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Abstract: The predictive skills of single and two equation (or ε−K ) models to compute 

profiles of mean velocity (U), turbulent kinetic energy (K), and Reynolds stresses ( wu ′′ ) 

are compared against data sets collected in 8 vegetation types and in a flume experiment.  

These data sets range in canopy (h) from h=0.12 m to 23 m, and range in leaf area index 

(LAI) from 2 to 10 m2 m-2.     We found that for all data sets and for both closure models, 

measured and modeled U, K, and wu ′′  agree well when the mixing length ( ml ) is a priori 

specified.  In fact, the root-mean squared error (RMSE) between measured and modeled 

U, K, and wu ′′  is no worse than published values for second and third -order closure 

approaches. Within the context of one-dimensional modeling, there is no clear advantage 

to including a turbulent kinetic dissipation rate ( ε ) budget when ml can be specified 

instead.  The broader implication is that the added complexity introduced by the ε  

budget in ε−K models need not translate into improved predictive skills of U, K, and 

wu ′′ profiles when compared to single equation models. 
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1. Introduction 

Simplified mathematical models that faithfully mimic the behavior of canopy 

turbulence yet are computationally efficient are receiving attention in numerous fields 

such as hydrology, ecology, climate systems, and various engineering branches (Raupach 

1989a, 1991, Lumley 1992, Finnigan 2000). Common to all these fields is the need to 

compute a system-state over large spatial and temporal scales.  However, the state 

evolution equations describe complex turbulent transport processes rich in variability at 

numerous scales (Lumley 1992, Raupach et al. 1992, Raupach and Finnigan 1997, 

Albertson et al. 2001, Horn et al. 2001, Katul et al. 2001a, Nathan et al. 2002).  

The behavior of canopy turbulence is far too complex to admit a unique 

parameterization across a broad range of flow types and boundary conditions.  Required 

outputs from canopy turbulence models include, at minimum, mean flow (U), turbulent 

kinetic energy (K), some partitioning of K among its three components, and Reynolds 

stresses (Raupach 1989a, b, Katul and Albertson 1999, Lai et al. 2000a, Lai et al. 2000b, 

Katul et al. 2001b, Lai et al. 2002).  Identifying the minimum turbulence closure model 

necessary to efficiently simulate the mean flow and measures of second order flow 

statistics is a logical research question (Wilson et al. 1998).  In principle, second-order 

closure models can predict such flow statistics (Meyers and Paw U 1986, Meyers 1987, 

Meyers and Paw U 1987, Wilson 1988, Paw and Meyers 1989, Katul and Albertson 

1998, Ayotte et al. 1999, Katul and Albertson 1999, Katul and Chang 1999). However, 

they are computationally expensive and require complex numerical algorithms for 3-

dimensional transport problems (especially if multiple scalar species must be treated).  

On the other hand, first order closure models may well reproduce mean velocity (Wilson 
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et al. 1998, Pinard and Wilson 2001) but cannot provide second order statistics, the latter 

is needed in almost all problems relevant to scalar transport.   A logical choice is a 1.5 

closure model in which a budget equation for K (or 1-equation models) must be explicitly 

considered.  In fact, such models, known as 2-equation models or K- ε  models are among 

the most popular computational models in engineering applications (Bradshaw et al. 

1991, Launder 1996, Speziale 1996, Pope 2000) and more recently in atmospheric flows 

over complex terrain (Castro et al., 2003).  However, these models have received limited 

attention in canopy turbulence (Sanz 2003).  A handful of K- ε  models have been 

investigated for wind tunnel canopy flows (Green 1992, Kobayashi et al. 1994, Liu et al. 

1996); yet their generality and applicability to complex canopy morphology commonly 

encountered in the canopy sublayer (CSL) remains uncertain and is the subject of this 

investigation.  

We explore different classes of K- ε  models (and simplifications to them) for a broad 

range of canopy morphologies.  These morphological differences range from controlled 

experiments in a flume to a constant leaf area density of a rice canopy to moderately 

variable leaf area density of corn to pine and deciduous forests with highly erratic leaf 

area densities. 

 

2. Two -Equation (K- ε ) Modeling 

The simplified equations for a neutrally stratified, planar homogeneous, steady 

state, and high Reynolds number flow within a dense and extensive canopy are 

considered.  With these idealizations, and following standard K- ε closure assumptions, 

the basic transport equations for the mean momentum, turbulent kinetic energy (K), and 
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turbulent kinetic energy dissipation rate (ε ), in the absence of a mean pressure gradient, 

reduces to (Warsi 1992, Pope 2000, Sanz 2003): 

Mean Momentum:  
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where z is the height above the ground (or forest floor) surface, U is the mean 

longitudinal velocity, tν is the turbulent viscosity, US is the momentum extraction rate by 

the canopy elements due to both form and viscous drag, KS is the net turbulent kinetic 

energy loss rate due to the canopy, εS is analogous to KS  but for the dissipation rate 

equation, 1εC , 2εC , and µC are closure constants, and KSc and εSc are the turbulent 

Schmidt numbers for K and ε , usually set at 1.0 and 1.3, respectively (Speziale 1996) for 

laboratory studies.  For atmospheric flow studies, εSc is usually larger than 1.3 (and is 

discussed later). 

Unless otherwise stated, all flow variables are time and spatially averaged 

(Raupach and Shaw 1982).  To solve for U , K , and ε , parameterizations for tν , US , 

KS , and εS  as well as appropriate boundary conditions are needed, and discussed next. 
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2.1 Model for tν  

Standard models for tν fall in one of the two categories: 
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where ml is a mixing length.  In standard K- ε  models,
)( ii

tt νν = because such formulation 

eliminates the need for an additional variable (i.e. ml ) thereby resulting in a self-

contained parsimonious model (Bradshaw et al. 1991, Launder 1996).  On the other hand, 

closure formulations for ε  in the CSL are more uncertain than their K-equation 

counterpart (Wilson et al. 1998).  Hence, linking tν  to the most uncertain modeled 

variable (i.e ε ) may produce greater uncertainty and reduced model skill, a hypothesis 

that will also be investigated here.  Furthermore, recent experiments suggest that 

ml within the canopy is locally independent of z  (Liu et al. 1996, Massman and Weil, 

1999; Poggi et al. 2003a)  at least for z < 0.7 h , where h is the canopy height.  Above the 

canopy (z>h), ml is well described by the classical rough-wall boundary layer 

formulation.  In short, a simplified and satisfactory model for ml  in dense canopies, in the 

absence of stability, is given by 
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As discussed in Poggi et al. (2003a), this model can account for known properties of 

canopy turbulence mixing including the generation of von-Karman streets, where vk =0.4 
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is the von Karman constant, and d (~2/3 h in dense canopies) is the zero-plane 

displacement height.  This model is conceptually similar to earlier constant length models 

within the CSL (Li et al. 1985, Massman and Weil, 1999) though not identical.  One 

limitation to this model is that ml is assumed to be finite near the ground, which is 

unrealistic.  However, as discussed by Katul and Chang (1999), the impact of this 

assumption affects a limited region, about 0.05 h for dense canopies.   We are well aware 

that a length scale specification cannot be universal across all flow regimes.  For 

example, separation or recirculation may occur, especially for airflow within canopies on 

complex topography thereby limiting the generality of the modeled eddy-viscosity.  

Furthermore, it is likely that local stability effects alter ml within the canopy (Mahrt et al. 

2000).  

Given that ml reflects known bulk characteristics of canopy eddies (Raupach et al. 

1996, Katul et al. 1998, Finnigan 2000) and noting the large uncertainty in the ε  models, 

)( i

tt νν = appears to be rationale.  We further investigate this point in the results and 

discussion.   

We determine α by noting that ml  is continuous at z/h=1 resulting in α = 3/vk  for 

d  = 2/3 h.  This estimate of α is in excellent agreement with flume experiment estimates 

reported for dense rods in a flume having a comparable d (Poggi et al. 2003a). 

 

2.2 Model for uS , KS , and εS  
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Among the primary reasons why K- ε models have not received much attention in 

CSL turbulence applications is attributed to the difficulty in modeling the effects of the 

canopy on the flow statistics by US , KS , and εS . 

The standard model for uS is to neglect viscous drag relative to form drag thereby 

resulting in 

2UaCS du −=           (5) 

where dC is the drag coefficient (~0.1-0.3 for most vegetation), and a  is the leaf area 

density (m2 m-3) which can vary appreciably with z (especially in forested systems).  For 

simplicity, we define aCC dz ×=  as the effective drag on the flow.   

The term KS arises because vegetation elements break the mean flow motion and 

generate wake turbulence ( 3UCz≈ ).  However, such wakes dissipate rapidly (Raupach 

and Shaw 1982) often leading to a “short-circuiting” of the Kolmogorov cascade (Kaimal 

and Finnigan 1994, Poggi et al. 2003a).  The canonical form for KS , reflecting such 

mechanisms, is given by (Sanz, 2003): 

( )KUUCS dpzK ββ −= 3
        (6) 

where pβ (~ 1.0) is the fraction of mean flow kinetic energy converted to wake-generated 

K by canopy drag (i.e. a source term in the K budget), and dβ (~1.0-5.0) is the fraction of 

K dissipated by short-circuiting of the cascade (i.e. a sink term in the K budget).  

The primary weakness of K- ε approaches is εS  (Wilson et al. 1998), the least 

understood term in equations (1)-(3).  Over the last decade, various models have already 

been proposed for εS  and they take on one of two forms: 
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where 4εC and 5εC are closure constants (see Table 1).  Note, when 4εC = 5εC , the two 

formulations become identical (i.e
)(i

Sε =
)(ii

Sε ).  The formulation for
)(i

Sε is based on 

standard dimensional analysis common to all K-ε approaches.   The second formulation 

came about following a wind-tunnel study which demonstrated that 
)(i

Sε did not 

reproduce well measured diffusivity for a laboratory “model” forest (Liu et al. 1996).  

These authors then proposed 
)(ii

Sε  which is similar to the original formulation put forth 

by others (Green 1992) but differs in the magnitude of 5εC (i.e. 4εC ≠ 5εC ).   Upon 

replacing equations (4)-(7) in equations (1)-(3), it is possible to solve for U , K , and ε  if 

appropriate upper and lower boundary conditions are specified.  Table 1 summarizes all 

the closure constants.  

 

2.3 Boundary Conditions: 

The generic boundary conditions used here assume that well above the canopy 

(i.e. in the atmospheric surface layer or ASL), the flow statistics approach Monin and 

Obukhov similarity theory relationships for a planar-homogeneous, stationary, near-

neutral flows (Brutsaert 1982, Stull 1988, Garratt 1992).  At the forest floor or ground 

surface, a constant gradients for K and ε  are assumed while the gradient in U is 

dependent on the local shear stress at the ground surface ( )0(wu ′′ ) which is negligible for 

dense canopies.   
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Hence, these boundary conditions translate to the following: 
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(i.e. the flow approaches its neutral ASL state). 

where oz is the momentum roughness height of the canopy which is about 0.08-0.18 h 

(Parlange and Brutsaert 1989), z∆ is the computational grid node spacing (discussed 

later), and the similarity coefficients uA , vA , and wA are assumed constant independent of 

height and can be determined from their values for neutral ASL flows.   

From standard ASL flow experiments, (Garratt 1992), these coefficients are 

approximately given by 
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for a neutral ASL, where primed quantities denote departures from time-averaged 

quantities (denoted by overbar), u′ , v′ , and w′are velocity excursions in the longitudinal, 
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lateral, and vertical directions, respectively, and *u (
4 22

vwwu ′′+′′= ) is the friction 

velocity at z/h=1.  We use these values of uA , vA , and wA for all field experiments 

considered here.  Furthermore, in dense canopies, it is reasonable to assume that 

0)0( ≈′′wu  (Katul and Albertson 1998) which leads to a free slip condition at the forest 

floor.  This approximation departs from the usual approximation of linking mean velocity 

just above the ground surface with the shear stress at the ground surface using a 

logarithmic profile along with a specified roughness height at the ground surface (which 

is not known for all the data sets employed here).  Finally, with these estimates of uA , vA , 

and wA , the constant µC must be revised from its standard laboratory value (=0.09) to 

reflect differences between uA  and vA  in field and laboratory experiments.  Matching tν  

to its neutral ASL value ( *)( udzkv −= ), we obtain (Sanz, 2003) 
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The corresponding adjustment for εSc , assuming 1εC and 2εC are known (Table 1), can 

be computed from 
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Hence, for the ASL field experiments εSc is revised from 1.3 (laboratory value) to 1.92.  

The estimation of dβ and
4εC are based on the formulation in Sanz (2003) and are given 

by: 
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where 05.0=′α  is a constant connected with the mixing length model discussed in 

Massman and Weil (1999).  With these mathematical constraints, the only closure 

constants that require a priori specifications are 1εC , 2εC and pβ (see Table 1). 

2.4 Simplifications to the K-ε Models: the UK − or one equation model 

Given the overall study objectives and given the uncertainty in the formulation of εS , 

a logical question to explore is whether the ε  budget is really contributing “new 

information” to the solution of the K budget.  Notice that with a canonical mixing length 

scale specification, the ε  budget is strictly needed to compute one term in the K  budget.   

We explore a simpler model for ε  in which 
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matching procedure described in Katul and Chang (1999) and which results in 
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(e.g. Wilson et al. 1998) suggesting that ),max( 21 εεε = , where 
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is analogous to 1ε  and our formulation of KS already accounts for 2ε .  Hence, when 

equations (6) and (8) are combined with the K budget in equation (2), all the TKE 

dissipation pathways are considered.  The resulting system of equations is given by 
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and can be readily solved for U and K  (with appropriate boundary conditions). We refer 

to the solution of this set of equations (i.e. equations 9 and 10) as the UK − (or one 

equation) model.  The closure constants ( 3a , µC , pβ , and dβ ) are also summarized in 

Table 1.  Note that the UK − model is independent of εSc , 1εC , 2εC , 4εC and 5εC . 

 

3. Experiments 

The data sets used here include a flume experiment for a model canopy and CSL field 

experiments conducted in morphologically distinct canopies.  The canopies include rice 

and corn crops, an even-aged Loblolly pine, Jack pine, and Scots pine forests, an aspen 

forest, a spruce forest, and an undisturbed oak-hickory-pine forest.  Table 2 summarizes 

the key aerodynamic and morphological attributes for these canopies and figures 1 to 9 

present published velocity statistics and canopy leaf area density for these CSL 

experiments.  The field sites, described next, were selected for three reasons:  
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1) They span a broad range of leaf area density profiles (from nearly uniform to highly 

erratic), canopy heights (0.72 m to 22 m), LAI values (2.0-10.0 m2 m-2), and drag 

coefficients (0.15-0.3).  

 

2) They include at least five levels of measurements.  

 

3) They are all nearly dense and extensive canopies.   

 

For the purposes of our study, a dense canopy is defined as a canopy where 
*u

U
at z/h=1 is 

nearly constant independent of roughness density (Raupach 1994, Massman 1997, 

Massman and Weil 1999, Poggi et al. 2003a).  Sparse canopies pose an additional 

challenge, as the mixing length model in equation (4b) is no longer valid.  Another 

complication sparse canopies introduce are dispersive fluxes.  In dense canopies, 

dispersive fluxes are small and typically neglected; however, recent experimental 

evidence suggest that dispersive fluxes can be comparable in magnitude to the 

conventional Reynolds stresses in sparse canopies (e.g. Poggi et al. 2003b).  It is for these 

reasons we chose to restrict our analysis and comparisons to dense canopies as a logical 

starting point for formulating and testing one and two equation models. 

  

3.1 The Rice Canopy: The sonic anemometer setup for the rice canopy is described 

elsewhere (Leuning et al. 2000, Katul et al. 2001b).  In brief, the velocity measurements 

were performed within and above a 0.72 m tall rice paddy at an agricultural station 

operated by Okayama University in Japan as part of an International Rice Experiment 
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(IREX96). The leaf area density, measured by a canopy analyzer (LICOR, LAI-2000), is 

3.1 m2 m-2.  The measured a (normalized by canopy height) is shown in Figure 1.  A 

miniature three-dimensional sonic anemometer (Kaijo Denki, DAT 395, Tokyo, Japan) 

was positioned and displaced at multiple levels (z/h=0.35, 0.45, 0.55, 0.63, 0.77, 0.83, 

0.90, 1.05) to measure velocity statistics within the canopy.  For each height of the 8 

levels, ensemble of normalized turbulent statistics were formed and averaged for each 

stability class.  In the ASL above the canopy, a Gill triaxial sonic anemometer (Solent 

1021 R, Gill Instruments, Lymington, U.K.) was installed at z/h=3.06 to measure the 

velocity statistics in the ASL above the canopy.  Only the neutral runs were employed 

here. 

 

3.2 The Corn Canopy: The experimental setup is described elsewhere (Wilson et al. 

1982) and tabulated (Wilson 1988).  Briefly, the site is a 2.3 m tall mature corn canopy in 

Elora, Ontario, in Canada.  The first and second moment profiles were measured at 

z/h=1.0, 0.87, 0.81, 0.75, 0.62, 0.50, 0.44, and 0.33 using a specially designed servo-

controlled split film heat anemometers.  The leaf area density was sampled just before the 

experiment at 7 levels as shown in Figure 2.  The sampling period for all flow statistics 

was 30 minutes. 

 

3.3 The Scots Pine Canopy: Measurements were made from 24 June to 15 July 1999 in 

and above a Scots pine forest, located 40 km southwest of the village of Zotino in central 

Siberia. A more detailed description of the site characteristics can be found elsewhere 

(Kelliher et al. 1998, Kelliher et al. 1999, Schulze et al. 1999).  The anemometers were 
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mounted on a 26 m mast surrounded by a uniform aged canopy for distances exceeding 

600 m in all directions.  Average tree height was about 20 m, canopy depth was ~8 m, 

one-sided, projected leaf area index was 2.6 m2 m-2 and stand density was 1088 trees ha-1.  

There were few under-story shrubs and the ground surface covered by lichens. The 

velocity statistics were measured using five sonic anemometers (Solent R3, Gill 

Instruments, Lymington, UK) placed at 25.7, 19.8, 16.2, 12.3, 1.4 m above the ground 

(see Figure 6).  

 

3.4 The Loblolly Pine Canopy: Much of the experimental setup is described elsewhere 

(Katul and Albertson 1998, Katul and Chang 1999, Siqueira and Katul 2002).  For 

completeness, we review the main features of the site and setup.  The site is at the 

Blackwood division of the Duke Forest near Durham, North Carolina.  The stand is an 

even-aged southern loblolly pine with a mean canopy height of about 14 m (+0.5 m).  

The three velocity components and virtual potential temperature were simultaneously 

measured at six levels using five Campbell Scientific CSAT3 (Campbell Scientific, Logan 

Utah, USA) triaxial sonic anemometers and a Solent Gill sonic anemometer.   The CSAT3 

anemometers were positioned at z/h=0.29, 0.425, 0.69, 0.94 and 1.14 above the ground 

surface.  The Solent Gill anemometer was mounted at z/h=1.47.  The shoot silhouette 

area index, a value analogous to the leaf area index (LAI), was measured in the vertical at 

about 1 m intervals by a pair of LICOR LAI 2000 plant canopy analyzers prior to the 

experiment. The measured a (normalized by canopy height) is shown in Figure 7. The 

resulting LAI is 3.8 m2 m-2. 
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3.5 The Boreal Forest Canopies: The data and experimental setup are described 

elsewhere (Amiro 1990) but briefly reviewed below.  The study sites are located near 

Whiteshell Nuclear Research Establishment in southeastern Manitoba, Canada.  Three 

sites, comprising of different stands (spruce, Jack pine, and aspen), and located within 15 

km from each other, were used.  Individuals within the black spruce forest range from 70 

years to 140 years; the tree density is approximately 7450 trees ha-1, and the forest floor 

is mostly composed of sphagnum moss and low shrubs.  The measured leaf area, obtained 

using destructive harvesting, is 10.0 m2 m-2, and the mean canopy height is about 12 m.  

The pine canopy is mainly composed of a 60 year-old jack pine stand with a tree density 

of 675 trees ha-1.  The average tree height is about 15 m and the leaf area, also obtained 

by destructive harvest, is about 2.0 m2 m-2.  The aspen canopy is primarily composed of 

trembling aspen and willow.  The mean tree height and leaf area are about 10 m, and 4.0 

m2 m-2, respectively.  The velocity data was acquired by two triaxial sonic anemometers 

(Applied Technology Inc, Boulder, CO, USA) each having a 15 cm path- length.  The 

measurements were obtained by positioning one sonic anemometer above the canopy, 

and the other roving at different heights.  For the spruce site, the anemometer heights 

were 12.1 m, 9.2 m, 6.2 m, 4.2 m, and 1.8 m.  For the pine sites, the heights were 17 m, 

13,1 m, 8.7 m, 5.8 m, and 1.9 m.  For the aspen site, a composite profile was constructed 

from two towers – with the following heights: 13.1m, 8.7m, 5.8 m, 3.4 m, and 1.4 m.  

The leaf area density for the spruce (Figure 3), aspen (Figure 4), and Jack pine (Figure 5) 

are digitized by us. 
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3.6 The Oak-Hickory-Pine Canopy: The experimental setup and data sets are described in 

several studies (Baldocchi and Meyers 1988, Ba ldocchi 1989, Meyers and Baldocchi 

1991).  The site is an undisturbed oak-hickory-pine forest, 23 m in height, near Oak 

Ridge TN.  The topography at the site is not flat (see e.g. Lee et al., 1994).  The velocity 

measurements, collected at the time when the canopy was fully leafed (LAI=5.0 m2 m-2) 

were conducted at 7 levels (z/h=0.11, 0.3, 0.43, 0.78, 0.90, 0.95, and 1.04) using 3 

simultaneous Gill sonic anemometers.  These measurements were ensemble averaged 

based on stability conditions above the canopy as described in Meyers and Baldocchi 

(1991). The measured a (normalized by canopy height), is digitized by us and shown in 

Figure 8. 

 

3.7 The flume experiments: These experiments were conducted at the hydraulics 

Laboratory, DITIC Politecnico di Torino, in a rectangular channel 18 m long, 0.90 m 

wide and 1 m deep. The walls are constructed of glass to allow the passage of laser light.  

The model canopy is an array of vertical stainless steel cylinders, 12 cm high, and 4 mm 

in diameter equally spaced along the 9 m long and 0.9 m wide test section. The canopy 

roughness density was set at 1072 rods m-2 which is equivalent to element area index 

(front area per unit volume) of 4.27 m2 m -3.  A two-component Laser Doppler 

Anemometry (LDA) sampled the velocity time series at 2500-3000 Hz.  The LDA is non-

intrusive and has a small averaging volume thereby permitting velocity excursion 

measurements close to the rods. Further details about the LDA configuration and signal 

processing can be found elsewhere (Poggi et al. 2003a). Velocity measurements were 

conducted at 11 horizontal positions, and at each horizontal position, 15 profile 
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measurements were collected thereby permitting us to construct real space-time averages.  

The uniform flow water depth was 60 cm. 

 

4. Results and Discussion 

Figures 1 to 9 show the comparison between measured and modeled U , K , and wu ′′  

for all the CSL experiments and Table 3 shows the quantitative comparison between 

measured and modeled flow variables.  For the ε−K  models, we present the results for 

both eddy viscosity formulations (i.e. equation 4a).  By and large, both ε−K  models and 

the UK −  approach agrees well with the measurements except for the three Boreal 

forests data sets of Amiro (1990) as evidenced by Table 3 and Figures 4, 5, and 6.   There 

are three generic features in all these data sets (i.e. Figures 2-8) that the models did not 

reproduce well:  

1) the height-dependent wu ′′ with z for 1/ >hz  (Figures 3,4,6, and 7),  

2) the boundary conditions on K in Figures 4,5, and 6 (i.e. the three Boreal stands), 

and 

3) the mild secondary maximum in U in Figure 8. 

 

Regarding the height-dependent wu ′′ with z for 1/ >hz , there are several plausible 

explanations ranging from topographic variability, statistically inhomogeneous variability 

in canopy morphology leading to an inhomogeneous momentum sink, and significant 

atmospheric stability effects on momentum transport.  If topographic variations induce a 

sufficiently large xP ∂∂ / , then correcting for a height-dependent wu ′′ with z for 1/ >hz  

can be achieved using a revised mean momentum budget equation to include xP ∂∂ / (Lee 
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et al. 1994) as is done for our flume experiment.  The addition of xP ∂∂ / , which violates 

planar homogeneity, may necessitate, in some cases, the addition of the remaining two 

mean momentum advective flux terms in which case the model is no longer 1-

dimensional.  Given the study objectives, noting that detailed topographic information 

was not published for these sites, and noting the variable wind direction for each run, the 

simplest approximation was to set xP ∂∂ / =0.  For the flume experiment, xP ∂∂ / is a priori 

set and was considered in the calculations of the mean momentum equation.   

According to Amiro (1990), the three Boreal forests are on flat terrain so a significant 

xP ∂∂ / is not likely at those sites.  This means that the either atmospheric stability effects 

are significant (which is likely for the three Boreal forests) or statistical inhomogeneity in 

the momentum sink is present to induce a gradient in uw ′′ not captured by the three 

models.   

Regarding the upper boundary conditions on 
2

*/uK for the three Boreal stands, it is 

likely that the measurement sample size used to generate the ensemble-statistics is very 

small (< 5 neutral runs).  In contrast, the Duke Forest experiments, for example, included 

in excess of 100 runs, simultaneously collected at 6 levels, and filtered for neutral flows 

within and above the canopy.  So, the bias and large RMSE may be attributed to the small 

sample size in constructing the ensemble measured statistics. 

The weak secondary maximum in Figure 8 may be attributed to a finite xP ∂∂ / at the 

hardwood forest (Lee et al. 1994).  This site is known to be surrounded by complex 

topography (Lee et al. 1994).  Third-order closure model calculations by Meyers and 

Baldocchi (1991) in which the turbulent flux divergence was explicitly considered did not 

reproduce the secondary maximum, contrary to second order closure model results in 
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Wilson and Shaw (1977).  Hence, these model results suggest that flux-divergence alone 

cannot explain the onset of this secondary maximum, and it is likely that a finite xP ∂∂ /  

must be added in the model for this site.  

In Figure 10, we show the over-all comparison between measured and modeled flow 

statistics for all field sites.  It is clear that the three models reproduce the overall 

measured U , K , and wu ′′ for a wide range of leaf area and canopy heights.  The 

observed bias in modeled 
2

*/uK (Figure 10) is attributed to the three Boreal forests (see 

Table 3).  Table 4 reports regression statistics for this overall comparison and for each 

model.   

The published normalized root-mean squared error (RMSE) for second and third 

order closure model calculations for the Loblolly pine stand and the rice canopy (Katul 

and Albertson 1998, Katul et al. 2001b) are comparable to values reported in Table 3.  

That is, the predictive skills of UK − and ε−K  models are no worse than second and 

third order closure models, at least for these two sites. 

We also confirmed that the RMSE variation for the three flow variables does not vary 

with h, LAI, and mean leaf area density (=LAI/h) (figures not shown).  Finally, Figure 10 

and Table 4 demonstrate that the ε−K calculations conducted using 
)( ii

tt νν = = 
εµ

2K
C  

are comparable to those conducted using 
)( i

tt νν = . That is, specifying a constant mixing 

length scale within the canopy without the ε budget is no worse than estimating such 

length scale via the standard ε−K  modeling (i.e. 
εµ

2/3K
Clm = ).   
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However, for the flume experiments, the standard ε−K model with 
)( ii

tt νν = = 

εµ

2K
C  was clearly inferior to UK − and ε−K model calculations conducted 

with
)( i

tt νν = .  A logical question then is whether this poor performance of the standard 

ε−K model is connected with the poor estimates of the dissipation.  Hence, measured 

and modeled estimates of the mean dissipation rate for the flume experiment were 

compared.  Given the high frequency sampling (i.e. 2500-3000 Hz), it is possible to 

estimate horizontally averaged ε  profiles within the canopy using locally isotropic 

assumptions. The so-called “measured” dissipation rate was computed using (Tennekes 

and Lumley 1972): 

2

15 






∂
∂=
x

uνε          (11) 

where ν is the molecular kinematic viscosity, and the horizontal velocity gradient is 

estimated from longitudinal velocity time series using Taylor’s frozen turbulence 

hypothesis.  Dissipation estimates were then ensemble-averaged in the planes parallel to 

the flume base using the area-weighted procedure discussed in Poggi et al. (2003a).  

While this estimate of the dissipation is spatially averaged, it must be treated with caution 

because of likely violations of Taylor’s hypothesis within the canopy volume.  Despite 

such a limitation, equation (11) provides an independent estimate of ε  from single point 

statistics without requiring a TKE budget equation.  Stated differently, equation (11) is 

independent of simplifications or assumptions already made in the derivation of 

the ε−K model.  Figure 11 compares the computed and so-called “measured” mean 

dissipation rates using the two ε−K  models and the UK −  models. Clearly, none of the 
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models reproduce well “measured” ε  within the canopy though the standard ε−K  is 

much worse than the other two models.  In short, the poor performance reported for the 

standard ε−K  in Figure 9 is linked with its poor dissipation estimate as evidenced by 

Figure 11. 

 

5. Conclusion 

It was suggested that ε−K  models introduce numerous closure constants over one- 

equation models thereby "making it difficult to differentiate profoundness of the set of 

closure assumptions from the mere flexibility due to those coefficients" (Wilson et al., 

1998).  Here, we showed that the degrees of freedom in these coefficients can be reduced 

to levels comparable to one-equation models (Sanz, 2003).  With these requirements on 

the closure constants, standard ε−K  model predictions appear comparable to second 

order (and higher order) closure models. For the one-dimensional case, the ε−K  model 

performance was no better than one-equation models however.  The proposed one-

equation model (referred to as the UK − model) was computationally 3 to 4 times faster 

than the standard ε−K  model. This makes one-equation models attractive for linking 

the biosphere to the atmosphere in large-scale atmospheric models or multi- layer soil-

vegetation-atmosphere transfer schemes within heterogeneous landscapes.  We also 

showed that the additionalε  budget, with its numerous assumptions, did not add critical 

or sensitive information to ε−K  calculations of K , U , and wu ′′  profiles.  Perhaps this 

finding is not too surprising when specifying a “canonical” length scale for canopy 

turbulence.  The key variable, tν , is proportional to 2/1K (rather than K2 as is the case in 

standard ε−K models) thereby making it less sensitive to errors in modeled K.  



 24 

The broader implication is that canopy turbulence, having a well-defined mixing 

length, appears very amenable to simplified mathematical models that mimic faithfully 

the behavior of turbulence yet are computationally efficient to be integrated in more 

complex atmospheric, hydrologic, or ecological models.  To cite Lumley (1992), “in our 

present state of understanding, these simple models will always be based in part on good 

physics, in part, on bad physics, and in part, on shameless phenomenology.”  

Demonstrating how sensitive the computed flow statistics are to “bad physics” and 

“shameless phenomenology” is necessary (but not sufficient) towards building robust and 

accurate new formulation for canopy turbulence. 
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List of Figures: 

 

Figure 1: Comparison between measured (closed circles) and modeled flow statistics by 

ε−K (solid line) with a prescribed length scale, the UK − (dot-dashed line), and 

the ε−K  (dashed line) but using the standard 
ε

ν µ

2K
Ct = for the rice canopy 

(RI), where U is the mean wind speed, K is the turbulent kinetic energy, and 

wu ′′ is the Reynolds stress.  All the variables are normalized by canopy height (h) 

and friction velocity ( *u ) at z/h=1.  The measured leaf area density (a ), 

normalized by h is also shown. 

 

Figure 2: Same as figure 1 but for the corn canopy (CO). 

 

Figure 3: Same as figure 1 but for the spruce canopy (SP). 

 

Figure 4: Same as figure 1 but for the aspen canopy (AS). 

 

Figure 5: Same as figure 1 but for the Jack pine canopy (JPI) 

 

Figure 6: Same as figure 1 but for the Scots pine canopy (SPI) 

 

Figure 7: Same as figure 1 but for the Loblolly pine canopy (LPI) 

 

Figure 8: Same as figure 1 but for the hardwood canopy (HW) 
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Figure 9: Same as figure 1 but for the flume experiments.  Rather than show the leaf area 

density (which is constant) in the left panel, we display the normalized mixing 

length. 

 

Figure 10: Comparison between measured and modeled */ uU , 
2

*/uwu ′′ , and 
2

*/ uK for all 

field sites and heights.  The open circles and open squares are for ε−K  model 

calculations using mt lKC
2/1

µν = and
ε

ν µ

2K
Ct = , respectively, and the plusses 

are for the UK − model calculations.  The 1:1 line is also shown. 

Figure 11: Same as figure 1 but for the spatially and temporally averaged turbulent kinetic 

energy dissipation rate of the flume experiment. 
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Table 1: Closure constants in ε−K and UK − models for all canopies.  For the 

UK − model, only pβ , dβ , 3a , and KSc are used.  Values in brackets are the standard 

values used for the flume measurements.  

Closure 

constant 

Value Reference 

KSc  1.0 

εSc  1.88 (1.3) 

µC  0.03 (0.09) 

1εC  1.44 

2εC  1.92 

4εC  0.9 (1.5) 

Standard ε−K  closure constants (Launder and Spalding 

1974) which have been used for numerous flow types 

including canopy turbulence by Liu et al. (1996), Green 

(1992), and Kobayashi et al. (1994).  The standard 

µC =0.09 is revised to 0.03 so that tν matches its ASL 

value.  Also, εSc should be revised from its standard 

laboratory value of 1.3 to 1.92 to account for the change 

in µC .  For the flume experiments, the standard closure 

constants (in brackets) are used. 

5εC  0.9 (1.5) 

pβ  1.0 

dβ  5.1 (4.0) 

dp ββ , are identical to several CSL experiments (Green 

1992, Kobayashi et al. 1994, Liu et al. 1996).  Green 

reported 5.15 =εC for consistency with the Kolmogorov 

relation (Sanz 2003) and is used in all our calculations 

while others found that 5εC =0.4 produces better match to 

their wind-tunnel data (Liu et al. 1996).    

uA , vA , 

and wA  

2.4, 2.1, 1.25 

(1.5, 1.35, 1.2) 

Standard ASL values (Garratt 1992).  They are boundary 

conditions that uniquely determine 3a =72.86 (Katul and 

Chang 1999).  These values are used for all canopies.  The 

values for the flume experiment are shown in brackets. 
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Table 2: Canopy morphology and aerodynamic properties of the vegetation types, where 

FL is the flume artificial canopy (rods), RI is the rice canopy, CO is the corn canopy, SP 

is the spruce stand, AS is the aspen stand, JPI is the Jack pine stand, SPI is the Scots pine 

stand, LPI is the Loblolly pine stand, and HW is the hardwood forest. 

Canopy FL RI CO SP AS JPI SPI LPI HW 

H (m) 0.12 0.72 2.2 10 10 15 20 16 22 

LAI (m2 m-2)  or 

frontal area index 

1072 

rods m-2 

3.1 2.9 10.0 4.0 2.0 2.6 3.8 5.0 

dC  Variable
* 

0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.15 

hzo /  0.10 0.1 0.1 0.1 0.1 0.1 0.1 0.08 0.08 

hdo /  0.65 2/3 2/3 2/3 2/3 2/3 2/3 2/3 0.8 

*see Poggi et al. (2003a)
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Table 3: Comparisons between the three models and measurements at all field sites and 

all heights (see Table 2 for vegetation labels).   The regression analysis used to evaluate 

the models is bxmy += ˆˆ , where ŷ is the normalized measured variable and x̂  is the 

normalized modeled variable (i.e. */ uU , 
2

*/ uwu ′′ , and 
2

*/uK ).  The friction velocity 

*(u ) at the canopy top is used as the normalizing velocity for all sites.  The slope ( m ), 

the intercept ( b ), the correlation coefficient ( r ), the root-mean squared error (RMSE), 

and the mean bias (computed from x̂ - ŷ ) are presented for all three variables and all 

three models.  The data size n  for each site used in the comparison is also shown.  For 

LPI, the published RMSE by Katul and Albertson (1998) for U , '' wu , and K are 0.11, 

0.02, and 0.09 for the second-order closure model, and 0.13, 0.02, and 0.09 for the third 

order closure model.  For RI, the published RMSE by Katul et al. (2001b) for U , '' wu are 

0.05 and 0.2 for the second-order closure model. 

  Canopy Type  
Model Variable RI CO SP AS JPI SPI LPI HW 

Mean Velocity Comparisons 
)1(ε−K  

n  
10 19 5 8 5 5 6 9 

 m  0.99 1.04 0.71 0.90 0.71 0.97 0.91 0.94 

 b  0.12 -0.07 -0.11 -0.12 0.09 0.05 0.19 0.50 

 r  0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.98 

 RMSE 0.32 0.13 0.74 0.36 0.50 0.12 0.27 0.58 

 Bias -0.10 0.01 0.57 0.30 0.37 0.02 0.06 -0.39 

UK −  m  1.00 1.04 0.71 0.90 0.71 0.97 0.91 0.95 

 b  0.08 -0.10 -0.12 -0.13 0.08 0.02 0.17 0.47 

 r  0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.98 

 RMSE 0.31 0.13 0.74 0.37 0.51 0.13 0.26 0.56 

 Bias -0.07 0.04 0.58 0.31 0.38 0.04 0.06 -0.37 

)2(ε−K   m  
1.13 1.09 0.78 1.17 0.98 1.16 0.95 0.99 

 b  -0.36 -0.41 -0.28 -0.93 -0.65 -0.53 -0.03 0.34 

 r  0.99 1.00 0.99 0.99 1.00 1.00 1.00 0.98 

 RMSE 0.42 0.33 0.74 0.62 0.68 0.30 0.22 0.50 

 Bias 0.10 0.26 0.66 0.57 0.68 0.13 0.15 -0.31 

Reynolds Stress Comparisons  
)1(ε−K  

m  
0.66 1.17 0.85 1.09 0.94 0.97 1.11 0.94 
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 b  -0.08 -0.06 -0.05 0.01 -0.07 -0.04 0.03 -0.09 

 r  0.72 0.96 0.98 0.97 0.99 0.98 0.99 0.94 

 RMSE 0.26 0.17 0.12 0.10 0.07 0.09 0.09 0.16 

 Bias -0.02 0.11 -0.02 0.03 0.05 0.03 0.04 0.07 

UK −  m  0.65 1.15 0.85 1.10 0.92 0.95 1.11 0.94 

 b  -0.07 -0.06 -0.04 0.01 -0.07 -0.04 0.03 -0.09 

 r  0.72 0.96 0.98 0.97 0.99 0.98 0.99 0.94 

 RMSE 0.27 0.16 0.12 0.10 0.07 0.09 0.09 0.16 

 Bias -0.03 0.10 -0.02 0.03 0.04 0.01 0.03 0.06 

)2(ε−K   m  
0.79 1.17 0.87 1.12 0.88 1.01 1.10 0.97 

 b  0.01 0.00 -0.04 0.12 -0.05 0.00 0.03 -0.09 

 r  0.79 0.98 0.98 0.97 0.99 0.99 0.99 0.94 

 RMSE 0.23 0.11 0.10 0.13 0.08 0.07 0.09 0.16 

 Bias -0.09 0.06 -0.01 -0.07 0.00 0.00 0.03 0.08 

Turbulent Kinetic Energy Comparisons  
)1(ε−K  

m  
0.86 1.15 0.73 0.92 0.68 0.91 1.08 1.08 

 b  0.97 0.58 0.30 0.45 0.55 0.36 0.22 0.52 

 r  0.86 0.98 0.99 0.99 1.00 1.00 0.98 0.98 

 RMSE 1.21 0.85 0.55 0.40 0.47 0.29 0.65 0.87 

 Bias -0.79 -0.74 0.12 -0.33 -0.14 -0.16 -0.43 -0.68 

UK −  m  0.72 1.09 0.68 0.88 0.63 0.80 1.03 1.06 

 b  0.97 0.51 0.27 0.44 0.56 0.36 0.19 0.48 

 r  0.85 0.98 0.99 0.99 1.00 1.00 0.97 0.98 

 RMSE 1.21 0.71 0.75 0.37 0.58 0.47 0.65 0.75 

 Bias -0.56 -0.62 0.29 -0.24 -0.04 0.12 -0.29 -0.59 

)2(ε−K   m  
0.81 1.15 0.71 1.00 0.72 0.90 1.06 1.09 

 b  0.66 0.20 0.21 -0.07 0.21 0.06 0.06 0.44 

 r  0.90 1.00 0.99 0.99 1.00 1.00 0.97 0.98 

 RMSE 0.91 0.48 0.67 0.20 0.47 0.30 0.61 0.83 

 Bias -0.34 -0.41 0.30 0.08 0.27 0.18 -0.23 -0.62 

1Model calculations are with 2/14/1
KlC mt µν = ; 2Model calculations are with εν µ

2KCt =  
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Table 4: Overall comparisons between the three models and measurements at all field 

sites and all heights.  The regression analysis used to evaluate the models is bxmy += ˆˆ , 

where ŷ is the normalized measured variable and x̂  is the normalized modeled variable.  

The slope ( m ), intercept (b ), correlation coefficient ( r ), and root-mean squared error 

(RMSE) are presented for all three variables.  

Variable Statistic )1(ε−K  UK −  )2(ε−K  

U  m  0.97 0.97 1.14 

 b  0.04 0.02 -0.56 

 r  0.98 0.98 0.97 

 RMSE 0.35 0.35 0.53 

K  m  0.94 0.88 1.01 

 b  0.45 0.44 -0.19 

 r  0.95 0.94 0.95 

 RMSE 0.69 0.70 0.60 

wu ′′  m  0.97 0.96 1.07 

 b  -0.06 -0.05 0.09 

 r  0.93 0.93 0.94 

 RMSE 0.16 0.15 0.15 

1Model calculations are with 2/14/1
KlC mt µν = ; 2Model calculations are with εν µ

2KCt =  
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Figure 1: Katul et al. 
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Figure 2: Katul et al.
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Figure 3: Katul et al. 
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Figure 4: Katul et al. 
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Figure 5: Katul et al. 
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Figure 6: Katul et al. 
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Figure 7: Katul et al. 
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Figure 8: Katul et al.
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Figure 9: Katul et al. 
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Figure 10: Katul et al.
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Figure 11: Katul et al. 
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