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Abstract: Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially ex-
pressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular
activities by physically interacting with microRNAs and proteins and altering their activity. It has also
been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then
discharged into the extracellular environment, where they are taken up by other cells. As a result,
exosomal ncRNA cargo is critical for cell–cell communication within the cancer microenvironment.
Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion,
drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing
novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of
circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of
oncogenic circRNAs and lncRNAs that are enriched within exosomes.

Keywords: exosome; circular RNA; long noncoding RNA; gastrointestinal cancer

1. Introduction

Solid cancers of the gastrointestinal system, such as colorectal cancer, esophageal
cancer, gastric cancer, hepatocellular carcinoma, and pancreatic cancer, are among the most
frequent types of malignancies. According to the GLOBOCAN database, gastrointestinal
cancers are responsible for 26% of cancer incidence and 35% of cancer-related mortality
worldwide [1]. Due to the lack of curative options, little progress has been made in the
treatment of patients with gastrointestinal malignancies. Several classes of drugs, such as
sorafenib, paclitaxel, and cetuximab, have been approved for use. However, the overall
survival of patients and their quality of life have not improved significantly [2,3]. In order
to develop more effective and appropriate treatment strategies, it is critical to identify novel
target molecules associated with gastrointestinal cancers.

In solid cancers, the microenvironment is heterogeneous and composed of cellular
and noncellular components, including cancer-associated fibroblasts (CAFs), immune cells,
and the extracellular matrix [4,5]. Hypoxia, one of the characteristics of the cancer microen-
vironment, is caused by factors such as uncontrolled cancer growth and leads to metabolic
reprogramming [6]. Reciprocal communication among cells enables them to share diverse
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cellular factors within the microenvironment. Exosomes are a class of extracellular vesicles
that act as key players in this event, affecting cancer aggressiveness, anti-cancer immune
responses, and treatment efficacy [7,8]. For instance, annexin A1 (ANXA1) proteins are
cargo molecules in cancer cell-derived exosomes and activate epithelial–mesenchymal
transition (EMT) in exosome-receiving cancer cells [9]. Another example is the potential
of exosomal protein cargo, macrophage migration inhibitory factor (MIF), to reshape the
phenotype of drug-sensitive cancer cells into temozolomide-resistant cells by positively
modulating phosphoinositide 3-kinase (PI3K)/AKT signaling. The pharmacological in-
hibition of MIF prominently enhances temozolomide efficacy in vivo [10]. In addition,
gemcitabine resistance is exacerbated by CAF-derived exosomes that harbor snail family
transcriptional repressor 1 (SNAI1) messenger RNA (mRNA). Anti-pancreatic cancer effects
of gemcitabine can be improved by pharmacological interruption of exosome secretion
using GW4869 [11].

Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are aberrantly ex-
pressed in cancer and impinge on the activity of target molecules, including microRNA
(miRNA) and proteins, therefore controlling cancer progression, therapeutic resistance,
etc. [12–16]. One of the known functions of both circRNAs and lncRNAs is to act as
competitive endogenous RNAs by sequestering miRNAs. For example, recent studies
demonstrated that circ_ZFPM2 and lncRNA-ADPGK-AS1 can promote EMT by molec-
ularly sponging miR-205-5p [17,18]. Furthermore, circRNAs interact with RNA-binding
proteins to control gene transcription [19,20]. LncRNAs have been found to regulate a
variety of events, including RNA splicing and protein degradation [21].

These noncoding RNAs (ncRNAs) can be incorporated and differentially loaded into
exosomes. For instance, circ_EPB41L2 quantity is low in exosomes secreted by colorectal
cancer cell lines. Treatment of cancer cells with exosomes acquired from circ_EPB41L2-
overexpressing cells retards cell proliferation, survival, migration, and invasion by neg-
atively modulating the effect of miR-21-5p and miR-942-5p on phosphatase and tensin
homolog (PTEN) mRNA [22]. This review focuses on exosome-enriched circRNAs and
lncRNAs to meticulously understand their oncogenic role in gastrointestinal cancers. We
also present an overview of the relevant features of circRNAs and lncRNAs.

2. Exosomal CircRNAs
2.1. Colorectal Cancer
2.1.1. Circ_0000338

It was demonstrated that drug-sensitive parental cells cocultured with FOLFOX-resistant
cells become desensitized to 5-fluorouracil (5-FU), implying that exosome-transferred molecules
contribute to chemoresistance. Profiling of circRNAs revealed that circ_0000338 is one of
the upregulated circRNAs in exosomes secreted from FOLFOX-resistant cells [23]. Another
study further showed that circ_0000338 levels are upregulated in cancer tissues and cell
lines and that the silencing of circ_0000338 sensitizes resistant cells to 5-FU via enhancing
apoptotic cell death [24]. Treatment of cells with exosomes harboring circ_0000338 reduces
the efficacy of 5-FU in vitro and in vivo. Mechanistically, it was identified that circ_0000338
directly interacts with and inactivates miR-217 and miR-485-3p [24] (Figure 1 and Table 1).
It is known that miR-217 and miR-485-3p target mitogen-activated protein kinase 1 (MAPK1)
and maternal embryonic leucine zipper kinase (MELK), respectively [25,26]. Since MAPK1
and MELK can promote 5-FU resistance [27,28], circ_0000338 may regulate drug sensitivity,
partly via modulating the level of both MAPK1 and MELK.
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Figure 1. Exosomal circRNAs secreted from drug-resistant cancer cells, hypoxic cancer cells, CAFs, 
and hypoxic CAFs. CircRNAs (black), and their biological functions (blue) are indicated in rounded 
rectangles. Arrows indicate the upregulation (↑) and downregulation (↓). 
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by creating an acidic tumor microenvironment [29]. In addition, drug resistance can also 
be due to a glycolysis-induced upregulation of drug efflux pumps. For example, pyruvate 
kinase M2 type (PKM2), a glycolytic enzyme, facilitates oxaliplatin resistance via upregu-
lating ATP-binding cassette subfamily B member 1 (ABCB1, also called P-glycoprotein 1) 
[30]. Recently, it was reported that circ_0005963 is enriched in exosomes from oxaliplatin-
resistant cells and the serum of an oxaliplatin-resistant patient [31]. In this study, 
circ_0005963 was observed to be delivered from oxaliplatin-resistant cells to sensitive cells 
via exosomes. In recipient cells, circ_0005963 increases PKM2 expression via inactivating 
miR-122, ultimately diminishing the anti-colorectal cancer effect of oxaliplatin. Knock-
down of circ_0005963 augments oxaliplatin-induced apoptotic cell death in vitro and in-
hibits cancer growth in vivo [31] (Figure 1 and Table 1). 
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Figure 1. Exosomal circRNAs secreted from drug-resistant cancer cells, hypoxic cancer cells, CAFs,
and hypoxic CAFs. CircRNAs (black), and their biological functions (blue) are indicated in rounded
rectangles. Arrows indicate the upregulation (↑) and downregulation (↓).

2.1.2. Circ_0005963

Glycolysis has been found to be associated with therapeutic resistance toward several
classes of anti-cancer drugs. Lactate, a glycolytic metabolite, can induce drug resistance by
creating an acidic tumor microenvironment [29]. In addition, drug resistance can also be due
to a glycolysis-induced upregulation of drug efflux pumps. For example, pyruvate kinase
M2 type (PKM2), a glycolytic enzyme, facilitates oxaliplatin resistance via upregulating ATP-
binding cassette subfamily B member 1 (ABCB1, also called P-glycoprotein 1) [30]. Recently,
it was reported that circ_0005963 is enriched in exosomes from oxaliplatin-resistant cells
and the serum of an oxaliplatin-resistant patient [31]. In this study, circ_0005963 was
observed to be delivered from oxaliplatin-resistant cells to sensitive cells via exosomes. In
recipient cells, circ_0005963 increases PKM2 expression via inactivating miR-122, ultimately
diminishing the anti-colorectal cancer effect of oxaliplatin. Knockdown of circ_0005963
augments oxaliplatin-induced apoptotic cell death in vitro and inhibits cancer growth
in vivo [31] (Figure 1 and Table 1).

Table 1. Exosomal circRNAs in gastrointestinal cancers (in alphanumerical order).

Cargo
Molecule Expression Source of Exosome Type of

Cancer
Target

Molecule
Clinical

Relevance Ref.

Circ_0000337 Up Cisplatin-resistant EC9706
and KYSE30 cells

Esophageal
cancer miR-377-3p - [32]

Circ_0000338

Up FOLFOX-resistant
HCT116 cells

Colorectal
cancer - - [23]

Up 5-FU-resistant SW480 and
HCT116 cells

Colorectal
cancer

miR-217 and
miR-485-3p

5-FU resistance is
associated with high
levels of circ_0000338

[24]
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Table 1. Cont.

Cargo
Molecule Expression Source of Exosome Type of

Cancer
Target

Molecule
Clinical

Relevance Ref.

Circ_0005963 Up

Serum from
oxaliplatin-resistant patients.

Oxaliplatin-resistant
SW480 cells

Colorectal
cancer miR-122

Highly expressed in
oxaliplatin-resistant

patients
[31]

Circ_0010522 Up
SW480 and HCT116 cells

exposed to a hypoxic
condition (1% O2)

Colorectal
cancer miR-133a-3p Positively associated

with the stages of cancer [33]

Circ_0032821 Up Oxaliplatin-resistant
HGC-27 and AGS cells Gastric cancer miR-515-5p - [34]

Circ_0044366 Up Patient plasma. SGC-7901
and MGC-803 cells Gastric cancer miR-29a - [35]

Circ_0061395 Up Patient serum Hepatocellular
carcinoma miR-877-5p - [36]

Circ_0067835 Up

Serum from
radiotherapy-treated
patients. SW620 and

HCT116 cells

Colorectal
cancer miR-296-5p A diagnostic biomarker

candidate [37]

Circ_0088300 Up Patient plasma. CAFs Gastric cancer miR-1305

Negative correlation
between circ_0088300

expression and survival
probability

[38]

Circ_EIF3K Up Hypoxic CAFs Colorectal
cancer miR-214

Poor overall survival of
patients with high
circ_EIF3K levels

[39]

Circ_FBLIM1 Up Patient serum Hepatocellular
carcinoma miR-338-3p - [40]

Circ_IARS Up Patient plasma. Hs766T and
Hs766T-L2 cells

Pancreatic
cancer miR-122

Associated with vascular
invasion; liver metastasis;

and advanced tumor,
node, and metastasis

(TNM) stage

[41]

Circ_IFT80 Up Patient serum. SW480 and
SW620 cells

Colorectal
cancer miR-296-5p - [42]

Circ_MMP2 Up LM3 and 97H cells Hepatocellular
carcinoma miR-136-5p

Low survival rate of
patients with high

circ_MMP2 expression
[43]

Circ_NEK9 Up Patient plasma Gastric cancer miR-409-3p Associated with TNM
stage [44]

Circ_NHSL1 Up Patient serum. HGC-27 and
AGS cells Gastric cancer miR-149-5p

Associated with
lymphatic metastasis and

TNM stage
[45]

Circ_PACRGL Up HCT116 and SW480 cells Colorectal
cancer

miR-142-3p
and

miR-506-3p
- [46]

Circ_PDE8A Up Patient plasma. Hs766T-L2
cells

Pancreatic
cancer miR-338-3p

Associated with
lymphatic invasion and

TNM stage
[47]

Circ_PRRX1 Up Doxorubicin-resistant
HGC-27 and AGS cells Gastric cancer miR-3064-5p Associated with

doxorubicin resistance [48]
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Table 1. Cont.

Cargo
Molecule Expression Source of Exosome Type of

Cancer
Target

Molecule
Clinical

Relevance Ref.

Circ_PVT1 Up

Serum from
cisplatin-resistant patients.
Cisplatin-resistant HGC-27

and AGS cells

Gastric cancer miR-30a-5p
Associated with lymph

node metastasis and
tumor size

[49]

Circ_SHKBP1 Up Patient serum. BGC823 and
HGC27 cells Gastric cancer miR-582-3p

Positively associated
with poor prognosis,

vascular invasion, and
TNM stage

[50]

Circ_TMEM45A Up Patient serum Hepatocellular
carcinoma miR-665

Correlated with poor
prognosis and

clinicopathological
parameters such as TNM

stage

[51]

Circ_UHRF1 Up HCCLM3 and SMMC-7721
cells

Hepatocellular
carcinoma miR-449c-5p

Poor clinical prognosis of
patients with high

circ_UHRF1 expression
[52]

Circ_ZNF652 Up Patient serum. SNU-387 and
Huh7 cells

Hepatocellular
carcinoma miR-29a-3p - [53]

Circ_ZNF91 Up Hypoxic BxPC-3 cells Pancreatic
cancer miR-23b-3p

Worse overall survival of
patients with high

circ_ZNF91 expression
[54]

2.1.3. Circ_0010522 and Circ_EIF3K

Guanine nucleotide exchange factor H1 (GEF-H1) serves as an activator of Ras homolog
family member A (RhoA), promoting cell motility, invasion, and metastasis [55]. A recent
study showed that circ_0010522 is present in exosomes secreted from hypoxic cancer
cells [33]. Migratory capacities of normoxic cells are increased by treatment with hypoxic
exosomes, suggesting a pro-migratory activity of circ_0010522. It was further shown
that circ_0010522 absorbs miR-133a-3p, thereby elevating GEF-H1 and RhoA levels [33]
(Figure 1 and Table 1).

Secretion of exosomes from CAFs is stimulated by hypoxic conditions [39]. Further
investigation demonstrated that these exosomes carry circ_EIF3K, which sponges miR-214,
which targets programmed cell death 1 ligand 1 (PD-L1). Colony formation of cancer
cells is attenuated by culturing with conditioned media derived from circ_EIF3K-silenced
CAFs. The growth of cancer is also impaired in xenografts treated with exosomes from
circ_EIF3K-silenced CAFs. These results denote the role of exosomal circ_EIF3K in cancer
progression [39] (Figure 1 and Table 1).

2.1.4. Circ_0067835 and Circ_IFT80

Circ_0067835 is abundant in blood-derived exosomes from patients who received
radiotherapy, suggesting an involvement of this circRNA in radiosensitivity modulation.
Indeed, it was noticed that radiotherapy-induced apoptosis is increased in cancer cells
treated with exosomes derived from circ_0067835-silenced cells [37]. Furthermore, exoso-
mal circ_IFT80 desensitizes recipient cells to radiation [42]. In their studies, circ_0067835
and circ_IFT80 were found to positively regulate the level of insulin-like growth factor
1 receptor (IGF1R) and musashi-1 (MSI1), respectively, by sponging miR-296-5p [37,42]
(Figure 2 and Table 1). IGF1R and MSI1 have been investigated to reduce radiosensitivity
by activating DNA damage repair [56,57].
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Figure 2. Exosomal circRNAs released from cancer cells and their effects in recipient cells. CircRNAs
(black), and their biological functions (blue) are denoted in rounded rectangles. Arrows indicate the
upregulation (↑) and downregulation (↓).

2.1.5. Circ_PACRGL

Microarray analysis showed that circ_PACRGL is copiously detected in exosomes re-
leased from cancer cells [46]. Functional investigation exhibited that exosomal circ_PACRGL
stimulates cell proliferation, migration, and invasion by sponging miR-142-3p and miR-506-
3p, both of which directly regulate transforming growth factor beta 1 (TGFB1). In addition,
exosomal circ_PACRGL stimulates neutrophil polarization towards a pro-tumorigenic N2
phenotype [46], suggesting that circ_PACRGL is a promising target for cancer treatment
(Figure 2 and Table 1).

2.2. Esophageal Cancer

Circ_0000337
Circ_0000337 has been discovered to be an oncogenic factor. In osteosarcoma, circ_0000337

augments proliferation and migration by elevating BTB domain and CNC homolog 1
(BACH1) levels [58]. Besides this, circ_0000337 upmodulates methionine adenosyltrans-
ferase 2A (MAT2A) expression, thus accelerating migration and invasion in glioblastoma
cells [59]. Circ_0000337 is highly expressed in esophageal cancer tissues and enhances
the metastatic potential of cancer cells [60]. Moreover, it was found that circ_0000337
is highly expressed in cisplatin-resistant esophageal cancer cells and abundant in their
secreted exosomes [32]. Non-resistant parental cells become less sensitive to cisplatin
following exposure to exosomes from resistant cells in vitro and in vivo. Circ_0000337 can
aggravate cisplatin resistance due to its interaction with miR-377-3p, which targets Janus
kinase 2 (JAK2) [32] (Figure 1 and Table 1). However, miR-377-3p was shown to increase
glycogen synthase kinase 3 beta (GSK3B) expression and activate nuclear factor kappa B
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(NF-κB) signaling [61]. Therefore, circ_0000337 knockdown may unexpectedly activate
GSK3B/NF-κB signaling.

2.3. Gastric Cancer
2.3.1. Circ_0032821, Circ_PRRX1, and Circ_PVT1

It has been evaluated that miR-515-5p attenuates chemoresistance. The efficacy of
vincristine and carboplatin is improved by miR-515-5p in retinoblastoma [62]. Further,
miR-515-5p can negatively control interleukin 25 (IL25) levels and sensitize resistant cells
to cisplatin as well as to 5-FU in nasopharyngeal cancer [63]. In gastric cancer, circ_0032821
competitively interacts with miR-515-5p to control SRY-box transcription factor 9 (SOX9)
expression [34]. Owing to such an ability of circ_0032821, oxaliplatin resistance can be
provoked in drug-sensitive cells after exposure to exosomal circ_0032821 derived from
oxaliplatin-resistant cells [34] (Figure 1 and Table 1).

Protein tyrosine phosphatase non-receptor type 14 (PTPN14) functions as an oncogenic
factor by advancing the proliferation and migration of gastric cancer cells via triggering
Hippo signaling [64]. Additionally, PTPN14 overexpression can upregulate and down-
regulate the level of vimentin and caspase-3, respectively, in gastric cancer [65]. Analyses
of the relationship between circ_PRRX1 and PTPN14 showed that circ_PRRX1 is able to
positively control PTPN14 levels via sequestering miR-3064-5p, consequently intensifying
doxorubicin resistance in gastric cancer [48]. Circ_PRRX1 is bountiful in exosomes released
from doxorubicin-resistant cells. The effect of doxorubicin on proliferation, migration, and
invasion is attenuated in exosome-receiving cancer cells [48] (Figure 1 and Table 1).

Circ_PVT1 is involved in the regulation of a variety of cellular events. Circ_PVT1 over-
expression increases the invasive capacity of esophageal and gallbladder cancer cells [66,67].
In addition, circ_PVT1 makes lung cancer cells less responsive to Pemetrexed and cisplatin
by elevating the expression of ABCC1 (also known as multidrug resistance-associated
protein 1, MRP1) [68]. In gastric cancer, circ_PVT1 is profusely present in exosomes
from cisplatin-resistant cancer cells [49]. In their study, circ_PVT1 was observed to neg-
atively control miR-30a-5p, which targets Yes-associated protein 1 (YAP1). The silencing
of circ_PVT1 re-sensitizes resistant cancer cells to cisplatin by augmenting apoptotic cell
death and suppressing autophagy [49]. These findings suggest that exosomal circ_PVT1 is
responsible for cisplatin resistance in recipient cells, at least partly via ABCC1 and YAP1
(Figure 1 and Table 1).

2.3.2. Circ_0044366 and Circ_SHKBP1

Exosomal circRNAs play a part in angiogenesis regulation. Treatment with cancer
cell-derived exosomal circ_0044366 significantly enhances the proliferation, invasion, and
tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Besides this,
exosomal circ_0044366 promotes cancer growth and angiogenesis in vivo. Mechanistically,
exosomal circ_0044366 leads to an increment of vascular endothelial growth factor (VEGF)
levels via inactivating miR-29a in endothelial cells [35] (Figure 2 and Table 1).

Circ_SHKBP1 levels are higher in cancer tissues and exosomes derived from pa-
tient serum and cancer cell lines [50]. Exosomal circ_SHKBP1 facilitates cell proliferation,
migration, and invasion. Furthermore, exosomal circ_SHKBP1 increases Hu-antigen R
(HUR) levels via inactivating miR-582-3p, resulting in an increment of VEGF expression
in cancer cells in vitro. Cancer growth and angiogenesis are activated by circ_SHKBP1
in vivo [50] (Figure 2 and Table 1). Other evidence showed that circ_SHKBP1 supports
survival and tube formation of endothelial cells [69]. Therefore, these results suggest that
circ_SHKBP1 can also be transferred to endothelial cells via exosomes, which, in turn,
stimulate angiogenic events.

2.3.3. Circ_0088300

Once activated, JAK/signal transducer and activator of transcription (STAT) signaling
promotes the expression of target genes involved in diverse cellular events, such as cell
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survival, migration, invasion, and therapeutic resistance [70]. Because JAK/STAT signaling
is abnormally activated in gastric cancer, inhibiting this pathway has been proposed as
a therapeutic choice [71]. Lately, circ_0088300 was identified as an exosomal circRNA
from CAFs. Gastric cancer cells treated with conditioned media from CAFs express high
circ_0088300 levels [38]. Circ_0088300 inactivates miR-1305, a negative regulator of JAK1
and STAT1. The overexpression of circ_0088300 reduces the level of pro-apoptotic factors
such as BCL2-associated X protein (BAX) in cancer cells and enhances migration and
invasion [38]. These observations reveal circ_0088300 as a mediator of CAF-induced cancer
progression (Figure 1 and Table 1).

2.3.4. Circ_NEK9 and Circ_NHSL1

Both miR-149-5p and miR-409-3p perform a tumor-suppressive function. By target-
ing BCL2 and cell division cycle 42 (CDC42), miR-149-5p promotes apoptotic cell death,
represses cell proliferation, and alleviates doxorubicin resistance in neuroblastomas [72].
In gastric cancer, miR-149-5p has an anti-metastatic property by suppressing forkhead
box M1 (FOXM1) expression [73]. In addition, miR-409-3p is downregulated and capable
of suppressing proliferation, invasion, survival, and metastasis by regulating the level of
radixin and PHD finger protein 10 (PHF10) in gastric cancer [74,75].

Further functional studies showed that circ_NEK9 and circ_NHSL1 inactivate miR-
409-3p and miR-149-5p, respectively. By suppressing such miRNAs, circ_NEK9 and
circ_NHSL1 elevate the expression of microtubule-associated protein 7 (MAP7) and tyro-
sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ),
respectively, in cancer cells [44,45]. Circ_NEK9 is upregulated in gastric cancer cells and
abundant in exosomes from patient plasma. These results suggest that exosomal circ_NEK9
is originated from cancer cells rather than other cellular components within the tumor
microenvironment. The metastatic ability of cancer cells is intensified by plasma exosomes,
connoting the contribution of exosomal circ_NEK9 to gastric cancer progression by raising
MAP7 levels [44]. Circ_NHSL1 is enriched in exosomes from cancer cells; therefore, it is
feasible that exosomal circ_NHSL1 facilitates migration, invasion, and glutaminolysis in
recipient cancer cells by upregulating YWHAZ expression [45] (Figure 2 and Table 1).

2.4. Hepatocellular Carcinoma
2.4.1. Circ_0061395

Circ_0061395 (also called circ_BACH1) is notably overexpressed in hepatocellular
carcinomas. It was also observed that circ_0061395 can be incorporated into exosomes [36].
Functional analyses indicated that circ_0061395 inactivates miR-877-5p and contributes to
cancer progression by positively modulating the expression of phosphoinositide-3-kinase
regulatory subunit 3 (PIK3R3) [36] (Figure 2 and Table 1). Other studies demonstrated
that circ_0061395 can promote cell proliferation and EMT via upregulating SERBP1 and
translocating HUR to the cytoplasm [76,77]. Since EMT is one of the causes of therapeutic
resistance [78,79], both EMT and drug resistance may be aggravated by the exosomal trans-
port of circ_0061395 between hepatocellular carcinoma cells. Additionally, circ_0061395 is
overexpressed in colorectal cancer; supports cell proliferation, migration, and invasion; and
restricts apoptotic cell death [80]. Thus, it is worth investigating the existence and amount
of circ_0061395 in exosomes released from colorectal cancer cells.

2.4.2. Circ_FBLIM1

It was denoted that circ_FBLIM1 is overexpressed in hepatocellular carcinoma tis-
sues and cell lines [81]. Additionally, circ_FBLIM1 is plenteous in serum exosomes from
patients [40], suggesting that exosomal circ_FBLIM1 can be originated from cancer cells.
Treatment of hepatocellular carcinoma cells with serum exosomes leads to an upregula-
tion of circ_FBLIM1 levels [40]. In their study, this circRNA was validated to deactivate
miR-338-3p, thus triggering cancer progression and glycolysis by increasing the level of
low-density lipoprotein receptor-related protein 6 (LRP6), which acts as a coreceptor of
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WNT ligands and activates WNT/β-catenin signaling [40]. Hence, circ_FBLIM1 may be
transported between cancer cells to regulate the miR-338-3p/LRP6/WNT/β-catenin axis
(Figure 2 and Table 1).

Another study showed that knockdown of circ_FBLIM1 hampers cell proliferation and
invasion while promoting apoptotic cell death by augmenting miR-346 levels [81]. Even
though circ_FBLIM1 can interact with miR-346, this miRNA has been reported to act as
an oncogenic miRNA in various cancer types, including hepatocellular carcinoma [82–84].
Such findings point to the possibility that suppression of oncogenic circRNAs compen-
satorily activates a set of oncogenic miRNAs and their relevant signaling, eventually
contributing to the recovery of damaged cancer cells.

2.4.3. Circ_MMP2

In lung cancer, circ_MMP2 (also known as circ_0039411) can bind to insulin-like
growth factor 2 mRNA binding protein 3 (IGF2BP3), thus expediting cell proliferation and
EMT by stabilizing FOXM1 transcripts [85]. Besides this, circ_MMP2 was determined to
advance the progression of papillary thyroid cancer by post-transcriptionally upregulating
ABCA9 and metastasis-associated 1 (MTA1) [86]. Such an oncogenic role of circ_MMP2
was also reported in hepatocellular carcinomas [43]. Circ_MMP2 is plentiful in cancer cell-
derived exosomes and can be transported into other cancer cells. Circ_MMP2 is involved
in an increase of the metastatic potential of exosome-receiving cancer cells via modulating
the miR-136-5p/matrix metallopeptidase 2 (MMP2) axis [43] (Figure 2 and Table 1).

2.4.4. Circ_TMEM45A

Functional investigations indicated that this circRNA blocks apoptotic cell death
and promotes in vivo cancer growth via regulating the miR-665/insulin growth factor
2 (IGF2) axis [51]. Circ_TMEM45A is one of the highly expressed circRNAs in hepato-
cellular carcinoma and is bountifully present in serum exosomes as well [51]. Therefore,
sharing of circ_TMEM45A between cancer cells may contribute to IGF2 upregulation
(Figure 2 and Table 1).

Inconsistent with the IGF2-targeting property of miR-665, other studies showed that
miR-665 is overexpressed in hepatocellular carcinomas and prompts cell proliferation as
well as metastasis [87,88]. Thus, circ_TMEM45A may interact with other potential target
proteins and unidentified miRNAs, rather than miR-665, to fulfill its oncogenic role in
hepatocellular carcinomas.

2.4.5. Circ_UHRF1

A recent study showed that circ_UHRF1 accelerates cell proliferation and EMT by
elevating MYC proto-oncogene (MYC) expression in oral squamous cell carcinomas [89].
Further, circ_UHRF1 is upregulated in hepatocellular carcinoma tissues, and exosomal
circ_UHRF1 is largely released from cancer cells [52]. Exosomal circ_UHRF1 was revealed
to impair the function of natural killer (NK) cells by sequestering miR-449c-5p that di-
rectly targets hepatitis A virus cellular receptor 2 (HAVCR2, also named TIM3), ultimately
diminishing the anti-cancer effects of nivolumab, anti-programmed cell death 1 (PD1)
antibodies [52] (Figure 2 and Table 1).

It has been suggested that HAVCR2 is a molecular marker of activated NK cells
and that NK cell-mediated cytotoxicity can be inhibited by anti-HAVCR2 antibodies [90].
By contrast, another study showed that NK cell-mediated cytotoxicity is improved by
an HAVCR2 blockade [91]. Such a double-edged function of HAVCR2 is thought to be
dependent on the type of HAVCR2 ligands [90,91]. Therefore, it is necessary to reveal the
precise function of HAVCR2 and its contribution to the oncogenic effect of circ_UHRF1.

2.4.6. Circ_ZNF652

It has been proven that miR-203 and miR-502-5p are tumor-suppressive miRNAs in
gastrointestinal cancers. For instance, miR-203 negatively modulates the level of eukaryotic
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translation initiation factor 5A2 (EIF5A2) in colorectal cancer, restraining cancer progres-
sion [92]. In the case of miR-502-5p, this miRNA can suppress cytoprotective autophagy in
colorectal cancer [93]. In addition to this, miR-502-5p was recently explored to target Sp1
transcription factor (SP1), thus impeding migration and invasion of gastric cancer cells [94].

In hepatocellular carcinoma, miR-203 and miR-502-5p commonly target SNAI1, an
EMT-promoting factor, and they are sponged by circ_ZNF652; therefore, lung metastasis
is provoked by circ_ZNF652 [95]. Furthermore, circ_ZNF652 is an exosomal circRNA
in hepatocellular carcinomas [53]. Circ_ZNF652 is significantly detected in exosomes
derived from patient serum and cancer cells. The silencing of circ_ZNF652 suppresses
migration, invasion, and glycolysis in exosome-receiving cells. The mechanism underlying
circ_ZNF652-mediated cellular events involves the regulation of the miR-29a-3p/guanylyl
cyclase domain containing 1 (GUCD1) axis [53] (Figure 2 and Table 1). Interestingly,
circ_ZNF652 increases PTEN expression, thus positively regulating lipopolysaccharide-
induced apoptosis in chondrocytes [96], indicating that the function of circ_ZNF652 can be
distinct, depending on the cellular context.

2.5. Pancreatic Cancer
2.5.1. Circ_IARS

Endothelial tight junctions act as permeability barriers and restrict cancer metastasis.
Transendothelial permeability of cancer cells is induced by the downregulation of Zona
occludens-1 (ZO-1), a master regulator of tight junctions [97]. It has been noticed that
endothelial tight junctions are disrupted by cancer-secreted factors, such as MMP2, MMP9,
and miR-105, inducing vascular permeability and metastasis [98]. Besides, it was demon-
strated that circ_IARS is overexpressed in pancreatic cancer tissues and especially abundant
in plasma exosomes from patients with metastatic cancer [41]. Cancer cell-derived exo-
somal circ_IARS downregulates ZO-1 levels via inactivating miR-122 in endothelial cells
and increases endothelial permeability, eventually reinforcing invasion and metastasis
in vivo [41] (Figure 2 and Table 1).

2.5.2. Circ_PDE8A

In various cancer types, miR-338-3p functions as a tumor-suppressive miRNA. By
inactivating MAPK signaling, miR-338-3p promotes apoptosis in osteosarcoma cells [99].
In ovarian cancer, the efficacy of cisplatin is augmented by miR-338-3p, which exerts
suppressive effects on EMT and cell survival via targeting WNT2B [100]. Similarly, the
migration and invasiveness of colorectal cancer cells are repressed by miR-338-3p that
targets smoothened (SMO) [101]. It was further revealed that miR-338-3p directly controls
the expression of metastasis-associated in colon cancer protein 1 (MACC1) [47], a transcrip-
tional regulator of MET proto-oncogene (MET) [102]. Additional evidence indicated that
miR-338-3p activity is limited by circ_PDE8A (also named circ_0036627), which is intensely
expressed in pancreatic cancer tissues, plasma exosomes, and cell-derived exosomes [47].
Exosomal circ_PDE8A is capable of being transferred between cancer cells. In addition, this
circRNA is able to augment the level of MET via the miR-338-3p/MACC1 axis, stimulating
cancer growth and metastasis in vivo [47] (Figure 2 and Table 1).

2.5.3. Circ_ZNF91

Hypoxia-inducible factor-1α (HIF-1α) is stabilized by sirtuin 1 (SIRT1)-mediated
deacetylation. SIRT1 knockdown reduces the invasion ability of cancer cells, together
with a decrease in HIF-1α target genes, such as VEGF [103]. SIRT1 can be directly targeted
by several miRNAs, including miR-34a-5p and miR-199a, resulting in the attenuation of
HIF-1α levels [104,105]. Furthermore, circ_CIDN and circ_0076248 were uncovered to
sponge miR-34a-5p and miR-181a, respectively, hence positively regulating SIRT1 expres-
sion [106,107].

Likewise, circ_ZNF91 competitively interacts with miR-23b-3p, enhancing HIF-1α
stability by upregulating SIRT1 in pancreatic cancer [54]. Circ_ZNF91 is transcriptionally
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induced by HIF-1α, indicating a positive feedback loop between circ_ZNF91 and HIF-1α.
Circ_ZNF91, which is carried in exosomes from hypoxic cancer cells, can be taken up by
normoxic cancer cells, leading to gemcitabine resistance and glycolysis. In xenografts,
gemcitabine resistance promoted by hypoxic exosomes is reversed by circ_ZNF91 silencing
and miR-23b-3p upregulation [54] (Figure 1 and Table 1).

3. Exosomal LncRNAs
3.1. Colorectal Cancer
3.1.1. CCAL and LINC00659

Accumulating evidence has shown that the expression of CCAL is substantially higher
in cancer than in non-cancerous tissues and that CCAL promotes angiogenesis and metas-
tasis through escalating, for example, FOXM1 and angiopoietin-like 4 (ANGPTL4) expres-
sion [73,108]. In addition, CCAL regulates cell proliferation and apoptosis in colorectal
cancer and plays a part in 5-FU resistance, owing to its ability to increase ABCB1 levels via
activating WNT/β-catenin signaling [109]. Furthermore, CCAL is overexpressed in CAFs
and the stromal region in colorectal cancer tissues [110]. Exosomal CCAL released from
CAFs is delivered to cancer cells and activates β-catenin via directly interacting with HUR
proteins, thus conferring resistance to oxaliplatin [110] (Figure 3 and Table 2).
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LncRNA profiling identified that 201 lncRNAs have aberrant levels, including 165 up-
regulated and 36 downregulated lncRNAs in colorectal cancer. LINC00659 is one of the
highly expressed lncRNAs, and the knockdown of this lncRNA suppresses cell cycle
progression and cell survival through inactivating PI3K/AKT signaling [111]. Moreover,
LINC00659 is abundantly expressed in CAF-derived exosomes, and LINC00659 uptake by
cancer cells leads to enhanced proliferation and EMT [112]. A mechanistic investigation
proved that LINC00659 acts as a sponge of miR-342-3p, significantly upregulating the
expression of annexin A2 (ANXA2) [112], which is responsible for the activation of STAT3,
an EMT-promoting factor [113] (Figure 3 and Table 2).

Table 2. Exosomal lncRNAs in gastrointestinal cancers (in alphanumerical order).

Cargo
Molecule Expression Source of Exosome Type of

Cancer
Target

Molecule
Clinical

Relevance Ref.

AFAP1-AS1 Up M2 macrophage Esophageal
cancer miR-26a - [114]

ASMTL-AS1 Up
Residual Huh7 cells

following heat treatment
using a 47 ◦C water bath

Hepatocellular
carcinoma miR-342-3p Correlated with distant

metastasis and TNM stage [115]

CCAL Up CAFs Colorectal
cancer HUR - [110]

CCAT1 Up Patient plasma.
PANC-1 cells

Pancreatic
cancer miR-138-5p - [116]

CEBPA-AS1 Up BGC-823 and SGC-7901 cells Gastric cancer -
Closely associated with

Bormann type and
TNM stage

[117]

CRNDE-h Up Patient serum. SW480, HT29,
and LOVO cells

Colorectal
cancer RORγt

Positively associated with
the proportion of

Th17 cells
[118]

DLX6-AS1 Up SMMC-7721 and
HepG2 cells

Hepatocellular
carcinoma miR-15a-5p - [119]

FAM72D-3 Up Patient serum Hepatocellular
carcinoma miR-5787

Also upregulated in
patients with hepatitis and

cirrhosis
[120]

FAM225A Up ECA109 and TE-1 cells Esophageal
cancer miR-206 Associated with advanced

stages and poor prognosis [121]

FMR1-AS1 Up Serum of female patients.
ECA-109 and KYSE-150 cells

Esophageal
cancer TLR7

Associated with a poor
clinical outcome of female

patients
[122]

FRLnc1 Up Patient serum. HGC-27 cells Gastric cancer -
Associated with TNM
stage and lymph node

metastasis
[123]

HOTTIP

Up Mitomycin-resistant SW620
and HCT116 cells

Colorectal
cancer miR-214 Negatively associated with

mitomycin response [124]

Up Cisplatin-resistant MGC-803
and MKN-45 cells Gastric cancer miR-218

Poor response to cisplatin
in patients with high

HOTTIP levels
[125]

HULC Up Patient serum. PANC-1 cells Pancreatic
cancer miR-133b A diagnostic biomarker

candidate [126]

KCNQ1OT1 Up SW1463 cells Colorectal
cancer miR-30a-5p

Associated with vascular
invasion, lymph node
metastasis, and distant

metastasis

[127]
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Table 2. Cont.

Cargo
Molecule Expression Source of Exosome Type of

Cancer
Target

Molecule
Clinical

Relevance Ref.

LINC00161 Up
Patient serum. Huh7,

HCCLM3, MHCC-97L, and
MHCC-97H cells

Hepatocellular
carcinoma miR-590-3p Associated with poor

prognosis [128]

LINC00659 Up CAFs Colorectal
cancer miR-342-3p

Highly expressed in
patients with poor

prognosis
[112]

LINC01133 Up CFPAC-1 and SW1990 cells Pancreatic
cancer AXIN2

Associated with poor
overall survival and TNM

stage
[129]

LINC01559 Up mesenchymal stem cells Gastric cancer miR-1343-3p
Poor prognosis of patients

with high LINC01559
levels

[130]

LINC01711 Up TE-1 cells Esophageal
cancer miR-326 Associated with poor

prognosis [131]

LINC02418 Up Patient serum Colorectal
cancer miR-1273g-3p Considered as a possible

diagnostic marker [132]

MALAT1 Up SW620 and LoVo cells Colorectal
cancer

miR-26a and
26b

Worse survival probability
of patients with high

MALAT1 levels
[133]

PCAT1 Up Patient serum. Eight cell
lines, including KYSE30

Esophageal
cancer miR-326 - [134]

PCGEM1 Up Hypoxic AGS and MKN
cells Gastric cancer SNAI1 - [135]

POU3F3 Up KYSE450 and TE12 cells Esophageal
cancer - Associated with poor

survival rates of patients [136]

RPPH1 Up Patient plasma. SW620 and
HCT8 cells

Colorectal
cancer TUBB3 Negatively correlated with

overall survival [137]

SPRY4-IT1 Up Patient serum Gastric cancer miR-101-3p Correlated with tumor size
and TNM stage [138]

TUC339 Up PLC/PRF/5 cells Hepatocellular
carcinoma - - [139]

UCA1

Up Patient serum Colorectal
cancer miR-143

Associated with advanced
stages and distant

metastasis
[140]

Up Patient serum. Hypoxic MIA
PaCa-2 cells

Pancreatic
cancer miR-96-5p

Associated with
microvascular density,
tumor size, lymphatic

invasion, TNM stage, and
overall survival

[141]

ZFAS1 Up Eca109 cells Esophageal
cancer miR-124

Associated with lymph
node metastasis, TNM
stage, and tumor size

[142]

3.1.2. CRNDE-h, KCNQ1OT1, and RPPH1

Cancer-associated lncRNAs affect the tumor immune microenvironment in colorectal
cancer. CRNDE-h levels are upregulated in naive CD4+ T cells exposed to cancer cell-
secreted exosomes, indicating the transfer of CRNDE-h into CD4+ T cells via exosomes [118].
In addition, it was noted that exosomal CRNDE-h induces the differentiation of peripheral
blood mononuclear cells (PBMC) into pro-inflammatory T helper 17 (Th17) cells by binding
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to and blocking ubiquitin-mediated degradation of RAR-related orphan receptor gammat
(RORγt). The knockdown of CRNDE-h reduces the Th17 cell population in company
with RORγt downregulation and retards cancer growth in an allograft mouse model [118]
(Figure 4 and Table 2).

Int. J. Mol. Sci. 2022, 23, 930 15 of 30 
 

 

 
Figure 4. Exosomal lncRNAs derived from cancer cells and their biological functions in endothelial 
cells, macrophages, T cells, and fibroblasts. Rounded rectangles denote lncRNAs (black) and their 
functions (blue). Arrows indicate the upregulation (↑) and downregulation (↓). 

3.1.3. HOTTIP 
Several studies have indicated that HOTTIP is interconnected with drug resistance. 

HOTTIP desensitizes lung cancer cells to doxorubicin, etoposide, and cisplatin, through 
increasing BCL2 levels [151]. Downregulation of HOTTIP turns WNT/β-catenin signaling 
inactive, improving anti-prostate cancer effects of cisplatin [152]. Similarly, HOTTIP en-
hances stemness by attenuating miR-205 effects and confers resistance to cisplatin in ovar-
ian cancer [153]. 

In colorectal cancer, HOTTIP is overexpressed in mitomycin-resistant cancer cells 
and their exosomes. Exosomes from resistant cells weaken mitomycin-induced DNA 
damage in non-resistant cells via conveying HOTTIP, which impairs miR-214-mediated 
inhibition of karyopherin subunit alpha 3 (KPNA3) expression [124] (Figure 3 and Table 
2). As mentioned above, HOTTIP inactivates miR-205. In endothelial cells, miR-205 can 
activate AKT signaling, thus promoting angiogenesis [154]. Therefore, careful monitoring 
of the effect of exosomal HOTTIP on angiogenesis is demanded. 

3.1.4. LINC02418 
A few studies provided evidence that LINC02418 is an oncogenic lncRNA. 

LINC02418 positively regulates lung cancer cell proliferation while limiting apoptotic cell 
death by sponging miR-4677-3p [155,156]. In a similar fashion, LINC02418 constrains 

Figure 4. Exosomal lncRNAs derived from cancer cells and their biological functions in endothelial
cells, macrophages, T cells, and fibroblasts. Rounded rectangles denote lncRNAs (black) and their
functions (blue). Arrows indicate the upregulation (↑) and downregulation (↓).

Numerous studies have suggested that oncogenic KCNQ1OT1 is implicated in mi-
gration, invasion, apoptosis, and therapeutic resistance. For example, KCNQ1OT1 sig-
nificantly increases migration and invasion in hepatocellular carcinomas and osteosarco-
mas [143,144]. In small cell lung cancer, the inhibition of KCNQ1OT1 induces apoptosis
and sensitizes cells to etoposide by interrupting JAK/STAT signaling [145]. Additionally,
KCNQ1OT1 expression is upmodulated in methotrexate-resistant colorectal cancer cells,
and KCNQ1OT1 silencing re-sensitizes resistant cells to methotrexate through downregu-
lating cAMP-response element binding protein (CREB) and CREB-binding protein (CBP)
levels [146]. Of late, KCNQ1OT1 was observed to support ubiquitin-specific peptidase 22
(USP22)-mediated stabilization of PD-L1 by deactivating miR-30a-5p and thereby inhibiting
the anti-cancer immunity of CD8+ T cells [127]. Since KCNQ1OT1 is secreted from cancer
cells via exosomes, the reciprocal transfer of KCNQ1OT1 between cancer cells can substan-
tially increase PD-L1 levels, contributing to immune evasion [127] (Figure 4 and Table 2).
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KCNQ1OT1 knockdown may activate other oncogenic factors, since miR-30a-5p is intrigu-
ingly capable of negatively regulating tumor-suppressive genes [147,148].

Tubulin beta 3 class III (TUBB3) is induced by SNAI1 and facilitates cell migration
and invasion [149]. The activity of focal adhesion kinase (FAK), SRC proto-oncogene
(SRC), and STAT3 is downregulated by TUBB3 silencing, thus restraining metastasis [150].
Furthermore, it was proven that RPPH1 physically binds to and stabilizes TUBB3 proteins
in colorectal cancer cells [137]. Since cancer cell-derived exosomes contain RPPH1, this
lncRNA is able to affect TUBB3 expression in other surrounding cancer cells, encouraging
colorectal cancer progression. Moreover, exosomal RPPH1 can mediate M2 polarization
of macrophages, ultimately promoting migration, invasion, EMT, and metastasis [137]
(Figure 4 and Table 2).

3.1.3. HOTTIP

Several studies have indicated that HOTTIP is interconnected with drug resistance.
HOTTIP desensitizes lung cancer cells to doxorubicin, etoposide, and cisplatin, through
increasing BCL2 levels [151]. Downregulation of HOTTIP turns WNT/β-catenin signal-
ing inactive, improving anti-prostate cancer effects of cisplatin [152]. Similarly, HOTTIP
enhances stemness by attenuating miR-205 effects and confers resistance to cisplatin in
ovarian cancer [153].

In colorectal cancer, HOTTIP is overexpressed in mitomycin-resistant cancer cells and
their exosomes. Exosomes from resistant cells weaken mitomycin-induced DNA damage
in non-resistant cells via conveying HOTTIP, which impairs miR-214-mediated inhibition
of karyopherin subunit alpha 3 (KPNA3) expression [124] (Figure 3 and Table 2). As
mentioned above, HOTTIP inactivates miR-205. In endothelial cells, miR-205 can activate
AKT signaling, thus promoting angiogenesis [154]. Therefore, careful monitoring of the
effect of exosomal HOTTIP on angiogenesis is demanded.

3.1.4. LINC02418

A few studies provided evidence that LINC02418 is an oncogenic lncRNA. LINC02418
positively regulates lung cancer cell proliferation while limiting apoptotic cell death by
sponging miR-4677-3p [155,156]. In a similar fashion, LINC02418 constrains apoptosis via
controlling the miR-34b-5p/BCL2 axis, promoting colorectal cancer progression [157]. In
addition, LINC02418 is overexpressed in colorectal cancer tissues, cell lines, and serum
exosomes, suggesting the likelihood of the origin of exosomal LINC02418 from cancer
cells [132]. Furthermore, it was discerned that LINC02418 upregulates the level of MELK
by disabling miR-1273g-3p to support proliferation and cell survival in cancer cells [132].
These findings demonstrate that exosomal LINC02418 from cancer cells can act as one
of the bioactive molecules in recipient cancer cells (Figure 4 and Table 2). However, it
should be noted that miR-1273g-3p has a stimulatory effect on cell proliferation, migration,
and invasion in LoVo cells, a colorectal cancer cell line [158]. Such findings indicate the
interaction of miR-1273g-3p with both oncogenes and tumor-suppressive genes, eliciting
different functions depending on the cellular context.

3.1.5. MALAT1 and UCA1

Exosomal MALAT1 and UCA1 serve as pro-metastatic factors in colorectal can-
cer [133,140]. Exosomal MALAT1 from metastatic cells can be internalized into other
cancer cells and raise their migratory and invasive capacity in vitro. Furthermore, liver
and lung metastases of colorectal cancer are advanced by exosomal MALAT1 in vivo. Such
pro-metastatic effect of MALAT1 is partly due to the activation of PI3K/AKT signaling via
sponging miR-26a and miR-26b [133] (Figure 4 and Table 2).

UCA1 is highly expressed in colorectal cancer tissues, cell lines, and patients’ serum
exosomes [140]. This suggests the possibility that exosomal UCA1 is derived from cancer
cells. Further, it was found that cancer cells can gain metastatic potential following treat-
ment with serum exosomes harboring UCA1. In this study, it was also proposed that UCA1
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is capable of impelling metastasis by downmodulating and upmodulating miR-143 and
myosin VI (MYO6) levels, respectively [140] (Figure 4 and Table 2). However, UCA1 exerts
anti-migratory and -invasive roles in esophageal cancer [159], showing that the function of
UCA1 is dissimilar, depending on cancer types.

3.2. Esophageal Cancer
3.2.1. AFAP1-AS1

AFAP1-AS1, a highly expressed lncRNA in multiple cancers, was discovered to pro-
mote cancer progression, stemness, as well as therapeutic resistance. AFAP1-AS1 possesses
stimulatory effects on cell proliferation, migration, and invasion in thyroid cancer as a
consequence of sequestering miR-204-3p [160]. In laryngeal cancer, AFAP1-AS1 potentiates
stemness and cisplatin resistance by raising the level of recombination signal-binding
protein for immunoglobulin Kappa J region (RBPJ) [161].

Besides this, a profuse amount of AFAP1-AS1 was detected in exosomes unleashed
by M2 macrophages. Exosomal AFAP1-AS1 can enter esophageal cancer cells and interact
with miR-26a to promote the level of cyclic AMP-responsive element-binding protein 2
(CREB2, also known as activating transcription factor 2 (ATF2)), thereby boosting migra-
tion/invasion in vitro and lung metastasis in vivo [114] (Figure 3 and Table 2).

3.2.2. FAM225A and FMR1-AS1

Neuropilin and tolloid-like 2 (NETO2) activates the PI3K/AKT signaling-mediated
NF-κB/SNAI1 axis, triggering the EMT process [162]. The silencing of NETO2 can induce
apoptosis, along with an increase in cleaved caspase-3 and a decrease in BCL2 [163]. In
addition, forkhead box P1 (FOXP1) supports cell survival via transcriptionally repressing
the expression of proapoptotic genes, such as BCL2 interacting killer (BIK) [164]. Further-
more, the level of EMT-related genes, including SNAI1, is positively affected by FOXP1
overexpression [165]. Both NETO2 and FOXP1 are targets of miR-206 and are upregulated
by FAM225A in esophageal cancer. FOXP1 can increase FAM225A levels, indicating a
positive feedback loop between these molecules [121]. FAM225A is located in exosomes
from cancer cells. Therefore, exosomal FAM225A can be transferred to other cancer cells,
inciting cell survival and EMT [121] (Figure 4 and Table 2).

FMR1-AS1 is a highly expressed lncRNA and is sorted into exosomes in esophageal
cancer [122]. This exosomal lncRNA is transcriptionally induced by NF-κB, which, in turn,
activates NF-κB-MYC signaling by binding to toll-like receptor 7 (TLR7). Thus, FMR1-AS1
exerts anti-apoptotic and pro-invasive effects and strengthens stemness in recipient cancer
cells. In vivo observation also indicated that exosomal FMR1-AS1 fuels cancer growth [122]
(Figure 4 and Table 2).

3.2.3. LINC01711 and ZFAS1

LINC01711 is upregulated in esophageal cancer tissues and several cell lines. In ad-
dition, this lncRNA can be contained in exosomes produced by cancer cells, suggesting
that exosomal LINC01711 can play an oncogenic role [131]. It has been shown that exo-
somal LINC01711 dampens the activity of miR-326, which targets fascin actin-bundling
protein 1 (FSCN1), in recipient cancer cells, hence expediting proliferation, migration,
and invasion [131] (Figure 4 and Table 2). Another study showed the positive correlation
between LINC01711 and TGFB1 expression [166]. Thus, miR-326 activity may be mod-
ulated by the TGFB1/LINC01711 axis. FSCN1 is markedly increased in diverse cancers
and affects various cellular processes, such as invasion, EMT, metastasis, as well as drug
resistance [167–169]. Therefore, it is worth considering LINC01711 as a prospective target
for esophageal cancer treatment.

In esophageal cancer, exosomal ZFAS1 is taken up by other surrounding cancer cells
and exerts a positive influence on proliferation, migration, and invasion via the miR-
124/STAT3 axis [142] (Figure 4 and Table 2). ZFAS1 has been known to abrogate tumor-
suppressive functions of numerous miRNAs in gastrointestinal cancers. By targeting miR-
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150, ZFAS1 upregulates MMP14, MMP16, and zinc finger E-box-binding homeobox 1 (ZEB1)
expression, consequently increasing the occurrence of lung metastasis in hepatocellular
carcinomas [170]. ZFAS1 also invalidates miR-150 activity and facilitates angiogenesis in
colorectal cancer. Of note, ZFAS1 enhances tube formation of HUVECs [171]. Exosomal
ZFAS1 may therefore contribute to angiogenesis by affecting the biological traits of nearby
endothelial cells in esophageal cancer.

3.2.4. PCAT1 and POU3F3

PCAT1 and POU3F3 have been regarded as oncogenic lncRNAs. PCAT1 physically
binds to enhancer of Zeste 2 polycomb repressive complex 2 subunit (EZH2) and, thus, epi-
genetically silences PTEN expression, leading to cisplatin resistance in gastric cancer [172].
In hepatocellular carcinomas, PCAT1 silencing downregulates the level of high mobility
group box 1 (HMGB1) and incapacitates the invasive and migratory potential [173]. In a
similar manner, the degree of apoptosis and EMT process is attenuated in POU3F3-silenced
colorectal cancer cells [174].

In esophageal cancer, both PCAT1 and POU3F3 regulate drug sensitivity [134,136].
PCAT1 was validated to sponge miR-326, which has an inhibitory action on AKT. Down-
regulation of PCAT1 induces G2/M cell cycle arrest and turns cancer cells more sensitive to
paclitaxel [134]. This lncRNA is present in exosomes from cancer cells [134], demonstrating
its potential to cause paclitaxel resistance in recipient cancer cells (Figure 4 and Table 2).

POU3F3 is also encompassed by exosomes generated from cancer cells and deliv-
ered to fibroblasts. POU3F3 ultimately accelerates the conversion of normal fibroblasts
(NF) into CAFs, although the mechanisms of POU3F3-mediated fibroblast activation re-
main unclear. CAFs are then responsible for cisplatin resistance by secreting IL6 [136]
(Figure 4 and Table 2). POU3F3 has been shown to upregulate the expression of rho-
associated coiled-coil containing protein kinase (ROCK) [175]. ROCK is known to activate
YAP1 [176], which stimulates NF-CAF transition [177]. For this reason, POU3F3 may
regulate fibroblast activation via the ROCK/YAP1 axis.

3.3. Gastric Cancer
3.3.1. CEBPA-AS1

CEBPA-AS1 deactivates Notch signaling via sponging of oncogenic miR-10b-5p, and
it increases apoptotic cell death in osteosarcomas [178]. By contrast, CEBPA-AS1 is highly
expressed in exosomes from gastric cancer cells and suppresses apoptotic cell death in re-
cipient cancer cells [117] (Figure 4 and Table 2). CEBPA-AS1 partakes in BCL2 upregulation
in oral squamous cell carcinomas [179]. Although it is required to unravel the mechanisms
underlying the oncogenic role of CEBPA-AS1 in gastric cancer, apoptosis may nonetheless
be regulated by the CEBPA-AS1/BCL2 axis in gastric cancer as well.

3.3.2. FRLnc1 and PCGEM1

Exosomal FRLnc1 from gastric cancer cells can effectively augment cell proliferation,
viability, and migration in receiver cancer cells [123] (Figure 4 and Table 2). Although
direct targets of FRLnc1 remain to be identified, FRLnc1 is known to upregulate the level
of TGFB1 and TWIST, favoring migration in vitro and lung metastasis in vivo in gastric
cancer [180]. In addition, FRLnc1 can be induced by FOXM1 [180], and CCAL is capable of
upmodulating FOXM1 levels (Section 3.1.1). Thus, CCAL may increase FRLnc1 expression
in gastric cancer, resulting in an abundance of FRLnc1 in exosomes.

PCGEM1 stabilizes SNAI1 proteins via physically interacting with them, serving as
a pro-migratory and -invasive lncRNA in gastric cancer [135]. Hypoxic cancer cells are
sources of plentiful amounts of exosomal PCGEM1, which can be internalized into nor-
moxic cancel cells. Exosomal PCGEM1 leads to an increase in SNAI1 levels and expedites
migration and invasion in normoxic cancer cells [135] (Figure 3 and Table 2). Evidence
from another study suggested that PCGEM1 also improves the invasive ability of gastric
cancer cells by increasing the level of prolyl 4-hydroxylase subunit alpha 2 (P4HA2) [181].
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Accordingly, PCGEM1 may transcriptionally and post-transcriptionally regulate SNAI1
expression, since P4HA2 transcriptionally induces SNAI1 [182].

3.3.3. HOTTIP

As mentioned in Section 3.1.3, HOTTIP regulates cellular factors and signaling linked
to therapeutic resistance. In gastric cancer, cisplatin resistance in recipient cells is insti-
gated by exosomal HOTTIP secreted from cisplatin-resistant cells. Mechanistically, exo-
somal HOTTIP augments the expression of high mobility group AT-hook 1 (HMGA1)
via nullifying miR-218 activity [125] (Figure 3 and Table 2). In addition to cisplatin,
HMGA1 contributes to cellular resistance to paclitaxel, 5-FU, and gefitinib [183–185]. There-
fore, targeting HOTTIP may beneficially improve the effectiveness of various kinds of
anti-cancer drugs.

3.3.4. LINC01559

Research-based evidence demonstrated the role of LINC01559 as an oncogenic lncRNA
in gastrointestinal cancers. In pancreatic cancer, LINC01559 interacts with and enhances
the transcriptional activity of YAP, boosting cell proliferation and migration [186]. Through
sponging miR-6783-3p, LINC01559 renders hepatocellular carcinoma insensitive to oxali-
platin [187]. In addition, LINC01559 stabilizes ZEB1 mRNA via interacting with IGF2BP2
and acts as an EMT-promoting lncRNA in gastric cancer. ZEB1, in turn, transcriptionally
activates LINC01559 expression, indicating a LINC01559–ZEB1 feedback loop [188].

Moreover, it was noticed that exosomes from mesenchymal stem cells convey LINC01559
to gastric cancer cells [130]. Exosomal LINC01559 counteracts the negative effect of miR-
1343-3p on phosphoglycerate kinase 1 (PGK1) and epigenetically inhibits PTEN expression.
By regulating PGK1 and PTEN levels, exosomal LINC01559 can activate PI3K/AKT sig-
naling and promote cell proliferation, migration, and stemness in gastric cancer cells [130]
(Figure 3 and Table 2).

3.3.5. SPRY4-IT1

SPRY4-IT1 has been proven to serve as either a tumor-suppressive or an oncogenic
lncRNA. SPRY4-IT1 is downregulated in cisplatin-resistant lung cancer cells and takes
part in the repression of EMT. Overexpression of SPRY4-IT1 reinforces cisplatin-induced
apoptosis in resistant cells [189]. Conversely, EMT can be triggered by SPRY4-IT1 in cer-
vical cancer, colorectal cancer, and hepatocellular carcinomas [190–192]. What is more,
SPRY4-IT1 is transcriptionally activated by NF-κB and promotes staufen-mediated degra-
dation of transcription elongation factor B subunit 1 (TCEB1) mRNA to upregulate HIF-1α
levels [193]. Thus, it is probable that SPRY4-IT1 can control the expression of other ncRNAs,
such as circ_ZNF91, which is regulated by HIF-1α (see Section 2.5.3 about circ_ZNF91).

Furthermore, SPRY4-IT1 is enriched in gastric cancer tissues, cancer cell lines, and
serum exosomes [138]. Hence, exosomal SPRY4-IT1 can be released from cancer cells and
regulate the biological properties of other cancer cells. SPRY4-IT1 functionally provokes
cell proliferation, migration, and stemness via regulating the miR-101-3p/AMP-activated
protein kinase (AMPK) axis [138] (Figure 4 and Table 2).

3.4. Hepatocellular Carcinoma
3.4.1. ASMTL-AS1

ASMTL-AS1 has a dual role in cancer. Overexpression of ASMTL-AS1 stabilizes
spermidine/spermine N1-acetyltransferase 1 (SAT1) mRNA, retarding the growth of lung
cancer along with ferroptosis [194]. ASMTL-AS1 impairs WNT/β-catenin signaling, re-
straining breast cancer growth in vivo [195]. By contrast, ASMTL-AS1 exacerbates os-
teosarcoma progression through the upmodulation of ADAM metallopeptidase domain 9
(ADAM9) expression [196].

In hepatocellular carcinoma, ASMTL-AS1 is upregulated in cancer tissues and further
increased in residual tissues following insufficient radiofrequency ablation (RFA) [115].
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Such an expression pattern of ASMTL-AS1 implies that this lncRNA may contribute to
cancer recurrence. Indeed, ASMTL-AS1 is transcriptionally elevated by MYC and increases
Nemo-like kinase (NLK) expression via rendering miR-342-3p ineffective, fundamentally
reinforcing malignant phenotypes, such as EMT and metastasis [115]. Compared to its
levels in non-treated cells, ASMTL-AS1 levels are increased in residual cancer cells following
heat treatment mimicking insufficient RFA. In addition, ASMTL-AS1 can be enclosed by
exosomes and conveyed from residual cells into other cancer cells [115]. These observations
demonstrate the contribution of exosomal ASMTL-AS1 to cancer recurrence by increasing
NLK signaling (Figure 3 and Table 2).

3.4.2. DLX6-AS1 and TUC339

Exosomal lncRNAs from hepatocellular carcinoma cells are accountable for M2 polariza-
tion, following an uptake by macrophages. Coculturing cancer cells with M2 macrophages
stimulated by exosomal DLX6-AS1 promotes migration, invasion, and EMT in vitro. Fur-
thermore, by activating M2 polarization, exosomal DLX6-AS1 triggers lung metastasis
in vivo. Exosomal DLX6-AS1 exerts its function by upregulating C-X-C motif chemokine
ligand 17 (CXCL17), which is targeted by miR-15a-5p [119] (Figure 4 and Table 2). Despite
DLX6-AS1’s oncogenic ability, the knockdown of this lncRNA activates autophagy [197].
Since autophagy can be considered as the pro-survival pathway [198], double inhibition of
DLX6-AS1 and autophagy may efficiently suppress cancer and synergistically improve the
anti-cancer effect of conventional treatment.

In the case of TUC339, more studies are needed to unveil how TUC339 controls M2
polarization and what miRNAs and proteins this lncRNA interacts with once transferred
to macrophages. Nonetheless, it was observed that exosomal TUC339 from cancer cells is
required for M2 polarization and an increase in pro-inflammatory cytokines [139]. These
results suggest that the downregulation of exosomal TUC339 can conceivably control cancer
progression (Figure 4 and Table 2).

3.4.3. FAM72D-3

FAM72D-3 is one of the upregulated lncRNAs in serum exosomes from patients with
hepatocellular carcinomas. FAM72D-3 silencing increases apoptotic cell death [120]. Thus,
it is conceivable that the transfer of cancer cell-derived exosomal FAM72D-3 to other
cancer cells enables them to escape apoptosis. In addition, miR-5787 levels are elevated
in FAM72D-3-silencing cells, suggesting miR-5787 as a possible downstream effector of
FAM72D-3 [120]. It is important to define whether FAM72D-3 directly regulates miR-5787
or not and if miR-5787 is an oncogenic or a tumor-suppressive factor (Figure 4 and Table 2).

3.4.4. LINC00161

LINC00161 upregulates interferon-induced protein with tetratricopeptide repeats 2
(IFIT2), a cell death-promoting factor, augmenting cisplatin-induced apoptosis in osteosar-
coma cells [199]. On the other hand, LINC00161 is one of the highly expressed lncRNAs
in cisplatin-resistant ovarian cancer cells and causes cisplatin resistance by upregulating
ERK [200]. Besides, intercellular transport of LINC00161 from cancer cells to endothelial
cells was noticed in hepatocellular carcinomas [128]. Exosomal LINC00161 can increase
the level of ROCK by binding to miR-590-3p in endothelial cells, facilitating proliferation,
migration, and tube formation. The silencing of LINC00161 markedly inhibits angiogenesis
and metastasis in vivo [128] (Figure 4 and Table 2).

3.5. Pancreatic Cancer
3.5.1. CCAT1

In addition to the resistance-associated role of HMGA1 (Section 3.3.3), HMGA1 is
involved in angiogenesis. For instance, HMGA1 can increase the transcriptional activity
of FOXM1 on angiogenesis-related genes, such as VEGF [201]. In addition, HMGA1 is
able to interact with HIF-1, thus mediating a hypoxia-induced increase in VEGF [202]. A
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recent report demonstrated that CCAT1 is released from pancreatic cancer cells through
exosomes and positively modulates the level of HMGA1, a miR-138-5p target, in endothelial
cells [116]. The effect of CCAT1 on migration and tube formation of endothelial cells is
antagonized by miR-138-5p overexpression [116]. These results suggest that exosomal
CCAT1 may regulate autocrine VEGF signaling via the miR-138-5p/HMGA1/VEGF axis
in endothelial cells (Figure 4 and Table 2).

3.5.2. HULC

Identification of lncRNAs regulated by TGFB1, an EMT-promoting factor, showed that
HULC is among the TGFB1-induced lncRNAs in pancreatic cancer cells. Both intracellular
and intra-exosomal levels of HULC are upregulated by TGFB1 [126]. Treatment with
exosomes derived from donor cancer cells increases the expression of HULC and EMT
markers, such as vimentin, in recipient cancer cells and promotes invasion and migration.
These tendencies are further reinforced by the treatment with exosomes derived from
TGFB1-treated cancer cells. In addition, it was found that the effect of HULC is due to its
suppressive action on miR-133b, an EMT-inhibiting miRNA [126] (Figure 4 and Table 2).

3.5.3. LINC01133

Disparate functions of LINC01133 depending on cancer types have been reported.
LINC01133 hampers gastric and bladder cancer progression via somatostatin upregulation
and WNT signaling inactivation, respectively [203,204]. Consistently, by suppressing
SRY-box transcription factor 4 (SOX4) expression, LINC01133 is capable of inhibiting
metastasis in breast cancer [205]. On the contrary, LINC01133 facilitates EMT via enhancing
SNAI1 levels and activates STAT3 signaling in hepatocellular carcinoma [206]. In ovarian
cancer, LINC01133 upregulates tumor protein D52 (TPD52) levels through sharing the same
binding sites with miR-495-3p, acting as a pro-metastatic factor [207]. It was also identified
that LINC01133 is transactivated by CCAAT/enhancer-binding protein β (CEBPB) and
positively modulates cell proliferation via activating cyclin G1 expression in pancreatic
cancer [208].

Moreover, LINC01133 is highly expressed in pancreatic cancer cells as well as in
their secreted exosomes. LINC01133 interacts with EZH2 to silence the expression of axis
inhibition protein 2 (AXIN2), activating β-catenin and promoting cell survival, proliferation,
and EMT [129]. In this study, periostin (POSTN) was discovered to increase LINC01133 via
the epidermal growth factor receptor (EGFR)/MYC axis and promote exosome secretion in
pancreatic cancer cells [129]. These findings suggest that exosomal LINC01133 augmented
by POSTN in donor cells can affect the progression of recipient cells via the AXIN2/β-
catenin axis (Figure 4 and Table 2).

3.5.4. UCA1

Angiomotin-like 2 (AMOTL2) activates the SRC/ERK signaling pathway, playing a
critical role in migration and proliferation of endothelial cells during angiogenesis [209].
More recently, exosomal UCA1 was proven to be released from hypoxic pancreatic cancer
cells and transported to endothelial cells, in which UCA1 relieves the activity of miR-96-5p
on AMOTL2. Exosomal UCA1 secreted from hypoxic cancer cells reinforces cancer growth
and angiogenesis in vivo [141] (Figure 3 and Table 2).

4. Conclusions

Growing evidence introduced here shows that exosomal circRNAs and lncRNAs are
involved in the intercellular communication between a wide range of cell types. Knock-
down of a single exosomal ncRNA sufficiently blocks cancer progression and aggres-
siveness; therefore, targeting ncRNAs can be a reasonable option for gastrointestinal
cancer treatment.

Nonetheless, it is critical to consider the characteristic features of these ncRNAs. These
include the differences in function according to the type of cancer and cell. Inhibition of
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appropriately selected ncRNAs that are specifically relevant to the cancer type is required.
Furthermore, to avoid side effects on normal cells, cancer-specific suppression of onco-
genic ncRNA is essential. Additionally, even targeting ncRNAs themselves may hardly be
free from therapeutic resistance. Therefore, it is attractive to explore innovative combina-
tion therapy with ncRNA inhibition and other anti-cancer treatments for pronouncedly
controlling resistance problems.

In addition to the inhibition of exosome cargo, restraint of exosome secretion has ther-
apeutic benefits. However, pharmacological agents, such as GW4869, are non-specific in-
hibitors of exosome-mediated intercellular dialogues and have undesirable effects [210,211].
Besides this, it has been found that exosome uptake can be controlled by cellular factors
such as advanced glycosylation end-product specific receptor (AGER) [212]. Therefore,
identifying genes involved in the secretion and uptake of exosomes will open the way
for more specific inhibition of the cancer-supporting activity of exosomes through gene
knockdown approaches.

Overall, an advanced understanding of the nature of ncRNAs and the mechanism un-
derpinning the exosome itinerary will pave the way for overcoming gastrointestinal cancer.
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