be reduced or at least different from RNAi, and complete

genetic knockout may yield novel targets that require a higher level

of inhibition than partial RNAi gene knockdown can afford. Such

approaches, performed at scale, will be critical for the identification

of robust synthetic lethal or ‘non-oncogene’ targets for oncogene

and tumor suppressor gene mutations [3,156].

Make well-characterized disease-relevant models, and make

them available

Robust validation of genetic cancer dependencies in cell line and

animal models is critical to progressing therapeutics toward the

clinic. To facilitate this work, it is essential to have detailed charac-

terization of available cell line and primary patient-derived xeno-

graft models with respect to features including mutation, copy

number, gene expression, and compound vulnerability, and to make

such data publicly available to the research community, as has been

done for the CCLE, CGP, and other cell line collections [157–159].

One limit to available cell line datasets is that some tumor lineages

(e.g., prostate cancer) and genotypes (e.g., IDH1/2 mutation) are

underrepresented. It will be critical for the research community to
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identify these gaps in currently available models, and work to

develop and characterize new in vitro and in vivo models for

disease. Most importantly, the models should be readily available to

the research community for use. With the increased use of PDX

models [160], and the advent of alternate cell culture techniques

that could facilitate the outgrowth of traditionally difficult tumor

types such as glioma and prostate [161–163], comprehensive

screens for oncogene vulnerabilities in currently underrepresented

tumor types may soon be feasible.

Conclusions

Oncogene addiction is readily apparent from the remarkable

responses seen in patients treated with drugs that target key

mutated oncogenic drivers of their cancers. Potent inhibition of

oncogenic signaling pathways can result in oncogenic shock, a

robust apoptotic response that results in sustained remissions, not

just transient growth inhibition. While acquired resistance to ther-

apy remains a key challenge, clinically observed resistance muta-

tions largely demonstrate that most cancers retain addiction to their

original oncogenic signaling pathways, if not always the mutated

oncogene itself. In addition to acquired resistance mutations, the

induction of paradoxical bypass pathways that reactivate growth

factor-dependent signaling (commonly through relief of MEK- or

PI3K-dependent feedback inhibition) upon oncogene inhibition is

likely pervasive across cancers and should be anticipated. Together,

these findings underscore that many resistance mechanisms fall into

predictable and therapeutically tractable themes, and can be effec-

tively targeted with rationally designed combination therapies.

Recognizing that this work is not completed until patients are cured

of their disease, we have outlined some key items that must be

addressed to take advantage of our growing knowledge of oncogene

addiction. Not discussed in this review, but also essential to our

ability to optimally kill cancers, are at least two additional

approaches that should be combined with therapies that exploit

oncogene addiction. First is the exploitation of somatic loss-of-

function tumor suppressor gene mutations through the synthetic

lethal targeting of ‘non-oncogene-addicted’ signaling nodes [3].

Second is the utilization of our emerging ability to reactivate

immune responses to tumors [164,165]. As we learn to effectively

combine these emerging therapeutic options, the road toward a cure

is becoming clear.
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