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One- and two-dimensional 
electromagnetically induced 
gratings in an Er3+ - doped yttrium 
aluminum garnet crystal
Tao Shui1, Ling Li2, Xin Wang2 & Wen-Xing Yang1*

A coherently prepared Er3+-doped yttrium aluminum garnet (YAG) crystal with a four-level 

ionic configuration is exploited for realizing one-dimensional (1D) and two-dimensional (2D) 
electromagnetically induced gratings (EIGs). Owing to the probe gain induced by the incoherent 

pump, the diffraction efficiency of the crystal grating, especially the first-order diffraction, can be 
significantly improved via increasing the incoherent pumping rate or decreasing the probe detuning. 
The enhancement of the grating diffraction efficiency originates from the interference between the gain 
and phase gratings. It is also demonstrated that the diffraction of the crystal grating can be dynamically 
controlled via tuning the intensity and detuning of the standing-wave driving field or the concentration 
of Er3+ ion. More importantly, the probe energy of the diffraction side lobes around the central principle 
maximum is comparable to that of the first-order diffraction field for small driving intensity or large 
driving detuning. Our scheme may provide a possibility for the active all-optical control of optical 

switching, routing and storage in fiber communication wavelengths.

In the past few decades, the study of electromagnetically induced grating (EIG) has been one of the hot spots 
in optics due to its potential applications in optical switching and routing1,2, optical bistability3, light storage4, 
self-imaging5,6, and four-wave mixing dipole soliton7. Note that EIG, which is created by using a standing-wave 
(SW) laser �eld to replace the traveling-wave laser �eld in electromagnetically induced transparency, can di�ract 
the incident probe beam into high-order di�raction directions. Such a di�raction grating is derived from the 
spatial periodic modulation of the amplitude and phase of the transmission function. It was �rst theoretically 
proposed by Xiao et al.8 and experimentally observed in cold atomic systems9,10. Since then, EIG has been exten-
sively investigated in atomic systems11–22, crystal of molecular magnets system23, quantum wells and dots24–27 and 
hybrid arti�cial molecule28,29. Among these studies, the improvement of the di�raction e�ciency of the coherent 
grating can be achieved via some feasible approaches such as giant Kerr nonlinearity11, Raman gain14, parity-time 
symmetry (or antisymmetry)18–20,26, van der Waals interaction22 and the surface plasmon and tunneling e�ect29.

On the other hand, much attention has been attracted to the study of Er3+-doped yttrium-aluminum-garnet 
(YAG, chemical formula Y3Al5O12) crystal since the stimulated emission from Er3+ ions in the YAG crystal was 
�rst observed by Zharikov et al.30. It should be worth pointing out that Er3+-doped YAG crystal, where some of 
the Y3+ ions are replaced by Er3+ ions, is an e�cient active medium for solid-state lasers operating in the eye-safe 
wavelengths31, which have been applied to the �elds of optical communication and biomedicine. Recent years, 
based on the atomic coherence and quantum interference e�ects, many kinds of quantum optical phenomena, 
such as electromagnetically induced transparency (EIT)32, large refractive index with vanishing absorption33, 
positive and negative dispersion34, �attened gain35 and optical bistability and multistability36,37, have been studied 
in Er3+-doped YAG crystals. �ese solid-state systems based on the Er3+-doped YAG crystals have the similar 
properties to atomic vapors, but with the advantage of no atomic di�usion. So far, to our best knowledge, studies 
have not been extended to the investigation of the di�raction of the EIG in the Er3+-doped YAG crystal.

In this paper, we investigate the Fraunhofer diffraction characteristics of one-dimensional (1D) and 
two-dimensional (2D) di�raction gratings realized in an Er3+-doped YAG crystal with four-level ionic con�gura-
tion. By taking advantage of the incoherent pumping process and the periodic spatial modulation of the driving 
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�eld with standing wave pattern, a gain grating or hybrid (gain-phase) grating with high di�raction e�ciency 
can be realized. We demonstrate that the incoherent pumping �eld and the probe detuning play important roles 
on the forming of the 1D and 2D gratings and their di�raction e�ciency. By increasing the incoherent pumping 
rate and decreasing the probe detuning, we can signi�cantly enhance the interference between the gain and phase 
gratings, and thereby improving the di�raction e�ciency of the crystal grating. Furthermore, it is found that the 
di�raction e�ciency of the crystal gratings is controllable by tuning the probe detuning and the intensity and 
detuning of the SW driving �eld or the concentration of Er3+ ion. More importantly, the probe energy of the 
di�raction side lobes around the zeroth di�raction order is comparable to that of the �rst-order di�raction for 
small driving intensity or large driving detuning. Moreover, our results also show that 1D and 2D crystal gratings 
exhibit di�erent di�raction characteristics for the same optical parameters. Such crystal gratings, operating in the 
�ber communication band, may be more useful in optical communication and optical information processing.

Model and Method
Light-matter interactions in Er3+-doped YAG crystal. As schematically shown in Fig. 1(a), we consider 
a four-level Er3+ ionic system in an Er3+-doped YAG crystal. �e designated states can be chosen as follows: 

I1 4
15/2⟩| = , ⟩| = I2 4

13/2, | = I3 4
11/2⟩  and I4 4

9/2⟩| = . A weak probe �eld Ep with Rabi frequency Ωp and an inco-
herent pumping �eld with an pumping rate R are applied to the transitions →2 1  and →3 1 , respectively, 
while the transition →4 2  is driven by a strong driving �eld Ed with Rabi frequency Ωd. Here, we take the level 
1  as the energy origin. In the Schrödinger picture and under the electric-dipole and rotating-wave approxima-
tions, the total Hamiltonian for the four-level Er3+ ionic system is given by 
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where ∆p = ωp − ω21 and ∆d = ωd − ω42 are the detunings of the probe and driving �elds, respectively. Equation (2)  
describes the interaction between the coherent applied �elds and Er3+ ions. It is worth noting that Eq. (2) can 
also be rewritten in a 4 × 4 matrix form: 
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�e dynamics of the atomic system can be described by using the density matrix approach as 
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Here, the Liouvillian matrix L[ρ(t)] indicating the irreversible relaxation can be written as 

Figure 1. (a) Schematic of diagram of a four-level Er3+ ionic system interacting with probe, driving and 
incoherent pumping �elds. (b) Sketch of the spatial con�guration of the three laser beams with respect to the 
crystal and di�raction orders.
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where σ11 = R(ρ33 − ρ11) + Γ21ρ22 + Γ31ρ33 + Γ41ρ44, σ22 = Γ32ρ33 + Γ42ρ44 − Γ21ρ22, σ33 = R(ρ33 − ρ11) + (Γ31 + 

32)ρ33 − Γ43ρ44 and σ44 = (Γ41 + Γ42 + Γ43)ρ44. Γij is the spontaneous-emission decay rate from the state i  to the 
state j , while γij is the decay rate of the coherence between the states i  and j  (i, j = 1, 2, 3, 4; i > j), given by 
γ γ= Γ + +R( )/2dph
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31 31 43 /2. �e Rabi frequencies of the probe and driving �elds are de�ned by 
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where µij is the electric-dipole matrix moment between level i  and level j , which can be calculated via the fol-
lowing equation38,39: 
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where Ωm(m = 2, 4, 6) represents the phenomenological intensity parameter, J and ′J  are the quantum numbers 
of angular momentum of the state i  and j , respectively. �e factor 2 in Eq. (7) arose from the Kramers degener-

ate of the Stark levels of the Er3+ ion. �e squared reduced matrix element α α′ ′ ′ ′f SL J U f S L J4 ( ) 4 ( )N m N 2
 can 

be obtained40 and the spectral intensity parameters can be described by an empirical formula41

X X A B(10 ) 1 25 exp[ 0 4( ) ] , (8)m
20 1/4 2/3Ω = . − . − +−

where X is the concentration of the doped Er3+ ions. A and B are empirical parameters: A = 1.0 and B = 0.33 
for Ω2; A = 1.1 and B = 0.7 for Ω4; A = 1.4 and B = 0.59 for Ω6.

In the limit of weak probe �eld, a perturbation expansion method is used for deriving the analytical and 
steady-state solution for i j( , 1, 2, 3, 4)
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and solve Eq. (4) order by order. At the zero order, we obtain non-zero density-matrix elements as 
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�erefore, the probe susceptibility χp, can be written as 
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where N0 denotes the number of doped ions per unit volume. Note that the real and imaginary parts of probe 
susceptibility χp represent the dispersion and absorption-gain, respectively.

Fraunhofer diffraction of 1D EIG. It can be seen from Eq. (11) that both the real and imaginary parts of 
the probe susceptibility χp depend on the intensity of the driving �eld. �e space-dependent driving �eld can 
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result in the spatial modulation of the dispersion and absorption-gain for probe �eld. In this case, the Er3+-doped 
YAG crystal can be treated as an EIG. For 1D EIG, the 1D space-dependent driving �eld Ωd(x) is a SW �eld, which 
can be written as 

πΩ = Ω Λx x( ) sin( / ), (12)d d0

where 2Λ is the spatial period of the SW �eld. In this situation, 1D EIG can di�ract the probe beam propagating 
in the z direction into di�erent di�raction directions. Under the slowly varying envelope approximation and in 
the steady-state regime, the propagation of the probe �eld is described by the reduced wave equation as 
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where λp is the wavelength of the probe beam. Equation (13) can be rewritten as E z i E/p pχ∂ ∂ =′ , where 
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0 . Note that ′z  is a dimensionless variable by setting ζ = (ϵ0ℏλpΓ)/(πN0|µ21|

2) as the 
unit of z.

We assume that the interaction length between Er3+ ions and probe �eld along the z direction, i.e., the thick-
ness of the thin Er3+-doped YAG crystal, is L. �us, the transmission function, which is de�ned as the ratio of the 
output �eld amplitude to the input �eld amplitude, can be given by 

= χ χ−T x e e( ) , (14)Im x L iRe x L[ ( )] [ ( )]

where |T(x)| = e−Im[χ(x)]L and Φ(x) = Re[χ(x)]L are the amplitude and phase of 1D transmission function, respec-
tively. Such a grating is the superposition of an amplitude grating and a phase grating.

By 1D Fourier transform of T(x), we can obtain 1D Fraunhofer di�raction-intensity function: 
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where θ indicates the di�raction angle with respect to the z direction and M represents the number of spatial 
periods of the atomic grating illuminated by the probe beam. F(θ) is the Fraunhofer di�raction of a single space 
period Λ, which is given by 
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In particular, if the condition of θ λ= Λmsin /m p  is satis�ed, the di�raction intensity Im along the m-order 

di�raction direction can be calculated by I F T x e dx( ) (1/ ) ( )m m
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Fraunhofer diffraction of 2D EIG. For 2D EIG, the 2D space-dependent driving �eld x y( , )dΩ
′ ′  is a super-

position of two orthogonal SW fields with the same frequency along the ′x  and y′ directions, i.e., 

x y x y( , ) [sin( / ) sin( / )]d d0 π πΩ = Ω Λ + Λ′ ′ ′ ′ ′ ′ , where 2Λ′ is the period of the two SW �elds. It should be noted that 
′ ′x y  coordinates are obtained by rotating the xy coordinates counterclockwise 45 degrees, and then 
= +′x x y2 /2 2 /2 and y x y2 /2 2 /2= − +′ . Thus, in the xy coordinates, the 2D driving field can be 

rewritten as 

π πΩ = Ω + Λ + − + Λx y x y x y( , ) [sin( ( )/ ) sin( ( )/ )], (17)d d0

in which 2 2Λ = Λ′  is selected. In this case, the dispersion and absorption-gain can be periodically modulated 
along the x and y directions with the period Λ. �erefore,the 2D transmission function T(x, y) can be written as 

T x y e e( , ) , (18)
Im x y L iRe x y L[ ( , )] [ ( , )]= χ χ−

where |T(x, y)| = e−Im[χ(x, y)]L and Φ(x, y) = Re[χ(x, y)]L are the amplitude and phase of the transmission function, 
respectively.

By 2D Fourier transform of T(x, y), we can obtain 2D Fraunhofer di�raction-intensity function: 
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where θx(y) indicates the di�raction angle with respect to the z direction in the x(y) − z plane and Mx(y) represents 
the number of spatial periods of the grating along the x(y) direction. �e Fraunhofer di�raction F(θx, θy) of a 
single space period Λ in 2D space is given by 

F dxe T x y e dy( , )
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Here, when both msin /x
m

pθ λ= Λ and nsin /y
n

pθ λ= Λ are satis�ed, we can obtain the di�raction intensity I(m, n) 

along the (m,  n)th-order diffraction direction as ∫ ∫θ θ= = Λ πΛ − Λ Λ
∣ ∣I F e dx T x y( , ) (1/ ) ( , )m n x

m
y
n i mx
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2 /

0π− Λe dyi ny2 / .

Experimental realization
For the experimental realization, we would like to mention some points of the Er3+-doped YAG crystal for the 
present study, which are given as follows: 

 (I) Based on the experimental results41,42, we can get the spontaneous-emission decay rate Γij of the Er3+ ions 
for di�erent concentrations of Er3+ ion at room temperature. For simplicity, all the parameters have been 
scaled by Γ = 239.1s−1. So it is reasonable that we choose the parameters as Γ21 = Γ, Γ31 = 0.8Γ, Γ32 = 10Γ, 
Γ41 = 0.86Γ, Γ42 = 0.29Γ, Γ43 = 0.04Γ for 0.52 at . % Er3+ ion and Γ21 = 1.08Γ, Γ31 = 0.91Γ, Γ32 = 9.89Γ, 
Γ41 = 0.88Γ, Γ42 = 0.32Γ, Γ43 = 0.07Γ for 0.79 at . % Er3+.

 (II) According to the experimental result43, we have found that the dephasing time of Er3+-doped YAG crystal 
with an Er3+ concentration of 0.1%, T2 = 75 µs on the transition 4I15∕2 → 4I13∕2 of Er3+ at 1526.97 nm, the 
homogeneous linewidth Γh = 4286 Hz. �us, it is reasonable for us to estimate the dephasing decay rate as 

15dph dph dph dph dph dph
21 31 32 41 42 43γ γ γ γ γ γ= = = = = = Γ.

 (III) Based on Eqs. (7) and ((8)), we obtain µ42 = 2.662 × 10−32 Cm for 0.52 at . % Er3+ ion and 
µ42 = 2.799 × 10−32 Cm for 0.79 at . % Er3+ ion.

Results and Discussions
In this section, we focus on analyzing the Fraunhofer di�raction characteristics of the probe beam by adjusting 
the controllable optical parameters of 1D and 2D EIGs realized in an Er3+-doped YAG crystal. Before presenting 
the numerical results, we �rst give the creditable evaluation of the numerical computation. Our numerical calcu-
lation is based on MATLAB R2015b so�ware. We use the embedded FFT package to make 1D and 2D fast Fourier 
transform of the transmission function T(x) and select Λ∕40 as the step size of Fourier transform. Continuing to 
increase the sample points and decrease the step size would not result in the change of the di�raction spectra, 
which can prove the validity of our numerical computation.

For the case of 1D EIG, we �rst examine in Fig. 2 the in�uence of incoherent pumping rate R and probe detun-
ing ∆p on the Fraunhofer di�raction of the crystal grating. Here, we select Er3+:  YAG crystal containing 0.52 at 
. % concentrations of Er3+ ion. Typical curves of the amplitude |T(x)| of the transmission function are shown in 
Fig. 2(a1–a3) for various R and ∆p. It is obvious that the maxima of the amplitude |T(x)| are always located at the 
nodes of the SW driving �eld Ωd(x). �e corresponding curves of the phase Φ(x) of the transmission function are 
also plotted in Fig. 2(b1–b3). When ∆p = 0, the amplitude |T(x)| is greatly improved with the increase of R from 
1.77Γ to 2.17Γ because of the enhancement of probe gain in the incoherent pump process [see Fig. 2(a1)], while 
the phase Φ(x), which is una�ected by the change of R, always equals to zero due to the zero dispersion in the 
resonant light-matter interaction [see Fig. 2(b1)]. �at is to say, only amplitude modulation takes place and the 
crystal grating is a pure gain grating. As shown in Fig. 2(c1), the di�raction intensities in all di�raction orders are 
remarkably improved via increasing the incoherent pumping rate, but the central principle maximum 
(zeroth-order di�raction) always dominates due to the limitation of amplitude grating8. As ∆p is increased from 
0 to 8Γ, the space-dependent dispersion exists and the phase Φ(x) presents an inhomogeneous distribution over 
one space period. In this case, the crystal grating becomes a hybrid grating. As shown in Fig. 2(a2,b2), both the 
amplitude |T(x)| and the phase modulation depth ∆Φ, i.e., x xmax[ ( )] min[ ( )]∆Φ = Φ − Φ , increase with the 
increase of R from 2.52Γ to 3.32Γ. As we know, the increase of the amplitude modulation can enhance the inten-
sities of the di�raction �elds, while the increase of the phase modulation can improve the ratio of the di�raction 
intensities in the high di�raction directions. In this case, the hybrid grating can be treated as a superposition of a 
gain grating and a phase grating19, increasing the amplitude and phase modulations can enhance the interference 
between the gain and phase gratings, and thereby leading to the improvement of the di�raction e�ciencies and 
more probe energy being di�racted into high di�raction orders. It is worth noting that the hybrid grating requires 
stronger incoherent pumping rate than the pure gain grating under the condition of achieving the same �rst-order 
di�raction intensity [see red dotted lines in Fig. 2(c1,c2)]. For a �xed incoherent pumping rate, i.e, R = 3.32Γ, 
when the probe detuning ∆p is varied from 7Γ to 9Γ, the amplitude |T(x)| is decreased but the phase Φ(x) with 
∆Φ ≃ π remains almost unchanged [see Fig. 2(a3,b3)]. �e decrease of the amplitude modulation weakens the 
interference of the gain and phase gratings. �us, the di�raction intensities of the di�raction �elds decrease. 
However, the �rst-order di�raction peak is always highest owing to unchanged phase modulation [see Fig. 2(c3)]. 
In order to gain overall view of the e�ect of the incoherent pumping rate R and probe detuning ∆p, we present the 
corresponding evolutions of the di�raction spectra Ip(θ) with the increase of R and ∆p in Fig. 3, respectively. It is 
found that the di�raction e�ciency of the crystal grating increases monotonically as R increases in the range of 
[2Γ, 3.5Γ] or ∆p decreases in the range of [7Γ, 11Γ] [see Fig. 3(a,b)].

To obtain the corresponding power of the incoherent pumping �eld, the incoherent pumping rate R can be 
written as R = σ13Iip∕hνip, where νip and Iip are the frequency and light intensity of the incoherent pumping �eld, 
respectively. h is Planck constant and σ13 is the pump absorption section of Er3+ ion. �e absorption cross-section 
at 967 nm pump wavelength (νip = 3.1 × 1014s−1) is 2.8 × 10−20 cm2 44,45. �us, the light intensity Iip of the inco-
herent pumping �eld can be calculated for a certain value of R. �en, we can obtain the power of the incoherent 
pumping �eld via the formula P = AIip, where A is the cross-sectional area of the incoherent pumping �eld. If the 
laser beam is focused into a spot with a diameter 0.1 mm, this requires the laser power of the incoherent pump-
ing �eld arrives at P = 348 mW for R = 2.52Γ and P = 403 mW for R = 2.92Γ. It is obvious that the incoherent 
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pumping �eld has surpassed the threshold power of the Er3+-doped YAG crystal. In addition, we assume that the 
incident probe �eld is su�ciently weak and the interaction length is relatively short. �erefore, our scheme sat-
is�es small-signal model without considering the saturation e�ect. As for the SW driving �eld, the selected Rabi 
frequency, i.e., Ωd0 = 10Γ, is slightly larger than the selected incoherent pumping rate R. One can readily evaluate 
that the power of the SW driving �eld is higher the power of the incoherent pumping �eld.

We then examine in Fig. 4 how the di�raction distribution of the crystal grating depends on the intensity 
and detuning of the SW driving �eld. In Fig. 4(a,b), the extremely large zeroth-order di�raction peaks are trun-
cated and the corresponding intensity of the truncated zeroth-order di�raction �eld is shown as insets to clearly 
demonstrate the progress for various Ωd0 and ∆d. Figure 4(a) shows the e�ect of the intensity Ωd0 on Fraunhofer 
di�raction patterns. With the increase of Ωd0, the zeroth-order di�raction �eld decreases monotonically, while 
the di�raction �elds in the high-order directions increase �rstly and then decrease. In other words, there are 
optimal values of Ωd0 for which the high-order di�raction intensities reach their maxima. In Fig. 4(b), the e�ect 

Figure 2. (a1–a3) �e amplitude |T(x)| and (b1–b3) the phase Φ(x)/π of the transmission function as a function 
of x, and (c1–c3) Fraunhofer di�raction intensity Ip(θ) as a function of sinθ for various R and ∆p. (a1,b1,c1) 
∆p = 0; (a2,b2,c2) ∆p = 8Γ; (a3,b3,c3) R = 3.32Γ. Other parameters are Ωd0 = 10Γ, ∆d = 0, M = 5, Λ/λp = 4 and 
L = 140ζ.

Figure 3. Fraunhofer di�raction spectra of 1D grating as a function of (a) the incoherent pumping rate R with 
∆p = 8Γ and (b) the probe detuning ∆p with R = 3.32Γ. Other parameters are the same as in Fig. 2.
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of the detuning ∆d on the di�raction patterns is presented. It can be seen that the high-order di�raction �elds also 
increase �rstly and then decrease as ∆d increases, which is similar to the result in Fig. 4(a), while the di�raction 
intensity in the central principle maximum increases monotonically. �erefore, one can control the di�raction of 
the crystal grating by varying the intensity and detuning of the SW driving �eld. Direct comparison of Fig. 4(a,b) 
implies that the di�raction side lobes around the zeroth-order di�raction peak have the same evolution trend 
with the zeroth-order di�raction intensity. More importantly, the probe energy of the di�raction side lobes is 
comparable to that of the �rst-order di�raction for small driving intensity or large driving detuning, which would 
hamper the application of the �rst-order di�raction component. To choose the suitable parameters to realize the 
high di�raction e�ciency of the �rst-order di�raction with suppressed di�raction side lobes, we de�ne a “dif-
fraction contrast η”, which is the intensity ratio of the �rst-order di�raction to the di�raction side lobe around 
the central principle maximum, i.e., η = I1∕Isl. �e high performance grating can be obtained when the di�rac-
tion contrast η exceeds 10 (i.e., η ≥ 10). It is obvious that the di�raction contrast η ≥ 10 when Ωd0 ≥ 3.24Γ [see 
Fig. 4(c)] or ∆d ≤ 21.7Γ [see Fig. 4(d)]. From Fig. 4(a,b), we can �nd that, in the high performance region, the 
intensity of the �rst-order di�raction �eld reaches its maximal value, i.e., I1 = 21.32 at Ωd0 = 3.24Γ and I1 = 22.85 
at ∆d = 21.7Γ. In this situation, Ωd0 = 3.24Γ and ∆d = 21.7Γ are the corresponding optimal parameters to realize 
the optimal performance of the crystal grating.

It has been found that the concentration of Er3+ ion can greatly in�uence the optical properties of Er3+-doped 
YAG crystal32,37. In the following, we investigate the e�ect of the concentration of Er3+ ion on the di�raction 
characteristics of the crystal grating in Fig. 5. �e concentration of Er3+ ion in Er3+-doped YAG crystal greatly 
a�ects the electric dipole moment µij. We keep the intensity Ed0 of the standing-wave driving �eld constant. When 
Ωd0 = 10Γ for 0.52 at . % Er3+ ion concentration, we can obtain Ωd0 = 10.51Γ for 0.79 at. % Er3+ ion concen-
tration. As shown in Fig. 5(a,b), both the amplitude |T(x)| and the phase modulation depth ∆Φ decrease with 
the increase of the Er3+ ion concentration from 0.52% to 0.79%. �e decrease of both the amplitude and phase 
modulation reduces the interference between the gain and phase gratings. As a result, the di�raction e�ciency 
of the grating is decreased and the di�raction energy is concentrated into the central principle maximum[see 
Fig. 5(c)]. �ese results o�er us another controllable parameter to manipulate the di�raction behaviors of the 
crystal grating.

Let us now investigate the di�raction characteristics of 2D EIG. We also select Er3+:  YAG crystal containing 
0.52 at . % concentrations of Er3+ ion. Such a grating can be realized when the space-dependent driving �eld is 
a superposition of two orthogonal SW �elds [see Eq. (17)]. Similar to the di�raction of 1D grating, the inco-
herent pumping rate R and probe detuning ∆p also play important roles in the energy distribution of di�erent 
di�raction orders in 2D crystal grating. Figure 6 shows the in�uence of R and ∆p on the transmission function 
and Fraunhofer di�raction patterns of the 2D grating. In the case of R = 1.833Γ and ∆p = 0, the maxima of the 
amplitude |T(x, y)| are localized at the position (x, y), where x = (0.5 ± m) ⋅ Λ and y = ± n ⋅ Λ (m, n are integers), 
but the phase Φ(x, y) is zero [see Fig. 6(a1,b1)]. In this situation, the grating is a 2D pure gain grating. It can be seen 

Figure 4. (a,b) Fraunhofer di�raction spectra and (c,d) di�raction contrast η of 1D grating as a function of 
(a,c) the intensity Ωd0 with ∆d = 0 and (b,d) the detuning ∆d with Ωd0 = 10Γ of the SW driving �eld. �e 
insets in (a,b) show the di�raction intensity of the truncated zeroth-order di�raction �eld versus Ωd0 and ∆d, 
respectively. Other parameters are the same as in Fig. 2 except for R = 3.32Γ and ∆p = 8Γ.
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that the most portion of probe energy is di�racted into the (± m, 0)- and (0, ± n)-order di�raction directions and 
the (0, 0)-order di�raction �eld dominates [see Fig. 6(c1)]. Here, the di�raction intensity in the �rst di�raction 
order, i.e., (± 1, 0) and (0, ± 1) orders, can arrive at 4. When R = 3.91Γ and ∆p = 12Γ, as shown in Fig. 6(a2,b2), 
the maxima of the phase Φ(x, y) are localized at the positions, where the amplitude |T(x, y)| is maximal. Although 
the amplitude |T(x, y)| of the transmission function reduces in comparison with the case shown in Fig. 6(a1), but 
the approximate π phase modulation depth results in more probe energy being di�racted into the high-order 
di�raction directions. In this case, the di�raction intensities of the (± 1, 0)- and (0, ± 1)-order di�raction �elds 
can also reach 4 [see Fig. 6(c2)]. To see more details, the evolutions of the di�raction intensities in the (0, 0), (0, 1), 
(0, 2) and (1, 1) di�raction orders with the incoherent pumping rate R and probe detuning ∆p are plotted in Fig. 7. 
Similar to the 1D case, the studied four di�raction �elds increase monotonically as R increases or ∆p decreases 
and the (0, 1)- and (0, 2)-order di�raction intensities exceed the (0, 0)-order di�raction intensity for large R or ∆p 
[see Fig. 7(a,b)]. �erefore, it can be concluded that the location of the maximal di�raction �eld of 2D grating can 
be manipulated via adjusting the values of R and ∆p.

We further examine in Fig. 8 the in�uence of the 2D space-dependent driving �eld on the di�raction of 2D 
grating. �e evolutions of the di�raction intensities in the (0, 0), (0, 1), (0, 2) and (1, 1) di�raction orders with 
the intensity Ωd0 and the detuning ∆d of the driving �eld are plotted in Fig. 8(a,b), respectively. It is found that 
increasing Ωd0 or decreasing ∆d can lead to the reduction of the (0, 0)-order di�raction intensity but the di�rac-
tion intensities in the (0, 1) and (0, 2) di�raction orders increase �rstly and then decrease. �ese trends are similar 
to the 1D cases shown in Fig. 4(a,b). However, unlike the (0, 1)- and (0, 2)-order di�raction �elds, the (1, 1)-order 
di�raction �eld shows �uctuation in the di�raction intensity with respect to Ωd0 and ∆d.

Finally, we examine in Fig. 9 what will happen when the same system parameters are selected for both 1D 
and 2D gratings? Here, we select the same parameters in Fig. 2(c2) except R = 3.32Γ and M = Mx = My = 5. One 
can �nd from Fig. 9(a,b) that the �rst-order di�raction �eld dominates in the di�raction of 1D grating, while the 
(0, 0)-order di�raction �eld is maximal in the di�raction of 2D grating. Meanwhile, the �rst-order di�raction 

Figure 5. (a) �e amplitude |T(x)| and (b) the phase Φ(x)∕π of the transmission function as a function of x, and 
(c) Fraunhofer di�raction intensity Ip(θ) as a function of θsin  for di�erent concentrations of Er3+ ion. Other 
parameters are R = 3.32Γ, ∆d = 0 and ∆p = 8Γ.

Figure 6. (a1,a2)�e amplitude |T(x, y)| and (b1,b2) the phase Φ(x, y)/π of 2D transmission function as a 
function of (x, y), and (c1,c2) Fraunhofer di�raction intensity Ip(θx, θy) as a function of (sin , sin )x yθ θ  for di�erent 
R and ∆p. (a1,b1,c1) R = 1.833Γ and ∆p = 0; (a2,b2,c2) R = 3.91Γ and ∆p = 12Γ. Other parameters are Ωd0 = 8Γ, 
∆d = 0, Mx = My = 5, Λ/λp = 4 and L = 180ζ.
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intensity, i.e., I1 = 4, is larger than the (0, 1)-order di�raction intensity, i.e., I(0, 1) = 3.32. �ese results indicate that 
1D and 2D EIGs exhibit di�erent di�raction characteristics for the same optical parameters.

In summary, we have theoretically investigated the Fraunhofer di�raction of 1D and 2D EIGs realized in 
Er3+-doped YAG crystal. In the presence of the incoherent pumping process, the induced spatial gain modulation 
without or with phase modulation results in the generation of the gain or hybrid grating, where the high di�rac-
tion intensities are achievable in the high-order di�raction directions. It is demonstrated that increasing the 
incoherent pumping rate and decreasing the probe detuning can signi�cantly improve the di�raction e�ciencies 
of the 1D and 2D crystal gratings. We give a suitable physical interpretation for the di�raction behaviors via the 
interference of the gain and phase gratings. Furthermore, it is found that the di�raction intensity of each di�rac-
tion �eld is also controllable by tuning the intensity and detuning of the SW driving �eld or the concentration of 
Er3+ ion. More importantly, the probe energy of the di�raction side lobes around the central principal maximum 

Figure 7. Fraunhofer di�raction intensities of 2D grating for some di�raction orders as a function of (a) the 
incoherent pumping rate R with ∆p = 12Γ and (b) the probe detuning ∆p with R = 3.91Γ. Other parameters are 
the same as in Fig. 6.

Figure 8. Fraunhofer di�raction intensities of 2D grating for some di�raction orders as a function of (a) the 
intensity Ωd0 with ∆d = 0 and (b) the detuning ∆d with Ωd0 = 8Γ of the SW driving �eld. Other parameters are 
the same as in Fig. 6 except for R = 3.91Γ and ∆p = 12Γ.

Figure 9. Fraunhofer di�raction spectra of (a) 1D and (b) 2D gratings for R = 3.32Γ and M = Mx = My = 5. 
Other parameters are the same as in Fig. 2(c2).
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is comparable to that of the �rst-order di�raction �eld for small driving intensity or large driving detuning, which 
would limit the use of the �rst-order di�raction component. Based on this situation, we �nd the suitable optical 
parameters to realize the optimal performance of the grating. Finally, we note that the transition I I15/2

4
13/2

4→  
driven by weak probe �eld coincides with the third transparency-window of the optical �ber. �erefore, our 
scheme may provide the possibility for the active all-optical control of optical switching, routing and storage in 
communication wavelengths.
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