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Simple Summary: Radiomics could increase the value of medical images for oncologic patients,
allowing for the identification of novel imaging biomarkers and building prediction models. Unfortu-
nately, despite the many promises and encouraging findings, the translation of radiomics into clinical
practice appears as a distant goal. Indeed, challenges such as generalizability and reproducibility
are slowing down the process and must be faced with a rigorous and robust radiomic methodology.
In this review, we turn the spotlight to the methodological complexity of radiomics, providing an
outline of dos and don’ts aimed at facilitating state-of-the-art research.

Abstract: Imaging plays a crucial role in the management of oncologic patients, from the initial
diagnosis to staging and treatment response monitoring. Recently, it has been suggested that its
importance could be further increased by accessing a new layer of previously hidden quantitative
data at the pixel level. Using a multi-step process, radiomics extracts potential biomarkers from
medical images that could power decision support tools. Despite the growing interest and rising
number of research articles being published, radiomics is still far from fulfilling its promise of guiding
oncologic imaging toward personalized medicine. This is, at least partly, due to the heterogeneous
methodological quality in radiomic research, caused by the complexity of the analysis pipelines. In
this review, we aim to disentangle this complexity with a stepwise approach. Specifically, we focus on
challenges to face during image preprocessing and segmentation, how to handle imbalanced classes
and avoid information leaks, as well as strategies for the proper validation of findings.

Keywords: radiomics; reproducibility; oncologic imaging; evidence-based medicine; research quality

1. Introduction

Historically, medical images have been evaluated visually and radiologists interpreted
imaging findings and generated reports using semantic descriptors. Unfortunately, there
are intrinsic limitations to this approach, which is prone to subjectivity and thus interob-
server variability. Semiquantitative and quantitative approaches to diagnostic imaging have
gradually emerged to further increase its value, especially in oncology [1]. More recently,
advancements in medical imaging equipment, the digitalization of diagnostic images, and
the high computational power available today have made it possible to obtain additional
information from imaging scans, far beyond what meets the eyes of radiologists [2]. Indeed,
medical images can be turned into mineable data, extracting numerous quantitative pa-
rameters to generate high-dimensional data with a complex, multi-step process known as
radiomics. This postprocessing technique allows for the characterization of image hetero-
geneity at the pixel level, which is supposed to reflect biological heterogeneity, a peculiarity
of cancer. Following this assumption, radiomics appears as a promising evolution in the
field of oncologic imaging, and the scientific community has been tirelessly working to
provide the evidence necessary for its possible translation into clinical practice, with a
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constant rise in the number of publications over time [3]. Radiomics could unveil novel
imaging biomarkers or be paired with machine learning (ML) to train support decision tools
and classifiers to aid physicians in the management of oncologic patients. However, the
actual applications of radiomics to the benefit of oncologic patients are still a distant goal,
and some suggest that methodological quality has not been rising along with quantity, with
many studies presenting methodological shortcomings in their radiomic pipelines [4–6].
Due to the complexity of radiomic pipelines (Figure 1), the scientific community is facing
reproducibility and generalizability issues [7]. With the present review, we aim to provide
an overview of the technical challenges that need to be tackled in order to produce robust
evidence and foster the translation of radiomics into clinical practice. In particular, we
focus on hand-crafted radiomics and ML approaches, with minor references to the world
of deep learning (DL).
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2. Image Preprocessing and Quality Control of Imaging Datasets

One of the most interesting aspects and a great advantage of radiomics is that it can
be applied to routinely acquired medical images. Thus, the development and deployment
of radiomic approaches do not negatively impact the current radiological workflow [8].
However, while many imaging protocols and technical acquisition parameters have been
standardized in the field of oncologic imaging, there are significant sources of variability
that may affect the reproducibility of the computational biomarkers known as radiomic
features to a relevant extent. Indeed, non-biological variations can be introduced by differ-
ences in terms of scanner characteristics (e.g., manufacturer, model, hardware components)
as well as imaging protocols, with the adherence to imaging guidelines recommendations
on technical acquisition parameters being rather heterogeneous [9–11]. Furthermore, the
variability of image reconstruction algorithms and/or their settings might generate noise
in the form of spurious variations in certain radiomic features, making it necessary to
identify such unstable features so that they be excluded from further analysis [12–14].
The test–retest analyses of radiomic feature robustness have shown that the number of
stable features might be low and possibly vary in different organs [15,16]. In this light, it
appears evident that well-recognized issues with imaging biomarkers such as repeatability
(multiple measurements with the same equipment in the same subject) and reproducibility
(measurements performed with different equipment) apply to radiomics as well [17]. To
account for these issues, there is a variety of countermeasures that collectively constitute
image preprocessing techniques. These aim to homogenize medical images with respect to
those variables (e.g., pixel spacing, grey-level intensities, bin width) that could generate
a non-biologically relevant and noisy heterogeneity [15]. A summary of the main image
preprocessing techniques can be found in Table 1. It deserves to be underlined that the test–
retest robustness of radiomic features is significantly affected by the image preprocessing
implementation or lack thereof [18,19]. Even more interestingly, it has been found that the



Cancers 2022, 14, 4871 3 of 14

impact of different image preprocessing procedures may differ depending on the nature of
medical images. This was reported, for example, in a test–retest breast cancer MRI study
carried out by Grazier et al. in which stable features varied based on MRI sequence [20].
In a different oncologic setting, namely prostate cancer, it was similarly found that both
image type and preprocessing can greatly affect the repeatability of radiomic features [21].
As a consequence, it is of paramount importance to disclose all the information regarding
the image preprocessing in detail, so that the findings of radiomic studies can be properly
replicated and eventually validated.

Table 1. Image preprocessing techniques are presented, with their rationale and advantages.

Image Preprocessing
Technique Rationale Advantage

Normalization

MRI data contain arbitrary
intensity units and grey-level

intensity that can be
homogenized with intensity

outlier filtering (e.g.,
calculating the mean and

standard deviation of grey
levels and excluding those

outside a definite range such
as mean ± 3 times the
standard variation).

Reducing the heterogeneity
due to varying pixel

grey-level value distribution
across exams

Resampling

Images with different spatial
resolutions can be uniformed

and either upscaled or
downscaled to isotropic

voxel spacing.

Increases reproducibility by
making texture features

rotationally invariant

Discretization

Grouping pixels into bins
based on intensity ranges,

which is conceptually similar
to creating a histogram.

A greater number of bins (or a
smaller bin width) tend to

preserve image details at the
cost of noise. Conversely,

noise reduction can be
achieved by reducing the

number of bins (or increasing
bin width) but will cause the

image to lose detail.

Bias field correction

MRI can suffer from spatial
signal variation caused by the

magnetic field being
intrinsically inhomogeneous.

Correct undesired
inhomogeneities

Image filtering

Application of edge
enhancing (e.g., Laplacian of
Gaussian) or decomposition

(e.g., wavelet transform) filters
to obtain additional image

volumes from which to
extract features.

May emphasize useful image
characteristics while

reducing noise

It should be also acknowledged that high-quality, standardized medical images can
help ensure accurate, reproducible, and repeatable results [22]. In this setting, publicly
available imaging datasets represent a valuable asset, with the dual benefit of increasing
data openness while allowing researchers to access verified medical images from high
volumes and highly specialized centers. However, even widely embraced public datasets
should be subject to independent quality controls since the occurrence of shortcomings has
been highlighted [23,24]. Among the issues that can reduce the quality of medical images,
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motion artifacts represent a common problem that could be faced with image preprocessing
with motion correction, although this might introduce a potential variation in radiomic
data; thus, motion-control strategies (e.g., breath holding) should be probably preferred,
while one might want to entirely exclude images with artifacts from the dataset [25].

3. Lesion Segmentation

In the computer vision field, segmentation is the process of clustering the parts of
an image that belong to the same object class together. In the development of a radiomic
workflow applied to oncological imaging, segmentation represents a crucial step to define
the tumoral region of interest from which the imaging data are extracted and computed
into the machine-readable and quantitative features necessary for the subsequent radiomic
analysis. The boundaries of a tumoral lesion may be delineated in two-dimensional or
three-dimensional approaches, thus generating a region of interest (ROI) or a volume of
interest (VOI), respectively (Figure 2).
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Segmentation methods can be classified as manual, semiautomatic, and automatic, and
each method offers advantages and disadvantages [26]. Manual segmentation is performed
in a hand-drawing manner using a mouse or a graphic tablet with the advantage of precise
definitions for ROIs and/or VOIs, especially when applied to small-size datasets by expert
radiologists. On the other hand, this method involves time-consuming procedures and
may suffer from high intra- and interobserver variability, thus introducing bias in the
results of radiomic pipelines [27]. Semiautomatic segmentation consists of the user-guided
application of algorithms that adopt different strategies of image delineation such as region-
growing, level set, graph cut, and active contour (snake) approaches [12]. Although this
method reduces labor tasks and may increase radiomic feature robustness in comparison
to an entirely manual segmentation process [28], the stability of radiomic models still
remains susceptible to subjective bias, especially in the case of intensive user correction.
Recently, fully automatic systems based on DL architecture such as convolutional neural
networks (CNNs) have been applied to medical imaging segmentation showing excellent
results in lesion detection and segmentation and avoiding the intra- and interobserver
variability of radiomic features due to the deterministic nature of the CNNs’ output [29].
The main drawbacks of DL-based automatic methods are related to their need for large-
sized labeled data to train an accurate model and the generalizability of trained algorithms
since they might perform very poorly on a dataset different from that of training [30].
Interestingly, while these DL approaches could be of aid to reduce the workload and
increase reproducibility in the setting of hand-crafted radiomic research, when used for
classification purposes, DL models do not require image segmentation.
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Tumor segmentation entails the main challenge of radiomic feature reliability, espe-
cially for manual and semiautomatic methods, given the lack of standardized segmentation
procedures, which may lead to the poorly reproducible application of these models [31].
Indeed, emerging exploratory works aimed to assess to what degree radiomic feature ro-
bustness can be influenced by segmentation variability in terms of margin variations [32,33],
tumor site [34], the choice of region or volume of interest [35], and the use of manual or
(semi)automatic methods [36].

In this context, the influence of segmentation interobserver variability on radiomic
features stability has been evaluated by Haarburger et al. [37] on three large publicly avail-
able datasets of CT images across three tumor sites, namely the lung, kidney, and liver.
Manual segmentation by four expert radiologists was performed on the dataset of lung
tumors, whereas twenty-five different segmentations were computed using an automatic
method relying on a DL neural network on all three datasets. They found comparable
results between the manual and automatic methods, while their reproducibility analysis
showed a significant difference between feature categories, with shape features resulting
in the most stable features across the different methods and datasets. The reproducibil-
ity assessment of features across segmentations can be quantified through the intraclass
correlation coefficient (ICC) ranging from 0 to 1, with a value below 0.5 indicating a poor
agreement between raters on a radiomic feature [38]. In two recent systematic reviews
assessing the methodological quality of radiomic studies on prostate MRI [39] and adrenal
CT/MR imaging [5], it was revealed that most of the analyzed studies (85% for prostate
MRI radiomics and 72% for adrenal radiomics) suffered from a lack of feature stability to
multiple segmentation testing, underlining the need for more robust radiomic pipelines.

Efforts in providing a comprehensive overview of features stability techniques have
been made by Kocak et al. [40] with a systematic review focused on the reproducibility
strategies adopted in the radiomic studies of renal lesions, showing that segmentation vari-
ability analysis was largely implemented in comparison to image acquisition or the analysis
of processing differences. Nevertheless, a reproducibility analysis based on segmentation
variability was evaluated only in less than half of the included works (18/41). Similarly,
Gitto et al. [41] systematically reviewed feature reproducibility issues in the studies focused
on CT and MRI radiomics of bone and soft-tissue sarcomas, pointing out that interobserver
segmentation variability was applied only in 33% of investigations. Consensus guidelines
and standardized procedures are needed in segmentation step analysis for the profiling
of reproducible radiomic pipeline to finally move oncological imaging toward an inte-
grated biological and computational data science providing high-quality research for real
clinical uses.

4. Feature Extraction and Selection

The term biomarker refers to a measurable indicator of a specific biological state.
Imaging biomarkers can be both qualitative, i.e., based on an interpretation of experts,
and quantitative, extrapolated through mathematical formulas. In particular, radiomic
features characterize the regions or volumes of interest that have been previously identi-
fied [42]. Unfortunately, the lack of reproducibility and validation of these high-throughput
image biomarkers undermines the possible clinical implementation of this approach. In
recent years, with the significant increase in radiomic studies and applications, a shared
document concerning the standardization of feature extraction has become necessary. In
this scenario, the image biomarker standardization initiative (IBSI) was born, an interna-
tional collaborative project focused on the definition of guidelines concerning radiomic
quantitative feature extraction [43]. The drafted document, which can be consulted on the
official website of the initiative (https://ibsi.readthedocs.io, accessed on 29 August 2022),
describes intensity-based statistical features, intensity histogram features, intensity-volume
histogram features, morphological features, local intensity, and textural matrix-based fea-
tures, as well as how to report textural parameters. Considering the availability of these
guidelines, all radiomic studies should conform to them, in order to ensure the possible

https://ibsi.readthedocs.io
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reproducibility of the obtained results. In addition to extraction, another crucial step in
the radiomic workflow is the identification of a subset of relevant features through feature
selection. Indeed, using an ML approach, it is desirable to reduce the number of input
variables to both reduce the modeling computational burden and improve the algorithm
performance when developing a predictive model. In this setting, feature selection is also
crucial to prevent overfitting, i.e., the production of a model too closely matching the
training and validation data, which fails to fit new data after clinical implementation. In
the face of a plethora of features, this step can be achieved by using statistical-based feature
selection methods. These approaches include unsupervised methods, blind to the target
variable, and supervised techniques, which select those features presenting the strongest
relationship with the output variable [44].

The main unsupervised methods comprise feature reproducibility assessment, vari-
ance, and pairwise correlation analyses. First of all, only stable features should be included.
For this reason, a preliminary analysis of multiple phantom acquisitions on both the same
and different scanners should be conducted, in order to assess feature repeatability and
reproducibility through the concordance correlation coefficient (CCC) and dynamic range
(DR) calculation for each feature [14,45,46]. Subsequently, multiple segmentations by dif-
ferent physicians, algorithms, or software should be obtained to estimate the intraclass
correlation coefficient (ICC) [46]. In summary, only those parameters that meet predeter-
mined criteria (e.g., CCC and DR > 0.9, ICC > 0.75) can be considered stable and thus
included in the analysis. After excluding unstable parameters, a further recommended
step aims to remove features with low variance (presenting similar values in all samples),
setting a variance threshold (usually 0.1).

Finally, additional unsupervised methods consist of eliminating redundant features.
Indeed, redundancy within the information provided by different radiomic features is
somewhat expected, mostly due to the great dimensionality. For this purpose, it may be
useful to conduct a pairwise correlation analysis (variables that have a linear relationship
with each other) and then eliminate highly colinear variables, leaving only one representa-
tive feature. Conversely, supervised techniques take into account the output variable when
removing irrelevant features. These include wrapper and filter methods. Wrapper methods
assess multiple models by adding and/or removing features to achieve the best-performing
combination through a ranking approach (e.g., recursive feature elimination). By contrast,
filter methods score the relationship between each feature and the target variable exter-
nal to the predictive models. Only features with higher scores are then employed in the
model (i.e., features are filtered based on their score). In addition to the wrapper and
filter methods, some ML algorithms perform intrinsic feature selection naturally excluding
non-informative input variables during training (e.g., tree- and rule-based models such as
LASSO regression). Finally, an alternative to feature selection is represented by dimension-
ality reduction, which reduces the number of input variables in the training data, projecting
them into a lower-dimensional feature space, de facto generating new input features.

There is no universal best feature selection method, set of input variables, or ML model.
The best combination is actually the one that performs better in solving the specific problem
under consideration. For this reason, the feature selection step is difficult to standardize and
is usually empirically handled by the researcher with more or less systematic experiments,
making it difficult to objectively evaluate the adopted approach. This represents further
support for the importance of validating the results of a radiomic analysis, and whatever
approach is taken for feature selection, it is key to accurately describe the process and
possibly share the data. In this way, more researchers would be able both to repeat the
experiments and implement the pipeline in new ones, with the potential of achieving
better results.

On a final note, it is appropriate to highlight that all the above-mentioned steps can be
intrinsically included in the hidden layers of DL-based classification approaches.
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5. Data Processing for Model Training

Data preprocessing can be used to define the set of those steps that may be important to
ensure or enhance the final performance and reliability of a radiomic model. Indeed, there
are numerous issues that should be addressed with the manipulation of the selected data
before the actual model training, including feature scaling as well as dealing with missing
values or class imbalance [47]. The rationale behind the need for feature scaling is that
features with a much greater variance than others, due to their wider value range, might
appear dominant and greatly informative regardless of their actual value and overshadow
the relevance of other features, thus biasing the learning process of a classifier [48]. Feature
scaling can be achieved by the normalization or standardization of values.

Regarding missing values, it is unfortunately a possible occurrence that might involve
data both in terms of clinical (e.g., specific laboratory test not available) and radiomic
features (e.g., due to varying ROI size) [49]. While one could argue that a rigorous approach
to the issue could be to entirely drop the instances with one or more missing values from
the dataset, this would be rather undesirable in the clinical setting, where some values
might be missing, but there would still be the need to use the predictive model. In this
light, a different solution is represented by imputing the missing values, which can be
accomplished using simple statistics (i.e., substituting the missing values with the mean,
mode, or median values) or more complex multivariate modeling.

Class imbalance refers to the marked prevalence in a dataset of a particular class (in
the set of a two-class dataset, we would have a majority and a minority class, the latter often
being the one of interest for the classification purpose). This skewness in class distribution
introduces a bias that might make it more difficult for the algorithm to accurately model
the data distribution and thus lead to unreliable and poor predictive performance. There
are two main strategies for dealing with class imbalance, namely undersampling and
oversampling. A basic approach to undersampling would be to randomly discard a
sufficient number of instances from the majority class to obtain a balanced dataset. Despite
being a conceptually reasonable solution that could be easily applied to very large datasets,
it is not feasible in the setting of radiology where the number of available instances (e.g.,
imaging exams, patients) is frequently limited. As a consequence, oversampling is more
commonly adopted to address the class imbalance. Oversampling requires generating new
instances, which can be carried out by randomly duplicating some of the instances available
in the minority class or using more sophisticated techniques such as the synthetic minority
oversampling technique (SMOTE) [50]. Briefly, SMOTE is a computational method that can
be used to generate virtual instances from real ones. In the setting of DL, data augmentation
can be also considered a valid alternative to solve the class imbalance. It is a technique
that allows for an increase in the number of instances by adding slightly modified (e.g.,
mirrored, rotated) copies of the available medical images.

While handling the dataset before model training, it is of paramount importance to
avoid information leakage, which is a well-known issue significantly contributing to the
so-called reproducibility crisis in ML, involving and going far beyond the applications to
oncologic imaging [51]. Data leakage occurs when there is not a clear separation between
training and test datasets, which should instead be ensured in all imaging and data prepro-
cessing, modeling, and validation steps. For example, the use of SMOTE prior to separating
the training and test data represents a clear case of information leakage between the two
sets, as the synthetic cases will include the information obtained from both.

6. Validation, Calibration, and Reporting Accuracy

The concept of model “validation” within a radiomic and/or ML analysis pipeline
may lead to some confusion for those readers who do not have firsthand experience in
this type of work. Specifically, some papers seem to use the terms “validation” and “test”
set interchangeably, when referring to data partitioning or collection, in addition to the
more intuitively named training dataset. In actuality, the first two datasets both represent



Cancers 2022, 14, 4871 8 of 14

a distinct cohort from the training data, but they are employed for different aims and at
different times within the pipeline (Figure 3) [52].
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When building a model, it is generally fit using the training data alone. However,
most types of ML algorithms have one or more settings (i.e., hyperparameters) that may
be modified, affecting the resulting model’s performance. Similarly, the prior steps within
the pipeline (e.g., image or data preprocessing, feature selection) may also vary, also
influencing the final model’s accuracy of new data. The selection of optimal pipeline and
model hyperparameter configuration requires a dataset that is clearly distinct from the
training one, which is commonly referred to as a validation set. However, due to the
iterative nature of the tuning process, the risk of introducing bias and overfitting the model
to these data increases over time. Following this reasoning, it becomes apparent that, once
the optimal pipeline is identified, a new batch of data is required to provide an unbiased
estimation of the model’s performance in future cases. This is usually referred to as a test
set, which may originate from the same data source (internal test set) or from a different one
(external test set). The latter has a lower risk of bias and usually provides better insights
into real-world model performance [53]. Obviously, modifying the model after the last step
represents a clear pitfall and would require further testing on new data to avoid reporting
biased results.

Several strategies have been proposed to reduce the amount of bias within the valida-
tion process, which would improve the final model’s performance on the test set. These
have mainly been centered on data resampling, which can allow for more robust results,
as the model evaluation is not limited to a single fitting and testing but to multiple such
tests. The most common approaches are represented by resampling with replacement (i.e.,
bootstrapping) or without (e.g., k-fold cross-validation). In the first case, “novel” datasets
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are produced, with a variable number of “copies” of each original training instance (from
none to multiple). Using cross-validation, the training data are split into k number of
groups (i.e., folds). Then, one-fold is employed for the validation of a model fitted on the
remaining ones, repeating the process for all k folds. Several variations exist with different
values for k (e.g., 3, 5, 10, n-1), approaches for splitting the data folds (e.g., stratified, or
randomized), and the number of iterations for the overall cross-validation process (i.e.,
one or more). Both bootstrapping and k-fold cross-validation have been employed in the
setting of radiomics [40,41], and allow, for example, for the estimation of model test error.

The awareness of the value of predictive model calibration is starting to grow but is
still less than ideal [54]. The focus on output simplification, a tendency to simplify outputs
to binary labels, to accommodate the use of ML algorithms has led to a loss of nuance
and tends to shift the decision-making process from the user (i.e., physician) onto the
model [55,56]. Calibration statistics instead present a “goodness of fit” for the final model,
which indicates the degree of agreement for predictions in relation to outcomes [57]. This
can be achieved with a single score, such as the Brier score [58], through graphical repre-
sentation (calibration plots), or with specific tests (e.g., the Hosmer–Lemeshow test) [59].
Currently, the inclusion of calibration statistics is becoming more common in radiomic
studies [60–63], and their use is recognized as contributing to the methodological quality of
an investigation [64].

Almost always, discriminative statistics are reported when describing the results of
ML or statistical models built using radiomic features. These are related to the ability to
correctly identify patients with a specific outcome, which, as stated above, is typically binary
in the medical imaging applications of ML. Most physicians are fairly familiar with these
accuracy metrics, which include the area under the receiver operating characteristic curve
(AUC), sensibility, specificity, and negative and positive predictive values [57]. To better
contextualize these values, it is ideal to also present the actual confusion matrix obtained
from applying the model’s predictions to the unbiased test data. As with calibration
statistics, thorough reporting of discrimination accuracy metrics, better if paired with
resampling methods and corresponding confidence intervals, is a hallmark of good study
methodological quality [64]. We must consider that, typically, one of these discriminative
statistics is selected to guide the pipeline and model hyperparameter tuning process, which
is usually aimed at minimizing its error rate. In turn, it becomes clear that the selection
of the “best” metric must be based on the clinical context and prior domain knowledge of
the clinical setting where the model is expected to be deployed. For instance, the overall
accuracy (i.e., the ratio between the correctly classified and overall number of cases) may
be severely misleading in data with a highly unbalanced class distribution [65]. Therefore,
physicians must become more involved in model production, as this is the only way to
overcome the current clinical translation issues of radiomic research efforts and develop
the skills required to properly manage ML tools in daily practice [66,67].

7. Quality Evaluation Tools

The growing interest in artificial intelligence (AI) and radiomic applications over the
last few years, along with physicians’ relatively limited experience and knowledge of
ML/DL methods, brought about the need for AI and radiomic guidelines to introduce
researchers and clinical practitioners to these new techniques. Such recommendations
could also be useful for those reviewers tasked to revise AI papers, providing them with
the necessary instruments to identify drawbacks in the study methodology. Thus far, dif-
ferent documents have been produced for this purpose (Figure 4), which can be divided
into instruments to conduct and evaluate AI studies prior to or after publication (e.g.,
Radiomic Quality Score, RQS, Checklist for Artificial Intelligence in Medical Imaging,
CLAIM, and Minimum Information for Medical AI Reporting (MINIMAR)) [64,68,69], and
tools to assess the usefulness of the already available AI software in a real-world setting,
such as in the context of clinical trials (e.g., Standard Protocol Items: Recommendations
for Interventional Trials—Artificial Intelligence (SPIRIT–AI) and Consolidated Standards
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of Reporting Trials—Artificial Intelligence (CONSORT–AI)) [70,71], in combination with
human assessment (e.g., Developmental and Exploratory Clinical Investigation of Decision-
support systems driven by Artificial Intelligence (DECIDE–AI)) [72] or when considering
the adoption of commercial solutions (e.g., Evaluating Commercial AI solutions in Radiol-
ogy (ECLAIR)) [73].
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The RQS was released in 2017 and aimed to assess the radiomic workflow quality in
different steps, from image protocol to feature calculation/selection, model building, and
validation, as well as cost-effectiveness analysis [64]. Each step is assigned a score, for a
cumulative quantitative assessment in terms of percentage that can be used as an effective
appraisal tool for radiomic studies. In 2020, two additional checklists were proposed to
illustrate the steps of a “best AI practice”, both from USA groups: CLAIM [68] and MINI-
MAR [69]. These are made up of different items, including those features that have to be
considered for conducting a high-quality AI investigation, from study population to model
building. Both checklists highlight the need for independent datasets to train and validate
the proposed model, respectively. The MINIMAR guidelines also present some examples
of how the required information should be reported in the paper. Further guidelines are
currently being produced, such as The Transparent Reporting of a Multivariable Prediction
Model of Individual Prognosis or Diagnosis (TRIPOD)–AI and the Prediction model Risk
of Bias Assessment Tool (PROBAST)–AI, within the EQUATOR framework [74].

AI tools are meant to be used in clinical practice, so the inclusion of a developed AI
algorithm in clinical trials appears crucial to fully assess their applicability. In this light, the
SPIRIT and CONSORT guidelines have been integrated with specific recommendations
related to the employed AI software in clinical trials (SPIRIT–AI and CONSORT–AI), such
as name/version, image acquisition protocol, and information on how the software was
used (e.g., alone or in combination with clinical data) [70,71]. A similar initiative was carried
out by the DECIDE–AI expert group, to provide recommendations and guidelines for the
early stage clinical evaluation of decision support systems using a Delphi approach. The
resulting checklist includes indications on how to build an investigation for the assessment
of the usefulness of an AI tool in clinical practice, such as the description of the patient
population, features of the employed AI system, or how the system interacted with human
evaluation [72]. At present, several AI tools have been proposed for clinical use, with the
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majority for neuro applications [75]. However, only a minority of such systems proved to
have a high level of evidence validating the impact on clinical practice, patient outcomes,
and costs [76]. To aid the physicians interested in potentially adopting these commercially
available products in their institution, the ECLAIR guidelines provide a set of 20 questions
that should be considered prior to purchase [73]. These are divided into several domains,
including regulatory, legal, and financial aspects, which become particularly relevant
when translating radiomics and AI from a research setting to potentially affecting patient
outcomes in daily clinical practice.

Although a high heterogeneity still exists in terms of the applied AI methods, the
current efforts to standardize AI techniques and provide shared guidance on how to
conduct, report, and evaluate AI investigations will lead to the production of more robust
evidence on AI efficacy and clinical implementation.

8. Further Considerations

There are some additional aspects worth mentioning that should be taken into account
when designing a radiomic study. For instance, in the era of big data, radiomics should be
considered a part of a vastly greater world of “-omics” and, as a consequence, predictive
models should aim to integrate all sources of clinically relevant data in a comprehensive
manner (holomics) [77]. Whenever feasible, non-radiomic features (e.g., data from clinical
records, or biological or genetic sources) should be incorporated into more holistic models.
This might, for example, facilitate the identification of biological correlates and help create a
connection between imaging and genomics, as it happens in the field of radiogenomics [78].

When presenting a radiomic model, one should consider what might be the actual
clinical implication of its medical use. A formal assessment of the potential clinical relevance
of radiomic models can be made by using decision curve analysis [79]. However, one might
also want to provide a comparison of the model’s performance to that of the current gold
standard. The benefits of radiological workflows could also be explored, for example, in
terms of reduced reading time and increased accuracy and consistency among radiologists.

9. Conclusions

While the future of radiomics still looks bright, unmet methodological challenges are
casting worrying shadows. The outcome for oncologic patients would benefit from more
precise, tailored approaches, and radiomics might assist physicians in taking one more
step in this direction. However, to which extent radiomics will redefine oncologic patients’
management remains to be seen and will require robust, reproducible evidence built on
state-of-the-art pipelines.
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