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One- and two-level densities for rational families of

elliptic curves: evidence for the underlying

group symmetries
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Abstract

Following Katz–Sarnak, Iwaniec–Luo–Sarnak and Rubinstein, we use the one- and two-
level densities to study the distribution of low-lying zeros for one-parameter rational
families of elliptic curves over Q(t). Modulo standard conjectures, for small support the
densities agree with Katz and Sarnak’s predictions. Further, the densities confirm that
the curves’ L-functions behave in a manner consistent with having r zeros at the critical
point, as predicted by the Birch and Swinnerton-Dyer conjecture. By studying the two-
level densities of some constant sign families, we find the first examples of families of
elliptic curves where we can distinguish SO(even) from SO(odd) symmetry.

1. Introduction

1.1 n-level correlations and densities
Assuming the Generalized Riemann Hypothesis (GRH), the zeros of any L-function lie on the
critical line, and therefore it is possible to investigate statistics of the normalized zeros. The gen-
eral philosophy, born out in many examples (see [CFKRS02]), is that the behavior of random
matrices/ensembles of random matrices behaves in a similar manner to that of L-functions/families
of L-functions. By a family F we mean a collection of geometric objects and their associated
L-functions, where the geometric objects have similar properties.

We expect that there is a symmetry group G(F) (one of the classical compact groups U(N),
SU(N), USp(2N), SO(even) and SO(odd)) which can be associated to a family of L-functions, and
that the behavior of the eigenvalues of matrices in G(F) should (after appropriate normalizations)
equal the behavior of the zeros of L-functions.

Iwaniec et al. [ILS00] considered (among other examples) all cuspidal newforms of a given level
and weight. Rubinstein [Rub98] considered twists by the fundamental discriminants D of a fixed
modular form.

We study the family of all elliptic curves and various one-parameter families of elliptic curves.
Thus, in our case the notion of a family is the standard notion from geometry: we have a collection
of curves over a base and the geometry is much clearer in our examples than in [ILS00] and [Rub98].

Let {αj} be an increasing sequence of numbers tending to infinity, such as eigenvalues or zeros
normalized to have mean spacing 1. For a compact box B ⊂ Rn−1, define the n-level correlation by

lim
N→∞

#{(αj1 − αj2 , . . . , αjn−1 − αjn) ∈ B, ji ∈ {1, . . . , N}, ji �= jk}
N

. (1.1)
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One- and two-level densities for rational families of elliptic curves

Note that the n-level correlations are unaffected by removing finitely many zeros. Instead of
using a box, one can study a smoothed version with a test function on Rn (see [RS96]).

For test functions whose Fourier transform has small support, Montgomery [Mon73] proved that
the two-level (and Hejhal [Hej94] proved that the three-level) correlation for the zeros of ζ(s) is the
same as that of the eigenvalues of complex Hermitian matrices with entries independently chosen
from Gaussian distributions (the GUE ensemble of matrices). Rudnick and Sarnak [RS96] proved
that the n-level correlations for the zeros of any automorphic cuspidal L-function are the same as
that of the zeros of the GUE. The universality is due to the fact that the correlations are controlled
by the second moment of ap, and while there are many possible limiting distributions, all have the
same second moment.

Katz and Sarnak [KS99a] proved that the classical compact groups have the same n-level correla-
tions. In particular, we cannot use the n-level correlations to distinguish GUE behavior, U(N), from
the other classical compact groups. We are led to investigate another statistic which will depend
on the underlying group.

For L-functions of elliptic curves, the order of vanishing of L(s,E) at s = 1
2 is conjecturally

equal to the geometric rank of the Mordell–Weil group (Birch and Swinnerton-Dyer conjecture).
If we force the Mordell–Weil group to be large, we expect many zeros exactly at s = 1

2 , and this
might influence the behavior of the neighboring zeros. Hence, we are led to study the distribution
of the first few, or low-lying, zeros, and the fascinating possibility that there could be a difference
in statistics for zeros near 1

2 and those zeros higher up.
Let f(x) be an even Schwartz function whose Fourier transform is supported in a neighborhood

of the origin. We assume that f is of the form
∏n

i=1 fi(xi). The n-level density for the family F
with test function f is

Dn,F (f) =
1
|F|

∑
E∈F

∑
j1,...,jn
ji �=±jk

f1

(
log NE

2π
γ

(j1)
E

)
· · · fn

(
log NE

2π
γ

(jn)
E

)
, (1.2)

where γ
(ji)
E runs through the non-trivial zeros of the curve E, and NE is its conductor. We rescale

the zeros by log NE as this is the order of the number of zeros with imaginary part less than a large
absolute constant (see [ILS00]). As fi is Schwartz, most of the contribution is due to the zeros near
the critical point. We use the explicit formula (Equation (2.3)) to relate sums of test functions over
zeros to sums over primes of aE(p) and a2

E(p).
Katz and Sarnak [KS99a] determined the N → ∞ limits for the n-level densities of eigenvalues

near 1 for the classical compact groups (see § 3); their calculations can be modified to determine the
densities of classical compact groups with a forced number of eigenvalues at 1. Forcing eigenvalues
at 1 corresponds to L-functions with zeros forced at the critical point.

1.2 Results
To any geometric family in the function field case, the results of Katz and Sarnak [KS99a, KS99b]
state that the n-level density of zeros near 1

2 depends only on a symmetry group attached to the
family. In particular, for generic families of elliptic curves the relevant symmetry is orthogonal. One
can further analyze the distributions depending on the signs of the functional equations. As the
families of elliptic curves are self-dual, we expect the densities to be controlled by the distribution
of signs (all even SO(even), all odd SO(odd), equidistributed O).

For an elliptic curve Et, let D(t) be the product of the irreducible polynomial factors of the
discriminant ∆(t), and let C(t) be the conductor. Let B be the largest square dividing D(t) for
all t. Pass to a subsequence ct + t0, and call t ∈ [N, 2N ] good if D(ct + t0) is square-free, except
for primes p|B where the power of such p|D(t) is independent of t.

The main result is Theorem 5.8, which can be summarized as follows.
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Rational Surfaces Density Theorem. Consider a one-parameter family of elliptic curves of
rank r over Q(t) which constitutes a rational surface. Assume the GRH, j(Et) non-constant, and if
∆(t) has an irreducible polynomial factor of degree at least 4, assume the ABC conjecture.

After passing to a subsequence, for t good, C(t) is a polynomial. Let fi be an even Schwartz
function of small but non-zero support σi (σ1 < min(1

2 , 2/3m) for the one-level density, σ1 + σ2 <
1/3m for the two-level density).

The one-level density agrees with the orthogonal densities plus a term which equals the con-
tributions from r zeros at the critical point. The two-level density agrees with SO(even), O and
SO(odd), depending on whether the signs are all even, equidistributed in the limit or all odd, plus
a term which equals the contribution from r zeros at the critical point. Thus, for small support, the
densities of the zeros agree with Katz and Sarnak’s predictions. Further, the densities confirm that
the curves’ L-functions behave in a manner consistent with having r zeros at the critical point, as
predicted by the Birch and Swinnerton-Dyer conjecture.

The ABC conjecture is used to handle large prime divisors of polynomials of degree 4 or more
(see [Gra98]). In place of ABC, one could assume the square-free sieve conjecture.

For the one-level densities, the three orthogonal densities agree for test functions with support
less than 1, split (i.e. are distinguishable) for support greater than 1, but are all distinguishable from
U and Sp for any support. Hence, unlike the n-level correlations, the one-level density is already
sufficient to observe non-GUE and non-symplectic behavior.

The polynomial growth of the conductor in families of elliptic curves makes it difficult to evaluate
the sums over primes for test functions with moderate support. Converting to our language, for small
support the one-level densities for many families have been shown to be equal to the Katz–Sarnak
predictions: all elliptic curves (Brumer and Heath-Brown [Bru92, BH], support less than 2

3 ); twists
of a given curve (support less than 1); one-parameter families (Silverman [Sil98], small support).

None of these are sufficient to distinguish the three orthogonal candidates. Further, previous
investigations have rescaled each curve’s zeros by the average of the logarithms of the conductors.
This greatly simplifies the calculations; however, the normalization is no longer natural for each
curve, as each curve can sit in infinitely many families, each with a different average spacing. By
using local normalizations for each curve’s zeros, the n-level density for a family becomes the average
of the n-level densities for each curve.

The utility of the two-level density is that, even for test functions with arbitrarily small support,
the three candidate orthogonal symmetries are distinguishable, and in a very satisfying way. The
three candidates differ by a factor which encodes the distribution of sign in the family, and all differ
from the GUE’s two-level density.

We study several families of constant sign, and we will see that the densities are as expected.
Thus, for these constant sign families, the two-level density reflects the predicted symmetry, which
is invisible through the one-level density because of support considerations.

Similar to the universality Rudnick and Sarnak [RS96] found in studying n-level correlations, our
universality follows from the sums of a2

t (p) in our families (the second moments). For non-constant
j(Et), this follows from a Sato–Tate law proved by Michel [Mic95, Theorem 2.3].

1.3 Structure of the paper
We first calculate sums of the Fourier coefficients of elliptic curves. We quote the predicted densities,
and then calculate useful expansions for the one- and two-level densities for families of elliptic curves
over Q(t). We derive the density results, conditional on the evaluation of many elliptic curve sums.
We calculate these sums for one-parameter rational families of elliptic curves. We conclude with
several examples (four constant sign families, a rank 1 and a rank 6 rational family).

954

https://doi.org/10.1112/S0010437X04000582 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000582


One- and two-level densities for rational families of elliptic curves

We need excellent control over the conductors to evaluate the above sums; the estimation is so
delicate that if the log of conductors are of size m log N , fluctuations of size O(1) yield error terms
greater than the expected main terms.

The key observation is that the error terms can be controlled if the conductors are monotone.
By straightforward sieving and applications of Tate’s algorithm (to calculate the conductors), given
a one-parameter rational family of elliptic curves, we may pass to a positive percentage sub-family
where the conductors are monotone. The proofs of these results are given in the appendices.

In this paper, we concentrate on rational elliptic surfaces, because here Tate’s conjecture is
known. Rosen and Silverman [RS98] show that Tate’s conjecture implies that certain sums over
primes are related to the rank of the family over Q(t). This allows us to interpret some of our
density terms as the contributions from r critical point zeros.

The modifications needed to handle the family of all elliptic curves, parametrized by

y2 = x3 + ax + b, a ∈ [−N2, N2], b ∈ [−N3, N3], (1.3)

are straightforward and can be found in [Mil02].
Finally, if instead we normalize by the average of the logarithms of the conductors, we obtain

the same results but with significantly less work. This is done in [Mil02] for one-parameter families
and the family of all elliptic curves.

2. Elliptic curve preliminaries

2.1 Definitions

Consider a one-parameter family E of elliptic curves Et over Q(t):

E : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t), ai(t) ∈ Z[t]. (2.1)

For each curve Et, let ∆(t) be its discriminant and C(t) its conductor. Let D(t) denote the product of
the irreducible polynomial factors dividing ∆(t). We take t ∈ [N, 2N ] such that D(t) is square-free.

Let at(p) = aEt(p) = p+1−Nt,p, where Nt,p is the number of solutions of Et mod p (including ∞).
If y2 = x3 + A(t)x + B(t), then

at(p) = −
∑
t(p)

(
x3 + A(t)x + B(t)

p

)
. (2.2)

2.2 Assumptions

We assume the following at various points.

Generalized Riemann Hypothesis (For elliptic curves). Let L(s,E) be the (normalized)
L-function of an elliptic curve E. The non-trivial zeros ρ of L(s,E) have Re(ρ) = 1

2 .

Occasionally we assume the Riemann hypothesis for the Riemann zeta-function and Dirichlet
L-functions.

Birch and Swinnerton-Dyer Conjecture [BS63, BS65]. Let E be an elliptic curve of
geometric rank r over Q (the Mordell–Weil group is Zr ⊕ T ). Then the analytic rank (the order
of vanishing of the L-function at the critical point) is also r.

We only assume the above for interpretation purposes.
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Tate’s Conjecture for Elliptic Surfaces [Tat65]. Let E/Q be an elliptic surface and L2(E , s)
be the L-series attached to H2

ét(E/Q, Ql). The series L2(E , s) has a meromorphic continuation to C
and −ords=1L2(E , s) = rankNS(E/Q), where NS(E/Q) is the Q-rational part of the Néron–Severi
group of E . Further, L2(E , s) does not vanish on the line Re(s) = 1.

Most of the one-parameter families that we investigate are rational surfaces, in which case Tate’s
conjecture is known (see [RS98]).

ABC Conjecture. Fix ε > 0. For co-prime positive integers a, b and c with c = a + b and
N(a, b, c) =

∏
p|abc p, c �ε N(a, b, c)1+ε.

The full strength of ABC is never needed; rather, we need a consequence of ABC, the square-free
sieve (see [Gra98]).

Square-Free Sieve Conjecture. Fix an irreducible polynomial f(t) of degree at least 4.
As N → ∞, the number of t ∈ [N, 2N ] with f(t) divisible by p2 for some p > log N is o(N).

For irreducible polynomials of degree at most 3, the above is known, complete with a better
error than o(N) [Hoo76, ch. 4].

We use the square-free sieve to handle the variations in the conductors. If our evaluation of the
log of the conductors is off by as little as a small constant, the prime sums become untractable.
This is why many works normalize by the average log-conductor.

Restricted Sign Conjecture (For the family F). Consider a one-parameter family F of elliptic
curves. As N → ∞, the signs of the curves Et are equidistributed for t ∈ [N, 2N ].

The restricted sign conjecture often fails. First, there are families with constant j(Et) where all
curves have the same sign.

Helfgott [Hel] has recently related the restricted sign conjecture to the square-free sieve conjecture
and standard conjectures on sums of Moebius.

Polynomial Moebius. Let f(t) be a non-constant polynomial such that no fixed square divides
f(t) for all t. Then

∑2N
t=N µ(f(t)) = o(N).

The polynomial Moebius conjecture is known for linear f(t).
Helfgott showed that the square-free sieve and polynomial Moebius imply the restricted sign

conjecture for many families. More precisely, let M(t) be the product of the irreducible polynomials
dividing ∆(t) and not c4(t).

Equidistribution of Sign in a Family Theorem [Hel]. Let F be a one-parameter family with
ai(t) ∈ Z[t]. If j(Et) and M(t) are non-constant, then the signs of Et, t ∈ [N, 2N ], are equidistributed
as N → ∞. Further, if we restrict to good t, t ∈ [N, 2N ] such that D(t) is good (usually square-free),
the signs are still equidistributed in the limit.

The above is only used to calculate N(F ,−1), the percentage of odd curves. Without this, we
can still calculate the one-level densities for small support, and all but one term in the two-level
densities, N(F ,−1)f1(0)f2(0).

2.3 Explicit formula

The starting point for working with zeros of the L-functions of elliptic curves is the explicit formula
(see [Mes86]), which relates sums over zeros to sums over primes.
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One- and two-level densities for rational families of elliptic curves

For an elliptic curve E with conductor NE,∑
γ
(j)
E

G

(
γ

(j)
E

log NE

2π

)
= Ĝ(0) + G(0) − 2

∑
p

log p

log NE

1
p
Ĝ

(
log p

log NE

)
aE(p)

− 2
∑

p

log p

log NE

1
p2

Ĝ

(
2 log p

log NE

)
a2

E(p) + O

(
log log NE

log NE

)
. (2.3)

2.4 Sums of at(p)
Using the explicit formula, we find that we need to handle sums like

2N∑
t=N

ar1
t (p1) · · · arn

t (pn). (2.4)

We record these results for later use. Define

Ar,F (p) =
∑
t(p)

ar
t (p). (2.5)

Lemma 2.1. Let p1, . . . , pn be distinct primes and ri � 1. Then∑
t(p1···pn)

n∏
i=1

ari
t (pi) =

n∏
i=1

Ari,F (pi). (2.6)

The proof is a straightforward induction, using the fact that at+mp(p) = at(p).
Lemma 2.1 is our best analogue to the Petersson formula, which is used in [ILS00] to obtain

large support for the density functions.
The value A1,F (p)/p is bounded independent of p [Del80]. Rosen and Silverman [RS98] proved

the following conjecture of Nagao [Nag97].

Theorem 2.2 [RS98]. For a one-parameter family E of elliptic curves over Q(t), if Tate’s conjecture
is true, then

lim
X→∞

1
X

∑
p�X

−A1,F (p)
p

log p = rank E(Q(t)). (2.7)

Tate’s conjecture is known for rational surfaces (see [RS98]). An elliptic surface y2 = x3+A(t)x+
B(t) is rational if and only if one of the following is true:

1) 0 < max{3 deg A, 2 deg B} < 12;

2) 3 deg A = 2deg B = 12 and ordt=0 t12∆(t−1) = 0.

Theorem 2.3 [Mic95]. Consider a one-parameter family over Q(t) with non-constant j(Et). Then

A2,F (p) = p2 + O(p3/2). (2.8)

2.5 Sieving and conductors
To evaluate the sums of

∏
i a

ri
t (pi), it is necessary to restrict t to arithmetic progressions; in order

to bound some of the error terms, we will see that the conductors C(t) must be monotone.
Let

Tsqfree = {t ∈ [N, 2N ] : D(t) is square-free}
TN = {t ∈ [N, 2N ] : d2 |�D(t) for 2 � d � logl N}.

(2.9)
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Clearly Tsqfree ⊂ TN . We show that TN is a union of arithmetic progressions, and |TN − Tsqfree| =
o(N).

Thus, except for o(N) values of t, we can write t good (where the conductors are monotone) as
a union of arithmetic progressions. For proofs, see Theorems A.5 and B.2.

3. One- and two-level density kernels for the classical compact groups

By [KS99a], the n-level densities for the classical compact groups are

Wn,O+(x) = det(K1(xi, xj))i,j�n

Wn,O−(x) = det(K−1(xi, xj))i,j�n +
n∑

k=1

δ(xk) det(K−1(xi, xj))i,j �=k

= (Wn,O−)1(x) + (Wn,O−)2(x)

Wn,O(x) = 1
2Wn,O+(x) + 1

2Wn,O−(x)

Wn,U(x) = det(K0(xi, xj))i,j�n

Wn,Sp(x) = det(K−1(xi, xj))i,j�n

(3.1)

where K(y) = sinπy/πy, Kε(x, y) = K(x − y) + εK(x + y) for ε = 0,±1, O+ denotes the group
SO(even) and O− the group SO(odd).

3.1 One-level densities

Let I(u) be the characteristic function of [−1, 1].

Theorem 3.1 (One-level densities). We have

Ŵ1,O+(u) = δ(u) + 1
2I(u)

Ŵ1,O(u) = δ(u) + 1
2

Ŵ1,O−(u) = δ(u) − 1
2sI(u) + 1

Ŵ1,Sp(u) = δ(u) − 1
2I(u)

Ŵ1,U (u) = δ(u).

(3.2)

For functions whose Fourier transforms are supported in [−1, 1], the three orthogonal densities are
indistinguishable, although they are distinguishable from U and Sp. To detect differences between
the orthogonal groups using the one-level density, one needs to work with functions whose Fourier
transforms are supported beyond [−1, 1].

3.2 Two-level densities

Theorem 3.2 (G = SO(even), O or SO(odd)). Let c(G) = 0, 1
2 , 1 for G = SO(even), O, SO(odd).

For even functions supported in |u1| + |u2| < 1∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,G(u) du1 du2 = [f̂1(0) + 1

2f1(0)][f̂2(0) + 1
2f2(0)] + 2

∫
|u|f̂1(u)f̂2(u) du

− 2f̂1f2(0) − f1(0)f2(0) + c(G)f1(0)f2(0). (3.3)

For arbitrarily small support, the three two-level densities differ. One increases by a factor of
1
2f1(0)f2(0) moving from Ŵ2,O+ to Ŵ2,O to Ŵ2,O−.
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Theorem 3.3 (G = Sp). We have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,Sp(u) du1 du2

= [f̂1(0) + 1
2f1(0)][f̂2(0) + 1

2f2(0)] + 2
∫

|u|f̂1(u)f̂2(u) du

− 2f̂1f2(0) − f1(0)f2(0) − f1(0)f̂2(0) − f̂1(0)f2(0) + 2f1(0)f2(0). (3.4)

Theorem 3.4 (G = U). We have∫ ∫
f̂1(u1)f̂2(u2)Ŵ2,U du1 du2 = f̂1(0)f̂2(0) +

∫
|u|f̂1(u)f̂2(u) du − f̂1f2(0). (3.5)

For test functions with arbitrarily small support, the two-level densities for the classical compact
groups are mutually distinguishable.

4. Expansions for the one- and two-level densities for elliptic curve families
For i = 1 and 2, let fi be an even Schwartz function whose Fourier transform is supported in
(−σi, σi) and f(x1, x2) = f1(x1)f2(x2), f̂(u1, u2) = f̂1(u1)f̂2(u2).

4.1 One-level density: D1,F(f)
We have

D1,F (f) =
1
|F|

∑
E∈F

∑
γ
(j)
E

f1

(
γ

(j)
E

log NE

2π

)

= f̂1(0) + f1(0) − 2
∑

p

1
p

1
|F|

∑
E∈F

log p

log NE
f̂1

(
log p

log NE

)
aE(p)

− 2
∑

p

1
p2

1
|F|

∑
E∈F

log p

log NE
f̂1

(
2 log p

log NE

)
a2

E(p) + O

(
log log NE

log NE

)
. (4.1)

As the one-level density sums are sub-calculations which arise in the two-level investigations, we
postpone their determination for now.

4.2 Two-level density: D2,F(f) and D∗2,F(f)
Recall that the two-level density D2,F (f) is the sum over all indices j1, j2 with j1 �= ±j2.

Definition 4.1. The density D∗
2,F (f) differs from the two-level density D2,F (f) in that j1 may

equal ±j2.

We first calculate D∗
2,F (f), and then subtract off the contribution from j1 = ±j2. Assuming the

GRH, we may write the zeros as 1 + iγ(j), with γ(j) = −γ(−j). We have

D∗
2,F (f) =

1
|F|

∑
E∈F

∑
j1

∑
j2

f1(Lγ
(j1)
E )f2(Lγ

(j2)
E )

=
1
|F|

∑
E∈F

2∏
i=1

[
f̂i(0) + fi(0) − 2

∑
pi

log pi

log NE

1
pi

f̂i

(
log pi

log NE

)
aE(pi)

− 2
∑
pi

log pi

log NE

1
p2

i

f̂i

(
2

log pi

log NE

)
a2

E(pi) + O

(
log log NE

log NE

)]

=
1
|F|

∑
E∈F

2∏
i=1

[f̂i(0) + fi(0) + Si,1 + Si,2]. (4.2)

959

https://doi.org/10.1112/S0010437X04000582 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000582


S. J. Miller

We use Theorem D.1 to drop the error terms, as they do not contribute in the limit as |F| → ∞.
The astute reader will notice that Theorem D.1 requires us to know the one-level density, and
we have postponed that calculation; however, in the process of calculating the two-level density we
will determine the required sums for the one-level density (without using Theorem D.1 to evaluate
them). Thus, there is no harm in removing the error terms.

There are five types of sums that we need to investigate: (1/|F|)
∑

E∈F Si,1, (1/|F|)
∑

E∈F Si,2,
(1/|F|)

∑
E∈F S1,1S2,1, (1/|F|)

∑
E∈F S1,2S2,2 and (1/|F|)

∑
E∈F S1,1S2,2 (i �= j). In Si,j, i refers to

which prime (p1 or p2) and j refers to the power of aE(pα) (1 or 2). The first and the second sums
are what we need to calculate the one-level densities.

4.2.1 j1 = ±j2. Let ρ = 1 + iγ
(j)
E be a zero. For a curve with even functional equation, we may

label the zeros by

· · · � γ
(−2)
E � γ

(−1)
E � 0 � γ

(1)
E � γ

(2)
E � · · · , γ

(−k)
E = −γ

(k)
E , (4.3)

while for a curve with odd functional equation we label the zeros by

· · · � γ
(−1)
E � 0 � γ

(0)
E = 0 � γ

(1)
E � · · · , γ

(−k)
E = −γ

(k)
E . (4.4)

We exclude the contribution from j1 = ±j2. If an elliptic curve has even functional equation, ji

ranges over all non-zero integers, and γ
(−j)
E = −γ

(j)
E , j �= −j. Since the test functions are even, the

sum over all pairs (j1, j2) with j1 = ±j2 is twice the sum over all pairs (j, j), which is D1,E(f1f2),
i.e. the one-level density for a curve E with test function f1(x)f2(x).

If an elliptic curve has odd functional equation, ji ranges over all integers. The curve vanishes
to odd order at the critical point s = 1. Except for one zero (labelled γ

(0)
E ), for every non-zero j,

γ
(−j)
E = −γ

(j)
E , and j �= −j. Twice the sum over pairs (j, j) minus the contribution from the pair

(0, 0) equals the sum over all pairs (j1, j2) with j1 = ±j2. Thus, the curves with odd sign contribute
D1,E(f1f2) − f1(0)f2(0).

Let εE = ±1 be the sign of the functional equation for E, and define

Definition 4.2. N(F ,−1) = (1/|F|)
∑

E∈F((1 − εE)/2), i.e. the percentage of curves with odd
sign.

Summing over E ∈ F yields D1,F (f1f2) − N(F ,−1)f1(0)f2(0) for j1 = ±j2.

4.2.2 Two-level density expansion.

Lemma 4.3 (Two-level density expansion). We have

D2,F (f) =
1
|F|

∑
E∈F

2∏
i=1

[f̂i(0) + fi(0) + Si,1 + Si,2]

− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1) + O

(
log log N

log N

)
. (4.5)

To evaluate the above, we only need to know the percentage of curves with odd sign, not which
curves are even or odd. For the three- and higher-level densities, we have to execute sums over the
subset of curves with odd sign.

4.3 Useful expansion for the one- and two-level densities for one parameter families
Let E denote a one-parameter family of elliptic curves Et over Q(t), t ∈ [N, 2N ], and let F denote
a sub-family of E . In the applications, F will be obtained by sieving to D(t) good, where D(t) is
the product of the irreducible polynomial factors of ∆(t).
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4.3.1 Required prime sums.

Lemma 4.4 (Prime sums). Let C(N) be a power of N . By Lemmas C.2, C.3 and C.4:

i) ∑
p

log p

log C(N)
1
p
f̂1

(
log p

log C(N)

)
=

1
2
f1(0) + O

(
1

log N

)
;

ii) ∑
p

log p

log C(N)
1
p
f̂1

(
2

log p

log C(N)

)
=

1
4
f1(0) + O

(
1

log N

)
;

iii) ∑
p

log2 p

log2 C(N)
1
p
f̂1f̂2

(
log p

log C(N)

)
=

1
2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du + O

(
1

log N

)
.

If instead we are summing over primes congruent to a mod m, we use Lemmas C.1 and C.5, and
the right-hand sides are modified by 1/ϕ(m).

4.3.2 Expansions of sums. We use the expansion from Lemma 4.3. Recall that

Si,j = −2
∑
pi

log pi

log C(t)
1

pj
i

f̂i

(
2j−1 log pi

log C(t)

)
aj

t(pi). (4.6)

In Si,j, i refers to the prime (p1, p2) and j refers to the power of at(p) (at(p), a2
t (p)).

To determine the one- and two-level densities, there are eight sums over t ∈ F to evaluate:
(1/|F|)

∑
t∈F S1,1 and (1/|F|)

∑
t∈F S2,1; (1/|F|)

∑
t∈F S1,2 and (1/|F|)

∑
t∈F S2,2; (1/|F|)

∑
t∈F

S1,1S2,2 and (1/|F|)
∑

t∈F S2,1S1,2; (1/|F|)
∑

t∈F S1,1S2,1 and (1/|F|)
∑

t∈F S1,2S2,2.

We have written the sums in pairs where the two sums are handled similarly. Substituting the
definitions leads to five types of sums:

i)

−2
∑

p

1
p

1
|F|

∑
t∈F

log p

log C(t)
f̂1

(
log p

log C(t)

)
at(p);

ii)

−2
∑

p

1
p2

1
|F|

∑
t∈F

log p

log C(t)
f̂1

(
2

log p

log C(t)

)
a2

t (p);

iii)

4
∑
p1

∑
p2

1
p1p2

2

1
|F|

∑
t∈F

log p1

log C(t)
log p2

log C(t)
f̂1

(
log p

log C(t)

)
f̂2

(
2

log p

log C(t)

)
at(p1)a2

t (p2);

iv)

4
∑
p1

∑
p2

1
p1p2

1
|F|

∑
t∈F

log p1

log C(t)
log p2

log C(t)
f̂1

(
log p

log C(t)

)
f̂2

(
log p

log C(t)

)
at(p1)at(p2);

v)

4
∑
p1

∑
p2

1
p2
1p

2
2

1
|F|

∑
t∈F

log p1

log C(t)
log p2

log C(t)
f̂1

(
2

log p

log C(t)

)
f̂2

(
2

log p

log C(t)

)
a2

t (p1)a2
t (p2).
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In the above sums, we use Lemma C.7 to restrict to primes greater than logl N , l < 2. Label
the five sums (1/|F|)

∑
t∈F S(t; p) by Tk(p) and Tk(p1, p2). Trivially, by Hasse’s bound some of the

above do not contribute.
In the third sum, if p1 = p2 = p, we get a result � (1/log N)

∑
p(p

3/2 log p/p3) = O(1/log N).
In the fifth sum, if p1 = p2 = p, we get a result � (1/log N)

∑
p(p

2 log p/p4) = O(1/log N).
Thus, we only study the third and fifth sums when p1 �= p2. The fourth sum has the potential

to contribute when p1 = p2. Hence, we split it into two cases: p1 �= p2 and p1 = p2.

4.3.3 Conditions on the family to evaluate the sums.

Conditions 4.5 (On the family F). Let Tk(p) and Tk(p1, p2) (= (1/|F|)
∑

t∈F S(t; p)) equal:

i)
log p

log C(N)
f̂1

(
log p

log C(N)

)[
−r + O

(
p−α +

pβ

|F| +
1

logγ N

)]
;

ii)
log p

log C(N)
f̂1

(
2

log p

log C(N)

)[
p + O

(
p1−α +

pβ

|F| +
p

logγ N

)]
;

iii)

log p1

log C(N)
log p2

log C(N)
f̂1

(
log p1

log C(N)

)
f̂2

(
2

log p2

log C(N)

)
×
[
−rp2 + O

(
p−α1
1 p1−α2

2 +
pβ1
1 pβ2

2

|F| +
p2

logγ N

)]
;

iv) (a)

log p1

log C(N)
log p2

log C(N)
f̂1

(
log p1

log C(N)

)
f̂2

(
log p2

log C(N)

)
×
[
r2 + O

(
p1−α1
1 p1−α2

2 +
pβ1
1 pβ2

2

|F| +
1

logγ N

)]
if p1 �= p2;

(b)
log2 p

log2 C(N)
f̂1f̂2

(
log p

log C(N)

)[
p + O

(
p1−α +

pβ

|F| +
p

logγ N

)]
if p1 = p2 = p;

v)

log p1

log C(N)
log p2

log C(N)
f̂1

(
2

log p1

log C(N)

)
f̂1

(
2

log p2

log C(N)

)
×
[
p1p2 + O

(
p1−α1
1 p1−α2

2 +
pβ1
1 pβ2

2

|F| +
p1p2

logγ N

)]
where α, β, γ > 0, αi, βi � 0 and whenever two αi or βi occur, at least one is positive.

By Lemma 4.4 we can evaluate the eight Si,j sums for a family satisfying Conditions 4.5 as
follows.

Lemma 4.6 (Si,j sums). If the family satisfies Conditions 4.5, then (up to lower order terms which
do not contribute for small support):

i) (1/|F|)
∑

t∈F Si,1 = rfi(0);
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ii) (1/|F|)
∑

t∈F Si,2 = −1
2fi(0);

iii) (1/|F|)
∑

t∈F S1,1S2,2 + S2,1S1,2 = −1
2rf1(0)f2(0) + −1

2rf1(0)f2(0);

iv) (1/|F|)
∑

t∈F S1,1S2,1 = r2f1(0)f2(0) + 2
∫∞
−∞ |u|f̂1(u)f̂2(u) du;

v) (1/|F|)
∑

t∈F S1,2S2,2 = 1
4f1(0)f2(0).

4.3.4 One- and two-level densities, assuming certain conditions on the family. Substituting
Lemma 4.6 into the one- and two-level density expansions we obtain the following.

Lemma 4.7 (One- and two-level densities). Assume |F| is a positive multiple of N and F satisfies
Conditions 4.5. Up to lower order correction terms (which vanish as |F| → ∞), for even Schwartz
functions with small support,

D1,F (f) = f̂1(0) + 1
2f1(0) + rf1(0) (4.7)

and

D2,F (f) =
2∏

i=1

[f̂i(0) + 1
2fi(0)] + 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du − 2f̂1f2(0) − f1(0)f2(0)

+ (f1f2)(0)N(F ,−1) + (r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0). (4.8)

Let D
(r)
1,F (f1) and D

(r)
2,F (f1) be the one- and two-level densities from which the contributions of

r family zeros at the critical point have been subtracted. Then

D
(r)
1,F (f1) = f̂1(0) + 1

2f1(0) (4.9)

and

D
(r)
2,F (f1) =

2∏
i=1

[f̂i(0)+ 1
2fi(0)]+2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du−2f̂1f2(0)−f1(0)f2(0)+(f1f2)(0)N(F ,−1).

(4.10)
Thus, removing the contribution from r family zeros, for test functions of small support the two-
level density of the remaining zeros agrees with SO(even) if all curves are even, O if half are even
and half odd, and SO(odd) if all are odd.

Proof. The one-level density is immediate from substitution. Substituting for the eight Si,j sums for
D2,F (f) yields (up to lower order terms which do not contribute for small support)

D2,F (f) =
2∏

i=1

[f̂i(0) + fi(0)] + [f̂1(0) + f1(0)]rf2(0) + [f̂2(0) + f2(0)]rf1(0) + r2f1(0)f2(0)

+ 2
∫ ∞

−∞
|u|f̂1(u)f̂2(u) du + [f̂1(0) + f1(0)]

(
−1

2
f2(0)

)
+ [f̂2(0) + f2(0)]

(
−1

2
f1(0)

)
− 1

2
rf1(0)f2(0) −

1
2
rf1(0)f2(0) +

1
4
f1(0)f2(0)

− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1) + O

(
log log N

log N

)
=

2∏
i=1

[
f̂i(0) +

1
2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du

+ 2rf1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0) − rf1(0)f2(0) + r2f1(0)f2(0)
− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1). (4.11)
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Substituting

D1,F (f1f2) = f̂1f2(0) + 1
2f1(0)f2(0) + rf1(0)f2(0) (4.12)

yields

D2,F (f) =
2∏

i=1

[f̂i(0) + 1
2fi(0)] + 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du + rf1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0)

+ r2f1(0)f2(0) − 2f̂1f2(0) − f1(0)f2(0) − 2rf1(0)f2(0) + (f1f2)(0)N(F ,−1)

=
2∏

i=1

[f̂i(0) + 1
2fi(0)] + 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du − 2f̂1f2(0) − f1(0)f2(0)

+ (f1f2)(0)N(F ,−1) + (r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0). (4.13)

If the family has rank r over Q(t), there is a natural interpretation of these terms. By the Birch
and Swinnerton-Dyer conjecture (only used for interpretation purposes) and Silverman’s specializa-
tion theorem, for all t sufficiently large, each curve’s L-function has at least r zeros at the critical
point. We isolate the contributions from r family zeros.

Assume that there are r family zeros at the critical point. Let Lt = log C(t)/2π. Recall that the
one-level density is D1,F (f) = f̂(0) + 1

2f(0) + rf(0). Let ji range over all zeros of a curve, and j′i
range over all but the r family zeros. We have

D2,F (f) (4.14)

=
1
|F|

∑
t∈F

∑
j1

∑
j2

f1(Ltγ
(j1)
Et

)f2(Ltγ
(j2)
Et

) − 2D1,F (f1f2) + (f1f2)(0)N(F ,−1)

=
1
|F|

∑
t∈F

(
rf1(0) +

∑
j′1

f1(Ltγ
(j′1)
Et

)
)(

rf2(0) +
∑
j′2

f2(Ltγ
(j′2)
Et

)
)

− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1)

=
1
|F|

∑
t∈F

∑
j′1

∑
j′2

f1(Ltγ
(j′1)
Et

)f2(Ltγ
(j′2)
Et

) + rf1(0)D1,F (f2) + D1,F (f1)rf2(0) − r2f1(0)f2(0)

− 2D1,F (f1f2) + (f1f2)(0)N(F ,−1)

=
1
|F|

∑
t∈F

∑
j′1

∑
j′2

f1(Ltγ
(j′1)
Et

)f2(Ltγ
(j′2)
Et

) + (f1f2)(0)N(F ,−1) + rf1(0)
(

f̂2(0) +
(

r +
1
2

)
f2(0)

)

+
(

f̂1(0) +
(

r +
1
2

)
f1(0)

)
rf2(0) − r2f1(0)f2(0) − 2

(
f̂1f2(0) +

1
2
f1(0)f2(0) + rf1(0)f2(0)

)
=
[

1
|F|

∑
t∈F

∑
j′1

∑
j′2

f1(Ltγ
(j′1)
Et

)f2(Ltγ
(j′2)
Et

) − 2
(

f̂1f2(0) +
1
2
f1(0)f2(0)

)
+ (f1f2)(0)N(F ,−1)

]
+ rf1(0)f̂2(0) + rf̂1(0)f2(0) + (r2 − r)f1(0)f2(0)

= D
(r)
2,F (f1) + rf1(0)f̂2(0) + rf̂1(0)f2(0) + (r2 − r)f1(0)f2(0). �

We isolate the following.

Lemma 4.8. The contribution from r critical point zeros is

rf1(0)f̂2(0) + rf̂1(0)f2(0) + (r2 − r)f1(0)f2(0). (4.15)
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5. Calculation of the one- and two-level densities for elliptic curve families

Let E be a one-parameter family of elliptic curves Et with discriminants ∆(t) and conductors C(t).
For many families, we can evaluate the conductors exactly if we sieve to a subfamily F defined
as the t ∈ [N, 2N ] with D(t) good, where D(t) = akt

k + · · · + a0 (ak � 1) is the product of the
irreducible polynomial factors of ∆(t). Good usually means square-free, although occasionally it
means square-free except for a fixed set of primes, and for these special primes the power of p|D(t)
is independent of t.

Let our family F be the set of good t ∈ [N, 2N ] where the conductors are given by a monotone
polynomial in t. We use this polynomial for the conductors at non-good t; this is permissible as
these curves are not in our family and do not originally appear in our sums.

For each d, let

T (d) = {t ∈ [N, 2N ] : d2|D(t)}. (5.1)

Let S(t) be some quantity associated to the elliptic curve Et. We study

2N∑
t=N

D(t) good

S(t) =
(2akN)k/2∑

d=1

µ(d)
∑

t∈T (d)

S(t). (5.2)

In particular, setting S(t) = 1 yields the cardinality of the family. In all the families we investi-
gate, |F| = cFN + o(N), cF > 0.

Let t1(d), . . . , tν(d)(d) be the incongruent roots of D(t) ≡ 0 mod d2. The presence of µ(d) allows
us to restrict to d square-free. For small d, we may take the ti(d) ∈ [N,N + d2). For such d,

∑
t∈T (d)

S(t) =
ν(d)∑
i=1

[N/d2]∑
t′=0

S(ti(d) + t′d2) + O(ν(d)‖S‖∞). (5.3)

The error piece is from boundary effects for the last value of t′. T (d) restricts us to t ∈ [N, 2N ];
as each ti(d) � N , and at most one is exactly N , it is possible in summing to t′ = [N/d2] that we
have added an extra term.

5.1 Assumptions for sieving

We evaluate the sums under the following assumptions:

i) for square-free D(t), the conductors C(t) are given by a monotone polynomial in t;

ii) a positive percentage of t ∈ [N, 2N ] have D(t) square-free, i.e. |F| = cFN + o(N).

We constantly use Lemma A.2 (ν(d) � dε for square-free d) and

2N∑
t=N

D(t) good

1 =
logl N∑
d=1

µ(d)
2N∑

t=N
D(t)≡0(d2)

1 + o(N) = cFN + o(N), cF > 0. (5.4)

We show that the family satisfies Conditions 4.5. We evaluate the sums over t ∈ F below and then
execute the summation over the prime(s). f̂i is supported in (−σi, σi). There are no contributions
(for σi sufficiently small) in the prime sum(s) for sufficiently small error terms.
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5.2 Definition of terms for sieving
Recall Ar,F (p) =

∑
t(p) ar

t (p). For distinct primes, by Lemma 2.1∑
t(p1···pn)

n∏
j=1

ari
t (pj) =

n∏
j=1

Ari,F (pi). (5.5)

By Lemma C.7, we may assume that all of our primes (in the expansion from the explicit
formula in the n-level densities) are at least logl N , l ∈ [1, 2). We can incorporate these errors into
our existing error terms; the result will still be a lower order term which will not contribute for
small support.

S(t) will equal ãP (t)GP (t), where for distinct primes p1 and p2

ãP (t) = ar1
t (p1)ar2

t (p2)

GP (t) =
2∏

j=1
rj �=0

log pj

log C(t)
fj

(
2rj−1 log pj

log C(t)

)

(r1, r2) ∈ {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (1, 2), (2, 1), (2, 2)}. (5.6)

Thus ãP (t)GP (t) is merely a convenient way of encoding the eight sums we need to examine for the
one- and two-level densities.

Actually, this is slightly off. We have to study
2∏

j=1
rj �=0

1
p

rj

j

log pj

log C(t)
gj

(
2rj−1 log pj

log C(t)

)
a

rj

t (pj). (5.7)

If both rj are non-zero and the two primes are equal, we obtain

1
pr1+r2

(
log p

log C(t)

)2

× · · · × ar1+r2
t (p). (5.8)

For example, if r1 = r2 = 1 we would get (log p/log C(t))2 × · · · × a2
t (p). Thus, the definition

of GP needs to be slightly modified. We want to deal with distinct primes p1 and p2. There will
be no contribution for equal primes if r1 + r2 � 3; simply bound each at(p) by Hasse. There is a
contribution if r1 = r2 = 1. By modifying the definition of GP we may regard it as a case where
r = (2, 0); however, we have (log p/log C(t))2 instead of (log p/log C(t)), and instead of f1(· · · ) we
have f1f2(· · · ). Note that we evaluate the test functions at log p/log C(t) and not 2(log p/log C(t)).
We have

GP (t) =
2∏

j=1
rj �=0

(
log pj

log C(t)

)κ(r)

gj

(
2rj−κ(r) log pj

log C(t)

)
, (5.9)

where κ(r) is 2 if r = (2, 0), and this arises from p1 = p2 = p, and κ(r) = 1 otherwise; gj = fj unless
r = (2, 0) arising from p1 = p2 = p, in which case g1 = f1f2.

We may now assume that the primes are distinct. Define

P =
2∏

j=1
rj �=0

pj, r = (r1, r2), rj ∈ {0, 1, 2}

Sc(r, P ) =
∑
t(P )

ãP (t) =
∑
t(P )

ar1
t (p1)ar2

t (p2) = Ar1,F(p1)Ar2,F (p2),

(5.10)
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where for convenience we set A0(p) = 1. We often have incomplete sums of ãP (t) mod P . Let
SI(r, P ) denote a generic incomplete sum. By Hasse,

SI(r, P ) � P · 2r1

√
pr1
1 · 2r2

√
pr2
2 = 2r1+r2p

1+r1/2
1 · p1+r2/2

2 = 2rP 1+r/2, (5.11)

where the last expression is a convenient abuse of notation:

2r = 2r1+r2 , P r = pr1
1 · pr2

2 . (5.12)

For fixed i and d, we evaluate the arguments at t = ti(d) + t′d2. Let

ãd,i,P (t′) = ãP (ti(d) + t′d2), Gd,i,P (t′) = GP (ti(d) + t′d2). (5.13)

5.3 Ranges and contributions of sums over primes

Each prime sum is to (approximately) C(N)σj/2rj−κ(r)

≈ Nmσj/2rj−κ(r)

, as C(t) is a degree m
polynomial. We assume σj < 1

2 as we do not worry about p2 > N . This is harmless, as handling the
error terms forces the support to be significantly less than 1

2 .

Lemma 5.1 (Contributions from sums over primes). For rj = 1, summing p1/2/|F| does not con-
tribute for σj < 2/3m. For rj = 2, summing 1/|F| does not contribute for σj < 2/m for κ(r) = 1
and 1/m for k(r) = 2. As we often have two sums, dividing the above supports by two ensures that
all errors are manageable: write 1/|F| as (1/

√
|F|)(1/

√
|F|).

5.3.1 Expected result. To simplify the proof, we assume

A1,F (p) = −rp + O(1)

A2,F (p) = p2 + O(p3/2).
(5.14)

For a general rational surface, A1,F (p) �= −rp + O(1); however, an analysis of the arguments
below shows that we only need to be able to handle sums such as∑

p

log p

log X
f

(
log p

log X

)
A1,F (p)

p2
. (5.15)

For surfaces where Tate’s conjecture is known, we may replace A1,F (p) in the above sum with the
rank of the family over Q(t) (see Lemma C.6 and [RS98]). For notational simplicity, in the proof
below we assume that A1,F (p) = −rp + O(1), and content ourselves with noting that a similar
proof works in general.

We have Arj (pj) = cj · prj

j plus lower order terms not contributing for any support. (This is not
quite true. For families where the curves have complex multiplication, at(p) often vanishes for half
the primes, and has double the expected contribution for the other primes. This case is handled
similarly, using Lemmas C.1 and C.5.)

Hence, Sc(r, P ) = c1c2p
r1
1 pr2

2 = c1c2P
r plus lower terms. For each pair (d, i) we expect (if

we can manage the conductors) to have approximately (N/d2)/P complete sums of Sc(r, P ) =
c1c2P

r. We hit this with (1/N)(log pj/log C(t))(1/prj

j ) for each non-zero rj. We have approximately
(log pj/log C(t))(1/P r).

A sum like
∑

pj
(log pj/log C(t))(1/pj)g(log pj/log C(t)) contributes; if we had an additional

1/log N there would be no net contribution. Thus, we expect terms of the size P r to contribute and
P r/log N not to contribute.

We rewrite Conditions 4.5 in a more tractable form, using A1,F (p), A2,F (p) and Sc(r, P ). Assume
that the family satisfies Equation (5.14) (or the related equation if at(p) vanishes for half the primes).
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Then

i) P = p, ãP (t) = at(p):
Sc(r, P )

P
=

−rp + O(1)
p

= −r + O

(
1
p

)
;

ii) P = p, ãP (t) = a2
t (p):

Sc(r, P )
P

=
p2 + O(p3/2)

p
= p + O(

√
p);

iii) P = p1p2, ãP (t) = at(p1)a2
t (p2):

Sc(r, P )
P

=
−rp1p

2
2 + O(p1p

3/2
2 )

p1p2
= −rp2 + O(

√
p2);

iv) P = p1p2, ãP (t) = at(p1)at(p2):
(a)

Sc(r, P )
P

=
r2p1p2 + O(p1 + p2)

p1p2
= r2 + O(

√
p1 +

√
p2) if p1 �= p2;

(b)

Sc(r, P )
P

=
p2 + O(p3/2)

p
= p + O(

√
p) if p1 = p2 = p;

v) P = p1p2, ãP (t) = a2
t (p1)a2

t (p2):

Sc(r, P )
P

=
p2
1p

2
2 + O(p3/2

1 p
3/2
2 )

p1p2
= p1p2 + O(

√
p1p2).

We have proved the following.

Lemma 5.2 (Conditions to evaluate the five types of sums). Assume that the family satisfies Equa-
tion (5.14). If, up to lower order terms, the five sums (Conditions 4.5) are GP (N)(Sc(r, P )/P ), then
the family satisfies Conditions 4.5.

5.4 Taylor expansion of Gd,i,P (t′)
Fix i and d. We calculate the first-order Taylor expansion of Gd,i,P (t′) = GP (ti(d)+t′d2). Gd,i,P only
involves t′ through expressions like log pj/log C(t), where t = ti(d)+t′d2. Let C(t) = hmtm+· · ·+h0.

The derivative of Gd,i,P in t′ will involve nice functions times factors like

d

dt′
log pj

log C(t)
= − log pj

log2 C(t)
d

dt′
log C(ti(d) + t′d2)

= − log pj

log2 C(t)
mhmtm−1d2 + · · ·

hmtm−1 · (ti(d) + t′d2) + · · ·

�
(

10m
|hm| max

0�k�m−1
|m − k| · |hm−k|

)
log pj

log2 C(t)
d2

ti(d) + t′d2
, (5.16)

provided that N is sufficiently large.
As pj � C(t)σ, where σ is related to the support of G, log pj/log C(t) � σ. As C(t) is of size a

power of t, we have the following.

Lemma 5.3 (Taylor expansion of Gd,i,P ). We have

Gd,i,P (t′) = Gd,i,P (0) + O

(
1

log N

)
. (5.17)

The constant above does not depend on pj , d or i.
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By the mean value theorem there exist ξ ∈ [0, t′], corresponding to tξ = ti(d)+ξd2 ∈ [N, 2N +d2]
⊂ [N, 2.1N ], such that

Gd,i,P (t′) = Gd,i,P (0) +
d

dt′
Gd,i,P

∣∣∣∣
t′=ξ

(t′ − 0). (5.18)

First, we have derivatives of log pj/log C(t) which can be universally bounded from the support
of G. Second, we evaluate G and its derivative at 2rj−κ(r)(log pj/log C(tξ)). We see it is sufficient to
universally bound functions like (d/dt′)g(log p/log C(t)).

We have log C(tξ) ≈ log C(N). Evaluating the derivative at ξ, by Equation (5.16) we have
something bounded by (1/log C(tξ))(d2/ti(d)+ξd2). We then multiply by t′−0. Thus we are bounded
by (1/log C(N))(t′d2/ti(d) + ξd2). As ti(d) � N and t′d2 � N , the bound is at most 1/log C(N).

Lemma 5.4 (Further Taylor expansion of Gd,i,P ). We have

Gd,i,P (t′) = GP (N) + O

(
1

log N

)
. (5.19)

The constant above does not depend on pj, d or i.

The proof is similar to the previous lemma. Gd,i,P (0) = GP (ti(d)), ti(d) ∈ [N,N + d2]. Thus, to
replace Gd,i,P (0) with GP (N) involves Taylor expanding GP (t) around t = N .

This allows us to replace all the conductors of curves with D(t) good with the value from t = N
with small error. This is very convenient, as GP (N) has no t′, i or d dependence. Consequently, we
are able to move it past all summations except over primes, which allows us to take advantage of
cancellations in t-sums of the values at(p).

5.5 Removing the ν(d)‖S‖∞ term for d < loglN
We have ∑

t∈T (d)

S(t) =
ν(d)∑
i=1

[N/d2]∑
t′=0

S(ti(d) + t′d2) + O(ν(d)‖S‖∞). (5.20)

We show that the O(ν(d)||S||∞) piece does not contribute for d < logl N . Using Hasse to trivially
bound ‖S‖∞ gives 2rP r. We hit this with 1/P r and sum over the primes, which will be at most
O(Nσ). We now sum over d < logl N , obtaining a value

� Nσ
logl N∑
d=1

ν(d) � Nσ
logl N∑
d=1

dε � Nσ logl(1+ε) N. (5.21)

We then divide by the cardinality of the family, which is assumed to be a multiple of N . There is
no contribution for σ1 + σ2 < 1.

5.6 Sieving
Let B be the largest square which divides D(t) for all t. Recall by t good we mean that D(t)
is square-free except for primes dividing B, and for p|B the power of p|D(t) is independent of t.
By Theorem A.5, possibly after passing to a subsequence, we can approximate t good by∑

t∈[N,2N ] t good

S(t) =
logl N∑
d=1

(d,B)=1

µ(d)
∑

t∈[N,2N ]
D(t)≡0(d2)

S(t) + O

(∑
t∈T

S(t)
)

, (5.22)

where the set of t good is cFN +o(N), cF > 0, T is the set of t ∈ [N, 2N ] such that D(t) is divisible
by the square of a prime p > logl N and |T | = o(N).
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5.7 Contributions from d < loglN

We would like to use Lemma 5.4 to replace Gd,i,P (t′) with GP (N) plus a manageable error. This
works for pairs such as r = (2, 0) or r = (2, 2) but fails for pairs such as r = (1, 0), so there we need
to evaluate (1/|F|)

∑
E∈F(1/p)S(r, p). Replacing ãp(t) with |at(p)| � 2

√
p gives a value

� 1
|F|

N

p

√
p, (5.23)

which is disastrous when we sum over p. The reason we must trivially bound ãP (t) is the Taylor
expansion. We evaluate the derivative at ξ(t′) = ξ(pj , i, d; t′). The dependence of the other para-
meters prevents us from obtaining complete sums (mod P ) and using that cancellation for control.
We need to keep the cancellation from summing ãP (t).

We use partial summation twice. Note that we may always replace a Gd,i,P (t′) with a GP (N) at
a cost of 1/log N .

Let ÃP (u) =
∑u

t′=0 ãP (t′). As (pi, d) = 1 (this is why we are assuming d � logl N and
pi � logl N), every time t′ increases by P we have a complete sum of the ãP . Thus,

ÃP (u) =
[ u

P

]
Sc(r, P ) + O(P 1+r/2) =

u

P
Sc(r, P ) + O(PR)

R = 1 +
r

2
, PR =

2∏
j=1
rj �=0

p
1+rj/2
j .

(5.24)

In the above, the first error term is from our bound for the incomplete sum of at most P terms,
each term bounded by

√
pr1
1 pr2

2 = P r/2. Dropping the greatest integer brackets costs at most
Sc(r, P ) = O(P r). We have P r = pr1

1 pr2
2 and P 1+r/2 = p

1+r1/2
1 p

1+r2/2
2 . As rj ∈ {0, 1, 2}, rj � 1+rj/2.

Thus, we may incorporate the error from removing the greatest integer brackets into the O(PR)
term.

S(d, i, r, P ) =
[N/d2]∑
t′=0

ãd,i,P (t′)Gd,i,P (t′)

=
(

[N/d2]
P

Sc(r, P ) + O(PR)
)

Gd,i,P

([
N

d2

])

−
[N/d2]−1∑

u=0

( u

P
Sc(r, P ) + O(PR)

)
(Gd,i,P (u) − Gd,i,P (u + 1))

S(r, P ) =
logl N∑
d=1

µ(d)
ν(d)∑
i=1

S(d, i, r, P ) =
4∑

w=1

logl N∑
d=1

µ(d)
ν(d)∑
i=1

Sw(d, i, r, P ). (5.25)

5.7.1 First sum: ([N/d2]/P )Sc(r, P )Gd,i,P ([N/d2]). Summing over i and d yields

S1(r, P ) =
logl N∑
d=1

µ(d)
ν(d)∑
i=1

[N/d2]
P

Sc(r, P )Gd,i,P

([
N

d2

])

=
Sc(r, P )

P

logl N∑
d=1

µ(d)
ν(d)∑
i=1

[
N

d2

](
GP (N) + O

(
1

log N

))
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=
Sc(r, P )GP (N)

P

logl N∑
d=1

µ(d)
ν(d)∑
i=1

[N/d2]∑
t′=0

(
1 + O

(
1

log N

))

=
Sc(r, P )GP (N)

P

logl N∑
d=1

µ(d)
(

O(ν(d)) +
2N∑

t=N
D(t)≡0(d2)

1
)(

1 + O

(
1

log N

))

=
Sc(r, P )GP (N)

P
|F| + Sc(r, P )

P
· o(N). (5.26)

In the last line, the error term follows from Equation (5.4) (which gives the d, t-sums are
|F| + o(N)) and Lemma A.2 (which gives ν(d) � dε). Dividing by |F| = cFN + o(N), the error
term will not contribute when we sum over primes, leaving us with Sc(r, P )GP (N)/P .

5.7.2 Second sum: O(PR)Gd,i,P ([N/d2]). Summing over i and d yields

S2(r, P ) �
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

PR

∣∣∣∣Gd,i,P

([
N

d2

])∣∣∣∣
� PR

logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

‖G‖∞

� PR
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

1. (5.27)

As ν(d) � dε, we obtain

S2(r, P ) � PR logl(1+ε) N � PR log2l N = P 1+r/2 log2l N. (5.28)

We divide by |F| = cFN +o(N), hit it with 1/P r and then sum over the primes. By Lemma 5.1,
for small support (σ = σ1 + σ2 < 2/3m) there is no contribution.

5.7.3 Third sum:
∑[N/d2]−1

u=0 (u/P )Sc(r, P )(Gd,i,P (u)−Gd,i,P (u+ 1)). We apply partial summa-
tion, where au = Gd,i,P (u) − Gd,i,P (u + 1) and bu = (u/P )Sc(r, P ). Thus

S3(d, i, r, P ) =
(

Gd,i,P (0) − Gd,i,P

([
N

d2

]))
[N/d2] − 1

P
Sc(r, P )

−
[N/d2]−2∑

u=0

(Gd,i,P (0) − Gd,i,P (u + 1))
1
P

Sc(r, P ). (5.29)

Using the Taylor expansion, we gain a 1/log N in the first term, making it of size

Sc(r, P )
P

[N/d2]
log N

� Sc(r, P )
P

|F|
d2 log N

.

For the second term, we have < [N/d2] summands, each � (1/log N)(Sc(r, P )/P ). We again
obtain a term of size (Sc(r, P )/P )(|F|/d2 log N).
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We sum over i and d and obtain

S3(r, P ) �
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

Sc(r, P )
P

|F|
d2 log N

� Sc(r, P )
P

|F|
log N

logl N∑
d=1

ν(d)∑
i=1

1
d2

� Sc(r, P )
P

|F|
log N

logl N∑
d=1

ν(d)
d2

. (5.30)

As ν(d) � dε, S3(r, P ) � (Sc(r, P )/P )(|F|/log N).

5.7.4 Fourth sum:
∑[N/d2]−1

u=0 O(PR)(Gd,i,P (u) − Gd,i,P (u + 1)). Using the Taylor expansion
for Gd,i,P (u) − Gd,i,P (u + 1) is insufficient. That gives NPR/d2 log N . Summing over i and d is
manageable, giving O(PR|F|/log N). Dividing by the cardinality of the family yields O(PR/log N).

The problem is in summing over the primes, as we no longer have 1/|F|. We multiply by 1/P r.
We recall the definitions of r and R and unwind the above.

Consider the case r = (1, 0). Then P = p1 = p, R = 1 + r1/2 = 3/2, and 1/P r = 1/p. We have
Nmσ∑

p=logl N

1
p

p3/2

log N
� Nmσ. (5.31)

As N → ∞, this term diverges. We need significantly better cancellation in

S4(r, P ) =
logl N∑
d=1

µ(d)
ν(d)∑
i=1

[N/d2]−1∑
u=0

O(PR)(Gd,i,P (u) − Gd,i,P (u + 1)). (5.32)

Taking absolute values and using the maximum of the O(PR) terms gives

S4(r, P ) � PR
logl N∑
d=1

ν(d)∑
i=1

[N/d2]−1∑
u=0

|Gd,i,P (u) − Gd,i,P (u + 1)|. (5.33)

The constant is independent of P . Taking the maximum of the PR term involves the maximum
of either the incomplete sum or one complete sum. Using Hasse, the constant is at most 2r1+r2.
Thus, the constant in Equation (5.33) does not depend on P .

If exactly one of the rj is non-zero, then

Gd,i,P (u) − Gd,i,P (u + 1) = g

(
log p

log C(ti(d) + ud2)

)
− g

(
log p

log C(ti(d) + (u + 1)d2)

)
(5.34)

for some Schwartz function g of compact support.
If both of the rj are non-zero, we may write Gd,i,P (u) as the product of two functions, say g1

and g2. Thus

Gd,i,P (u) =
2∏

j=1

gj

(
log pj

log C(ti(d) + ud2)

)
. (5.35)

Recall that

|a1a2 − b1b2| = |a1a2 − b1a2 + b1a2 − b1b2|
� |a1a2 − b1a2| + |b1a2 − b1b2| = |a2| · |a1 − b1| + |b1| · |a2 − b2|. (5.36)
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We apply the above to our function Gd,i,P (u) = g1(d, i, p1;u)g2(d, i, p2;u). Each gj(d, i, pj ;u) can be
bounded independently of d, i, pj and u, as each gj is a Schwartz function defined in terms of the
n-level density test functions. Let B = maxj ‖gj‖∞. Then

S4(d, i, r, P )(u) = Gd,i,P (u) − Gd,i,P (u + 1)

=
2∏

j=1
rj �=0

gj

(
log pi

log C(ti(d) + ud2)

)
−

2∏
j=1
rj �=0

gj

(
log pj

log C(ti(d) + (u + 1)d2)

)

�
2∑

j=1
rj �=0

B ·
∣∣∣∣gj

(
log pj

log C(ti(d) + ud2)

)
− gj

(
log pj

log C(ti(d) + (u + 1)d2)

)∣∣∣∣ . (5.37)

We sum the above over u, i and d. Let ti,d(u) = ti(d) + ud2. We have

S4(r, P ) � 2rPR
logl N∑
d=1

|µ(d)|
ν(d)∑
i=1

[N/d2]−1∑
u=0

S4(d, i, r, P )(u)

� 2rPR
logl N∑
d=1

ν(d)∑
i=1

2∑
j=1
rj �=0

B

[N/d2]−1∑
u=0

∣∣∣∣gj

(
log pj

log C(ti,d(u))

)
− gj

(
log pj

log C(ti,d(u + 1))

)∣∣∣∣ . (5.38)

We show the u-sums are bounded independent of pj, i, d, and N . We may add∣∣∣∣gj(0) − gj

(
log pj

log C(ti(d))

)∣∣∣∣+ ∣∣∣∣gj

(
log pj

log C(ti(d) + [N/d2]d2)

)
− gj(1000σ)

∣∣∣∣ . (5.39)

As each gj is a Schwartz function, they are of bounded variation. Let xu(d, i, pj) = pj/log Nti(d)+ud2 .
As the conductors are monotone increasing, xu(d, i, pj) > xu+1(d, i, pj). Thus, we have a partition of
[0, 1000σ], and we may now apply theorems on bounded variation to bound the u-sum independent
of pj, i, d and N , obtaining � 1000σ.

The above is an exercise in the bounded variation of g(x) on [0, σ]. If we were to regard this as a
problem in the bounded variation of gj;pj,d,i we would have u ranging over at least [0, [N/d2]]. Even
though we would gain a 1/log N from the derivatives, the bounded variation bound depends on the
size of the interval, which here is of length [N/d2]. We could also argue that each gj has continuous,
bounded first derivative on [0, 1000σ]. By the mean value theorem, the u-sum is �‖g′j‖∞ · |1000σ−0|.

Thus, the u- and j-sums are universally bounded. We are left with � PR. Summing over i and
d gives � PR logl(1+ε) N . We multiply by 1/P r and sum over the primes. The prime sums give
Nh(σ); dividing by the cardinality of the family (a multiple of N), we find there is no contribution
for small support.

Note that if our conductors are not monotone, we cannot apply theorems on bounded variation.
The problem is that we could transverse [0, 1000σ] (or a large subset of it) up to N/d2 times. This is
why S4 is the most difficult of the error pieces, and why we needed to obtain polynomial expressions
for the conductors for t good.

5.7.5 Summary of contributions for d < logl N .

Lemma 5.5 (Contributions for d < logl N). Based on our sieving assumptions for the family (for
D(t) good the conductors are given by a monotone polynomial in t, a positive percentage of t ∈
[N, 2N ] give D(t) good), the main term contribution from d < logl N is (Sc(r, P )/P )GP (N)|F|.
The error terms are either of size (Sc(r, P )/P )o(|F|), which will not contribute when we sum over
primes, or are such that their sum over primes will not contribute.
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5.8 Contributions from t ∈ T
5.8.1 Preliminaries. We are left with estimating the contributions from the troublesome set

T = {t ∈ [N, 2N ] : ∃d > logl N with d2|D(t)}. (5.40)

In Theorem A.5 we show that |T | = o(N). By Cauchy–Schwartz∣∣∣∣∑
t∈T

S(t)
∣∣∣∣ �

(∑
t∈T

S2(t)
)1/2(∑

t∈T
1
)1/2

�
( 2N∑

t=N

S2(t)
)1/2

o(
√

N). (5.41)

We then sum over the primes, and need to show that the sum over t is O(N). As it stands, however,
this is not sufficient to control the error. As a quick sketch; assume that S(t) = at(p)g(log p/log C(t)).
Ignoring the t-dependence in the conductors, we have

2N∑
t=N

S(t) ≈ g2

(
log p

log C(N)

)
N

p

∑
t(p)

a2
t (p)

≈ g2

(
log p

log C(N)

)
N

p
p2 = O(Np). (5.42)

Taking the square-root, we hit it with 1/p and sum over p � Nσ, which is not O(
√

N).

We have that S(t) is the product of at most two terms involving factors such as a
rj

t (pj). We
hit this with factors p

−rj

j and sum over p. Thus, instead of S(t) consider S1(t)S2(t), where Sj(t)
incorporates the sum over primes to the jth power and all relevant factors. We have

S =
2N∑
t=N

[ 2∏
j=1
rj �=0

∑
pj�logl N

p
−rj

j gj

(
log pj

log C(t)

)
a

rj

t (pj)
]2

=
2N∑
t=N

2∏
w=1

2∏
j=1
rj �=0

∑
pjw�logl N

p
−rjw
jw

gjw

(
log pjw

log C(t)

)
a

rjw
t (pjw). (5.43)

We proceed in a similar manner as in the d � logl N case, except now there are no d and
i, and we potentially have four factors instead of one or two. On expanding, we combine terms
where we have the same prime occurring multiple times. There are several types of sums: four
distinct primes (four factors), three distinct primes (three factors), . . . , all primes the same (one
factor). We proceed with the worst case, when there are four factors; the other cases are handled
similarly.

5.8.2 A specific case: four distinct primes. Assume that we have four distinct primes. Re-
labelling, we have p−riari

t (pi) for i = 1 to 4. Let P =
∏4

i=1 pi. Interchange the t-summation with
the pi-summations. As before, we apply partial summation to

∑2N
t=N

∏4
i=1 ari

t (pi) · gi(pi, t)p−ri =∑2N
t=N a(P, t) · b(P, t), the only change being the addition of the factors

∏
i p−ri . Now

A(u) =
u∑

t=N

a(P, t) =
u − N

P
Sc(r, P ) + O

( 4∏
i=1

p
1+ri/2
i

)
, Sc(r, P ) =

4∏
i=1

Ari,F (pi)

by Lemma 2.1. Let PR =
∏4

i=1 p
1+ri/2
i ; the error in the partial summation is O(PR).
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As in Equation (5.25) we have

S =
4∏

i=1

∑
pi

2N∑
t=N

ari
t (pi) · p−riG(P, t)

=
4∏

i=1

∑
pi

(
N

P
Sc(r, P ) + O(PR)

)
p−ri

i G(P, 2N)

−
4∏

i=1

∑
pi

2N−1∑
u=N

(
u − N

P
Sc(r, P ) + O(PR)

)
p−ri

i (G(P, u) − G(P, u + 1)). (5.44)

For r � 2, by Hasse Ar,F(p) � 2rp1+r/2. For r = 1, A1,F (p) � p by [Del80]. Hence, for all r,
Ar,F (p) � pr. We have

4∏
i=1

Sc(P )
pi

p−ri
i �

4∏
i=1

Ari,F (pi)
p1+ri

i

�
4∏

i=1

pri
i

p1+ri
i

=
4∏

i=1

1
pi

. (5.45)

We can immediately handle the first sum. Inserting absolute values yields something like

4∏
i=1

∑
pi

log pi

log C(2N)

∣∣∣∣gi

(
log pi

log C(2N)

)∣∣∣∣ 1
pi

�
4∏

i=1

O(1) (5.46)

where the last result (the sums over the primes) follows from Corollary C.2.

Pulling out the prime factors and using partial summation again, the third sum is handled
similarly.

The second and fourth pieces are more difficult, and result in significantly decreased support.
We analyze this loss later. For now, we need only note that the second sum is

∏
i

∑
pi

p
ri/2
i . For test

functions of small support, this sum is o(N).

There is a slight obstruction in applying the same argument to the fourth sum; namely, that
G(P, u) could be the product of four factors. Similar to the identity |a1a2 − b1b2| � |a1| · |a1 − b1|+
|b1| · |a2 − b2|, we have

|a1a2a3a4 − b1b2b3b4|

� |a2a3a4| · |a1 − b1| + |b1a3a4| · |a2 − b2| + |b1b2a4| · |a3 − b3| + |b1b2b3| · |a4 − b4|

�
4∏

j=1

(|aj | + |bj | + 1)
4∑

i=1

|ai − bi|. (5.47)

The rest of the proof in this case is identical to the fourth sum in the d � logl N case.

Note that as we have always inserted absolute values before summing over primes, it is permis-
sible to extend from the primes that are distinct to all possible 4-tuples.

5.8.3 Handling the other cases. The other cases (especially cases where some primes are equal)
are handled similarly. The only real change is if we have less than four factors, and this only
affects the fourth sum. For example, if we have three factors instead of four, set a4 = b4 = 1 in
Equation (5.47).
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5.9 Determining the admissible supports of the test functions

The largest errors arise from ri = 1 terms, using Hasse to trivially bound partial sums of at(p) by
p3/2 (at most p terms, each term at most 2

√
p). Let C(t) be a polynomial of degree m for t good.

We assume that all supports are at most 1
2 (as otherwise p2 could exceed N , changing some of our

arguments above). In the one-level densities, we encounter errors like

Nσm∑
p=logl N

1
p

log p

log Nm
g

(
log p

log Nm

)
p3/2 �

Nσm∑
p=logl N

p1/2 � N3σm/2. (5.48)

We divide by |F|, a multiple of N . The errors are negligible for σ < min(2/3m, 1/2).

In the two-level density, the worst case (not including the Cauchy–Schwartz arguments used to
handle the over-counting of almost square-free numbers) was when we had two ri = 1 terms. We
have two functions of support σ1 and σ2, and we obtain

2∏
i=1

Nσim∑
pi=logl N

1
p

log pi

log Nm
g

(
log pi

log Nm

)
p
3/2
i �

2∏
i=1

Nσm∑
pi=logl N

p
1/2
i � N3(σ1+σ2)m/2. (5.49)

We divide by a multiple of N and see the errors are negligible for σ1 + σ2 < min(2/3m, 1
2). Thus,

for σ1 = σ2, the support of each test function is half that from the one-level density.

In applying Cauchy–Schwartz, we further decrease the allowable support. The worst case is
where we have four distinct primes with ri = 1. We sum as before and obtain N3(σ1+σ2)m (there
is no factor of 2 as two of the primes are associated with test functions with support σ1 and two
with σ2). We take the square-root and this must be O(

√
N). Thus, we now find σ1 +σ2 < 1

2 (2/3m).
Setting σ1 = σ2 yields that the support is one-quarter that of the one-level density.

5.10 One- and two-level densities

Assume that the original family has rank r over Q(t). The Birch and Swinnerton-Dyer conjecture
and Silverman’s specialization theorem imply, for all t sufficiently large, that each curve’s L-function
has r family zeros at the critical point.

The Birch and Swinnerton-Dyer conjecture is only used for interpretation purposes. The results
below are derived independently of this conjecture, however, assuming that this allows us to interpret
some of the n-level density terms as contributions from expected family zeros.

Definition 5.6 (Non-family density). Let D
(r)
n,F (f) be the n-level density from the non-family zeros

(i.e., the trivial contributions from r family zeros have been removed).

Theorem 5.7 (Dn,F (f) and D
(r)
n,F(f), n = 1 or 2). For any one-parameter family of rank r over

Q(t) satisfying:

i) for t good (relative to D(t)), the conductors C(t) are a monotone polynomial in t;

ii) up to o(N), the good t ∈ [N, 2N ] are obtainable by sieving up to d = logl N ; further, the
number of such t is |F| = cFN + o(N), cF > 0;

iii) A1,F (p) = −rp + O(1), A2,F (p) = p2 + O(p3/2);

then, for fi even Schwartz functions of small but non-zero support σi,

D1,F (f) = f̂1(0) + 1
2f1(0) + rf1(0),

D
(r)
1,F (f1) = f̂1(0) + 1

2f1(0),
(5.50)
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and

D2,F (f) =
2∏

i=1

[f̂i(0) + 1
2fi(0)] + 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du − 2f̂1f2(0) − f1(0)f2(0)

+ (f1f2)(0)N(F ,−1) + (r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0),

D
(r)
2,F (f1) =

2∏
i=1

[f̂i(0) + 1
2fi(0)] + 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du − 2f̂1f2(0) − f1(0)f2(0)

+ (f1f2)(0)N(F ,−1). (5.51)

Removing the contribution from r family zeros, for small support the two-level density of the
remaining zeros agrees with SO(even), O or SO(odd) if the signs are all even, equidistributed or all
odd. If Tate’s conjecture is true for the surface, we may interpret r as the rank of E over Q(t).

Let m = deg C(t). For the one-level density, σ < min(1
2 , 2/3m). For the two-level density,

σ1 + σ2 < 1/3m. For families where ∆(t) has no irreducible factors of degree 4 or more, the sieving
is unconditional, otherwise the results are conditional on ABC or the square-free sieve conjecture.

Proof. When we sieve we obtain Sc(r, P )GP (N)/P plus lower order terms. By Theorem 5.2, the
family satisfies Conditions 4.5. Thus Lemma 4.7 is applicable.

As remarked, we do not need to assume A1,F (p) = −rp+O(1). A more cumbersome proof (using
Lemma C.6) handles A1,F (p) for surfaces where Tate’s conjecture is known.

To apply Theorem 5.7, we need:

i) that the conductors are monotone polynomials for D(t) good;

ii) that a positive percentage of D(t) are good, and all but o(N) of the good t may be taken in
the required arithmetic progressions;

iii) knowledge of A1,F (p) and A2,F (p).

For rational surfaces, by passing to a subsequence the above conditions are satisfied. By chang-
ing t → ct + t0, Tate’s algorithm yields that C(t) is a monotone polynomial for D(t) good (see
Theorem B.2). By Theorem A.5, |F| = cFN + o(N), cF > 0 (i.e. a positive percentage of D(t) are
good). If Tate’s conjecture is true, Theorem 2.2 gives A1,F (p); if j(Et) is non-constant, Michel’s
theorem (Theorem 2.3) gives A2,F (p). We have proved the following.

Theorem 5.8 (Rational surfaces density theorem). Consider a one-parameter family of elliptic
curves of rank r over Q(t) that is a rational surface. Assume the GRH, j(Et) is non-constant, and
the ABC or square-free sieve conjecture if ∆(t) has an irreducible polynomial factor of degree at
least 4. Let fi be an even Schwartz function of small but non-zero support σi and m = deg C(t).
For the one-level density, σ < min(1

2 , 2/3m). For the two-level density, σ1 +σ2 < 1/3m. Assume the
Birch and Swinnerton-Dyer conjecture for interpretation purposes.

Let M(t) be the product of the irreducible polynomials dividing ∆(t) and not c4(t). If M(t) is
non-constant, then the signs of Et, t good, are equidistributed as N → ∞ (see [Hel]). In this case,
N(F ,−1) = 1

2 .

After passing to a subsequence,

D1,F (f1) = f̂1(0) + 1
2f1(0) + rf1(0),

D
(r)
1,F (f1) = f̂1(0) + 1

2f1(0),
(5.52)
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and

D2,F (f) =
2∏

i=1

[f̂i(0) + 1
2fi(0)] + 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du − 2f̂1f2(0) − f1(0)f2(0)

+ (f1f2)(0)N(F ,−1) + (r2 − r)f1(0)f2(0) + rf̂1(0)f2(0) + rf1(0)f̂2(0),

D
(r)
2,F (f1) =

2∏
i=1

[f̂i(0) + 1
2fi(0)] + 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du − 2f̂1f2(0) − f1(0)f2(0)

+ (f1f2)(0)N(F ,−1). (5.53)

The two-level non-family density is SO(even) (SO(odd), O) if all curves are even (odd, the signs are
equidistributed).

Thus, for small support, the one- and two-level non-family density agrees with the predictions
of Katz and Sarnak; further, the densities confirm that the curves’ L-functions behave in a manner
consistent with having r zeros at the critical point, as predicted by the Birch and Swinnerton-Dyer
conjecture.

6. Examples
6.1 Constant sign families
We consider several families where the sign of the functional equation is always positive or negative.
We verify the Katz–Sarnak predictions [KS99a, KS99b], assuming only the GRH.

6.1.1 F : y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 square-free. Let F : y2 = x3 + 24(−3)3(9t + 1)2,
t ∈ [N, 2N ], 9t+1 square-free. Note that y2 = x3 +24(−3)3D2 is equivalent to y3 = x3 +Dz3. Birch
and Stephens [BS66] calculate the sign of the functional equation for y3 = x3 + Dz3, D cube-free.
It is

εED
= −w3

∏
p �=3

wp, (6.1)

where w3 = −1 if D ≡ ±1,±3(9) and 1 otherwise, wp = −1 if p|D, p ≡ 2(3) and 1 otherwise, and
D is cube-free.

Consider D = D(t) = 9t + 1. This result modulo 9 is 1, so −w3 is 1. Assume that a prime
congruent to 2 mod 3 divides 9t+1. If there were only one such prime, the remaining primes would
be congruent to 1 mod 3, and the product over all primes dividing 9t + 1 would be congruent to 2
mod 3, a contradiction. Hence, the number of primes congruent to 2 mod 3 dividing 9t + 1 is even.
For 9t + 1 square-free, this proves the functional equation is even.

Applying Tate’s algorithm (see [Mil02]), we find the conductors C(t) are 33(9t + 1)2 for 9t + 1
square-free. We have δD = 1, k = 1, ak = 9 so P = {2, 3}. As ν(2) = 1 and ν(3) = 0, by Theorem A.5
cF > 0.

For p ≡ 2(3), x → x3 is an automorphism and at(p) = 0. Therefore, in the following we assume
that all primes are congruent to 1 mod 3, for any sum involving a prime congruent to 2 mod 3 is
zero.

For p > 3 and p ≡ 1 mod 3, direct calculation gives

A1,F (p) = 0

A2,F (p) = 2p2 − 2p = 2p2 + O(p).
(6.2)

From Michel’s theorem (Theorem 2.3), we expect A2,F (p) = p2 + O(p3/2); however, his theorem
is only applicable for non-constant j(Et). As j(Et) is constant, we must directly compute A2,F (p).
Further, as at(p) trivially vanishes for half of the primes, we expect and observe twice the predicted
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contribution at the other primes. Finally, we will see later that the correction term to A2,F (p)
contributes a potential lower order term to the density functions.

By Dirichlet’s theorem for primes in arithmetic progressions (using Lemma C.1 instead of Corol-
laries C.2 and C.3), we see that the factors of 2 compensate for the restriction to primes congruent
to 1 mod 3, and this will be harmless in the applications.

Thus, the family satisfies the conditions of Theorem 5.8 with r = 0. We verify (for small support)
the Katz–Sarnak predictions. As all the signs are even, conditional only on the GRH, we observe
SO(even) symmetry, which is distinguishable from SO(odd) and O symmetry.

6.1.2 F : y2 = x3±4(4t+2)x, 4t+2 square-free. Let F : y2 = x3+4(4t+2)x, 4t+2 square-free.
We need to study sums of ((x3 ± 4(4t + 2)x)/p). For p > 2, changing variables by t → t − 2−1,
t → ±16−1t, we are led to study sums of ((x3 + tx)/p). If p ≡ 3 mod 4, then (−1/p) = −1. Changing
variables x → −x shows that at(p) = −

∑
x(p)(ft(x)/p) vanishes; therefore, in the following we only

consider p ≡ 1 mod 4.
Birch and Stephens [BS66] calculate the sign of the functional equation for this family. For

general D, D not divisible by 4 or any fourth power, the sign of the functional equation for the
curve y2 = x3 + 4Dx is

w∞w2

∏
p2‖D

wp, (6.3)

where w∞ = sgn(−D), w2 = −1 if D ≡ 1, 3, 11, 13 mod 16 and 1 otherwise, wp = −1 for p ≡ 3(4)
and wp = 1 for other p � 3.

By restricting to positive, even, square-free D, we force the sign of the functional equation to
be odd. Hence, εD = −1 if D = 4t + 2, D square-free. If we had taken D = −(4t + 2), 4t + 2
square-free, we would have found εD = +1.

From Tate’s algorithm, for D(t) = ±(4t + 2) square-free, C(t) = 26(4t + 2)2. We have δD = 1,
k = 1, ak = 4, so P = {2}. As ν(2) = 0, by Theorem A.5 cF > 0.

For p > 2 and p ≡ 1 mod 4, direct calculation gives

A1,F (p) = 0

A2,F (p) = 2p2 − 2p = 2p2 + O(p).
(6.4)

For the family F± : y2 = x3 ± 4(4t + 2)x, 4t + 2 square-free, all curves in F− have even sign and
all curves in F+ have odd sign. The families satisfy the conditions of Theorem 5.8 with r = 0. We
verify (for small support) the Katz–Sarnak predictions. As all the signs are even (odd), conditional
only on the GRH, we observe SO(even) (SO(odd)) symmetry.

6.1.3 F : y2 = x3 + tx2 − (t + 3)x + 1. For this family (due to Washington [Was87])

c4(t) = 24(t2 + 3t + 9)

∆(t) = 24(t2 + 3t + 9)2

j(Et) = 28(t2 + 3t + 9).

(6.5)

Washington ([Was87]) proved that the rank is odd for t2 +3t+9 square-free, assuming the finiteness
of the Tate–Shafarevich group. Rizzo [Riz] proved that the rank is odd for all t. While j(Et) is non-
constant, M(t) = 1 (M(t) is the product of all irreducible polynomials dividing ∆(t) but not c4(t)).
Thus, Helfgott’s results on the equidistribution of sign are not applicable.

For sieving convenience, we replace t with 12t+1. Let D(t) = 144t2 +60t+13. Tate’s algorithm
yields C(t) = 23(144t2 + 60t + 13) for D(t) square-free.
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We have δD = −2435, k = 2, ak = 2432, so P = {2, 3}. The value D(t) is a primitive integral
polynomial. For p |�6 the number of incongruent solutions of D(t) ≡ 0 mod p2 equals the number
of incongruent solutions of D(t) ≡ 0 mod p (see [Nag81]). As ν(2) = ν(3) = 0, by Theorem A.5,
cF > 0.

Direct calculation gives

A1,F (p) = −p

[
1 +

(
−1
p

)]
. (6.6)

Hence, A1,F (p) is −2p for p ≡ 1(4) and 0 for p ≡ 3(4). By Theorem 2.2, the rank over Q(t) is 1.
As j(Et) is non-constant, by Michel’s theorem A2,F (p) = p2 + O(p3/2).
The conditions of Theorem 5.8 are satisfied with r = 1. We again verify the Katz–Sarnak

predictions: there are two pieces to our densities. The first equals the contribution from one zero at
the critical point; the second agrees with SO(odd) for small support.

6.2 Rational families
We give two examples of rational families of elliptic curves over Q(t). See [Mil02] for the proofs, as
well as a new method to generate rational families of moderate rank.

6.2.1 Rank 1 example. Consider the rational family y2 = x3 + 1 + tx2:

c4(t) = 16t2

∆(t) = −16(4t3 + 27)

j(Et) = −256
t6

4t3 + 27
M(t) = 4t3 + 27.

(6.7)

If we replace t with 6t + 1, we can easily calculate the conductors for D(t) = 4(6t + 1)3 + 27 square-
free. In [Mil02], C(t) = 22(4(6t + 1)3 + 27) was shown for D(t) square-free. By Hooley [Hoo76,
Theorem 3, p. 69], as D(t) is an irreducible polynomial of degree 3, cF > 0.

Direct calculations [Mil02] gives A1,F (p) = −p, and a more involved calculation gives

A2,F (p) = p2 − 3ph3,p(2) − 1 + p
∑
x(p)

(
4x3 + 1

p

)
= p2 + O(p3/2),

where h3,p(2) is one if 2 is a cube mod p and zero otherwise. Note that this shows that Michel’s
bound for A2,F (p) is sharp.

As j(Et) and M(t) are non-constant, we expect the signs to be equidistributed.
The rational surfaces density theorem is applicable and we obtain orthogonal symmetry for the

density of the non-family zeros.

6.2.2 Rank 6 example. We now give a more exotic example. See [Mil02] for the details. Let

A = 8916 100 448 256 000 000
B = −811 365 140 824 616 222 208
C = 26497 490 347 321 493 520 384
D = −343 107 594 345 448 813 363 200
a = 16660 111 104
b = −1 603 174 809 600
c = 2149 908 480 000.

(6.8)
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The rational family y2 = x3t2 + 2g(x)t− h(x), g(x) = x3 + ax2 + bx + c and h(x) = (A− 1)x3 +
Bx2 + Cx + D, has A1,F (p) = −6p + O(1) for p large. Therefore, the family has rank 6 over Q(t).
Writing in Weierstrass normal form yields

y2 = x3 + (2at − B)x2 + (2bt − C)(t2 + 2t − A + 1)x + (2ct − D)(t2 + 2t − A + 1)2

c4(t) = 2193771131(1475t3 + · · · − 7 735 999 878 503 076 170 786 750 620 939)

c6(t) = −225311(625t5 + · · · )

j(Et) =
50 141 357 421 875t9 + · · ·

−1 171 875t10 + · · ·
∆(t) = −24431856(75t10 + · · · ).

(6.9)

This is a rational surface, j(Et) and M(t) are non-constant. Thus, by the rational surfaces density
theorem, we verify the Katz–Sarnak predictions for a family of rank 6 over Q(t).

7. Summary and future work

Our main result is that, modulo standard conjectures, the fluctuations of the non-family low-lying
zeros in one-parameter families of elliptic curves agree with the Katz–Sarnak conjectures. Further,
a family of rank r over Q(t) has a density correction which equals the contribution of r zeros at the
critical point, providing further evidence for the Birch and Swinnerton-Dyer conjecture.

We have found four families where the observed density agrees with the density of one (and
only one) symmetry group. As expected, the first piece equals the contribution from r zeros at the
critical point (where r is the geometric rank of the family), and the second equals SO(even) if all
curves have even sign and SO(odd) if all curves have odd sign.

For these four families, we assumed only the GRH. We are able to unconditionally handle the
dependence of the conductors on t, the signs of the functional equations and the error terms.

In general, the greatest difficulty is handling the variation in the conductors. Unlike the other
families investigated [ILS00, Rub98], the conductors of elliptic curves vary wildly in a given family.
If the discriminant ∆(t) has an irreducible factor of degree 4 or greater, either ABC or the square-
free sieve conjecture must be assumed to perform the necessary sieving; if all irreducible factors are
of degree at most 3, the sieving is unconditional.

The crucial observation is that, if we sieve to a positive percentage subset where the conductors
are monotone, then we can bound the error terms. Note the extreme delicacy of our arguments: for
conductors of size log N , we cannot bound the error terms if the conductors range from log N − log c
to log N + log c for some constant c.

It was observed in [Mil02] that in every family where A2,F (p) can be directly calculated,

A2,F (p) = p2 + h(p) − mFp + O(1), (7.1)

where h(p) is of size p3/2 and averages to zero, and mF is a positive constant, often different for
different families.

We have shown all rational families (with the same distribution of signs) have equal one- and
two-level densities. We can, however, try to expand the densities in powers of 1/log N . The different
mFp terms will lead to potential corrections to the densities of size 1/log N , giving the exciting
possibility of distinguishing different families by lower order corrections to the common densities.

Unfortunately, the size of the errors in the one- and two-level densities are O(log log N/log N);
thus, a significantly more delicate analysis is needed before we can expand the densities.
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Appendix A. Sieving families of elliptic curves

Given a one-parameter family of elliptic curves Et, we need to control the conductors C(t)
to determine the one- and two-level densities. Let the curves have discriminants ∆(t), and let
D(t) be the product of the irreducible polynomial factors of ∆(t).

D(t) may always be divisible by a fixed square; let B be the largest square dividing D(t) for
all t. We prove in Theorem B.2 that for a rational elliptic surface, by passing to a subsequence
τ = c1t + c0 for D(τ)/B square-free, C(t) is given by a polynomial in τ . Call such t (or D(t) or τ)
good.

In order to evaluate the sums of
∏

i ari
t (pi), it is necessary to restrict t to arithmetic progressions;

however, restricting to t good (D(τ)/B square-free) does not yield t in arithmetic progressions.
We overcome this difficulty by doing a partial sieve with good bounds on over-counting.

For notational convenience, we consider the case where B = 1 below, and indicate how to modify
for general B.

Let S(t) be some quantity associated to our family which we desire to sum over Tsqfree, where

Tsqfree = {t ∈ [N, 2N ] : D(t) is square-free}
TN = {t ∈ [N, 2N ] : d2 |�D(t) for 2 � d � logl N}.

(A.1)

Clearly Tsqfree ⊂ TN . We show that TN is a union of arithmetic progressions, and |TN − Tsqfree| =
o(N).

The main obstruction is estimating the number of t ∈ [N, 2N ] with D(t) divisible by the square
of a prime p � logl N . If k = deg D(t),

∑
D(t) sqfree
t∈[N,2N ]

S(t) =
Nk/2∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t)

=
logl N∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) +
Nk/2∑

d�logl N

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t). (A.2)

For k > 3, the second piece is too difficult to estimate: there are too many d terms (d runs to
Nk/2). If all the irreducible factors of D(t) are of degree at most 3, the second piece is small. For
factors of degree at most 2, this follows immediately, while for factors of degree 3 it follows from
Hooley [Hoo76]. For larger degrees, we need the ABC conjecture (or one of its consequences, the
square-free sieve conjecture).

A.1 Incongruent solutions of polynomials
Recall the following basic facts (see, for example, [Nag81]) for an integral polynomial D(t) of degree
k and discriminant δ.

i) Let p be a prime not dividing the coefficient of xk. Then D(t) ≡ 0 mod p has at most k
incongruent solutions.

ii) Let D(t) ≡ 0 mod pαi
i have νi incongruent solutions. If the primes are distinct, there are

∏r
i=1 νi

incongruent solutions of D(t) ≡ 0 mod
∏r

i=1 pαi
i .

iii) Suppose that p |�δ. Then the number of incongruent solutions of D(t) ≡ 0 mod p equals the
number of incongruent solutions of D(t) ≡ 0 mod pα.

Definition A.1. Let ν(d) be the number of incongruent solutions of D(t) ≡ 0 mod d2.
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Lemma A.2. For d square-free, ν(d) � dε.

The proof combines the above facts with the standard bound of the divisor function, τ(d) � dε.

A.2 Common prime divisors of polynomials

Lemma A.3. Let f(t) and g(t) be integer polynomials with no non-constant factors over Z[t]. Then
there exists c (independent of t) such that if p divides both f(t) and g(t), then p|c. In particular,
f(t) and g(t) have no common large prime divisors.

This can be proved using Euclid’s algorithm.

A.3 Calculating |T N |
We have ∑

t∈TN

1 =
logl N∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

1. (A.3)

There are (N/d2)ν(d) + O(ν(d)) solutions to D(t) ≡ 0 mod d2 for t ∈ [N, 2N ]. By Lemma A.2,
ν(d) � dε for square-free d. Thus

|TN | =
logl N∑
d=1

µ(d)
[

N

d2
ν(d) + O(ν(d))

]
= N

logl N∑
d=1

µ(d)ν(d)
d2

+ O(logl(1+ε) N). (A.4)

As ν(d) � dε for square-free d,∣∣∣∣ ∏
p<logl N

(
1 − ν(p)

p2

)
−

logl N∑
d=1

µ(d)ν(d)
d2

∣∣∣∣� ∞∑
d=logl N

dε

d2
� 1

logl(1−ε) N
. (A.5)

Therefore,

|TN | = N
∏

p<logl N

(
1 − ν(p)

p2

)
+ O

(
N

logl(1−ε) N

)
+ O(logl(1−ε) N). (A.6)

We may take the product over all primes with negligible cost as

1 −
∏

p�logl N

(
1 − ν(p)

p2

)
�

∑
n�logl N

nε

n2
� 1

logl(1−ε) N
. (A.7)

We have shown the following.

Lemma A.4. We have TN = {t ∈ [N, 2N ] : d2 |�D(t) for 2 � d � logl N}, and

|TN | = N
∏
p

(
1 − ν(p)

p2

)
+ O

(
N

logl(1−ε) N

)
. (A.8)

A.4 Estimating T sqfree

Assuming the ABC conjecture, Granville [Gra98, Theorem 1] proved that number of t ∈ [N, 2N ]
such that D(t) is square-free is

|Tsqfree| = N
∏
p

(
1 − ν(p)

p2

)
+ o(N). (A.9)
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Again, if the degree of D(t) is at most 3, the ABC conjecture is not required. The family has a
positive percentage of t giving D(t) square-free (as we are assuming no square divides D(t) for all
t, no ν(p) = p2, hence the product can be bounded away from zero).

A.5 Evaluation of |T N − T sqfree| and applications
By Equations (A.8) and (A.9), as Tsqfree ⊂ TN , we have |TN − Tsqfree| = o(N).

We have proved ∑
t∈[N,2N ]

D(t) sqfree

S(t) =
∑
t∈TN

S(t) + O

(∑
t∈T

S(t)
)

=
logl N∑
d=1

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) + O

(∑
t∈T

S(t)
)

. (A.10)

We use arithmetic progressions to handle the piece with d � logl N , and Cauchy–Schwartz to
handle t ∈ T : ∑

t∈T
S(t) �

(∑
t∈T

S2(t)
)1/2(∑

t∈T
1
)1/2

�
( ∑

t∈[N,2N ]

S2(t)
)1/2

o(
√

N). (A.11)

If we can show
∑2N

t=N S2(t) = O(N), then the error term is negligible as N → ∞.

A.6 Conditions implying |F| = cFN + o(N), cF > 0
Assume that no square divides D(t) for all t. The number of t ∈ [N, 2N ] with D(t) not divisible by
d2, d � logl N , is N

∏
p(1 − ν(p)/p2) + o(N). Let D(t) =

∏
i Dri

i (t), Di(t) irreducible. By multiple
applications of Lemma A.3, there exists c such that for all t, there is no prime p > c which divides
two of the Di(t). Thus, if D(t) is divisible by p2 for a large prime, one of the factors is divisible
by p2. As there are finitely many factors, it is sufficient to bound by o(N) the number of t ∈ [N, 2N ]
with p2|D(t) for a large prime for irreducible D(t).

Let |F| equal the number of t ∈ [N, 2N ] with D(t) square-free. Let cF =
∏

p�logl N (1− ν(p)/p2).
We have seen that extending the product to all primes costs O(1/logl(1−ε)N). Thus, we need only
bound cF away from zero.

Let D(t) = akt
k + · · · + a0 with discriminant δ. For p |�akδ, ν(p) � k.

Let P be the set of primes dividing akδ and all primes at most
√

k. The contribution from p �∈ P
is bounded away from zero. Therefore, if ν(p) < p2 for p|akδ and p �

√
k, then cF > 0.

If D(t) is divisible by a square for all t, the above arguments fail. Let P be the largest product
of primes such that for all t, P 2|D(t). By changing variables τ → Pmt + t0, for m sufficiently large,
D(τ) is divisible by fixed powers of p|P , depending only on D(t0). Thus, instead of sieving to D(t)
square-free, we sieve to D(τ) square-free except for primes dividing P .

Let δτ denote the new discriminant. As the discriminant is a product over the differences of the
roots, t0 does not change the discriminant, and Pm rescales by a power of P . Thus, δτ = PMδ.
Further, the new leading coefficient is Pmkak. Thus, for p |�P , our previous arguments are still
applicable, except that we are no longer sieving over p|P . We have shown the following.

Theorem A.5 (Conditions on D(t) implying |F| = cFN + o(N)). Assume no square divides D(t)
for all t. Let P be the set of primes dividing akδ and all primes at most

√
k. If for all p ∈ P,

ν(p) � p2 − 1, then |F| = cFN + o(N), cF > 0. If for all t, B2|D(t) (there exists p ∈ P, ν(p) = p2),
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let P be the product of all primes either in P or dividing B. By changing variables to τ = Pmt + t0
for m large and sieving to D(τ) square-free except for p|P (where for all t, the power of p|P dividing
D(t) is constant), we again obtain |F| = cFN + o(N), cF > 0. In this case, cF no longer includes
factors from p|P .

If all irreducible factors of D(t) have degree at most 3, these results are unconditional; if there
is an irreducible factor with degree at least 4, these results are conditional and a consequence of the
ABC or square-free sieve conjecture.

Further, let T = {t ∈ [N, 2N ] : ∃d > logl N with d2|D(t)}. Then T = o(N).

Appendix B. Handling the conductors C(t)

For many families of elliptic curves, by sieving to a positive percentage subsequence of t we obtain
a sub-family where the conductors are a monotone polynomial in t. In particular, we prove this for
all rational surfaces.

Tate’s algorithm (see [Cre92, pp. 49–52]) allows us to calculate the conductor C(t) for an elliptic
curve Et over Q:

C(t) =
∏

p|∆(t)

pfp(t), (B.1)

where for p > 3, if the curve is minimal for p then fp(t) = 0 if p |�∆(t), 1 if p|∆(t) and p |�c4(t), and
2 if p|∆(t) and p|c4(t). If p > 3 and p12 |�∆(t), then the equation is minimal at p (see [Sil86]).

Let ∆(t) = d∆1(t)∆2(t), where (∆2(t), c4(t)) = 1 and ∆1(t) is the product of powers of irre-
ducible polynomials dividing ∆(t) and c4(t). By possibly changing d, we may take ∆i(t) primitive.
Let Di(t) be the product of all irreducible polynomials dividing ∆i(t), D(t) = D1(t)D2(t).

For t with D(t) square-free except for small primes, C(t) = D2
1(t)D2(t) if ∆(t) has no irreducible

polynomial factor occurring at least 12 times (except for corrections from the small primes). Hence,
while fp(t) may vary, the product of pfp(t), except for a finite set of primes, is well behaved.

Let
P0 = {p : p � deg ∆(t)} ∪ {p : p|cd}, P0 =

∏
p∈P0

p. (B.2)

The idea is that while for such p, fp(t) may vary, by changing variables from t to Pm
0 t + t1 for some

enormous m, for p ∈ P0, fp(Pm
0 t + t1) = fp(t1). Thus, for this subsequence and these primes, fp(t)

is constant.
We need two preliminary results. First, given a finite set of primes P0, we may find an m and

a t1 such that for those primes, fp(Pm
0 t + t1) is constant. Second, applying Lemma A.3, given two

polynomials with no non-constant factors over Q, there is a finite set of primes P2 such that if there
exists t such that there exists p dividing both polynomials, then p ∈ P2.

B.1 fp(t), p ∈ P0

Consider the original family of elliptic curves

Et : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t). (B.3)

Assume ∆(t) is not identically zero. Choose t1 such that for all t � t1, ∆(t) �= 0. Apply Tate’s
algorithm to Et1 . If the initial equation was non-minimal for p, we change coordinates by T (0, 0, 0, p)
(see [Cre92]) and restart. After finitely many passes, Tate’s algorithm terminates.

In determining fp(t1), assume that we passed through Tate’s algorithm Lt1(p) times. For each
prime p, after possibly many coordinate changes, one of the following conditions held: p |�∆, p |�c4,
p2 |�a6, p3 |�b8, p3 |�b6, p |�w(a2, a4, a6), p |�xa2

3(a3) + 4xa6(a6), p |�xa2
4(a4)− 4xa2(a2)xa6(a6), p4 |�a4,
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p6 |�a6; and every function is polynomial in ai. Thus, after possibly many coordinate changes, some
polynomial (with integer coefficients) of ai is not divisible by either p, p2, p3, p4 or p6.

Consider τ = Pm
0 t + t1. For enormous m, fp(τ) = fp(t1) for p ∈ P0 because in Tate’s algorithm,

we only need the values modulo a power of p. We have

ai(τ) = ai(Pm
0 t + t1) = Pm

0 tâi(Pm
0 t) + ai(t1) = ãi(t) + ai(t1). (B.4)

If m is sufficiently large, we can ignore ãi(t) in all equivalence checks, as for these powers of p,
ãi(t) ≡ 0. Let

nt(p) = ord(p,∆(t))
n = max

p∈P0

nt1(p)

L = max
p∈P0

Lt1(p).

(B.5)

We prove fp(τ) = fp(t1) for large m. How large must m be? Excluding lines 42–65, on each pass
through Tate’s algorithm we sometimes divide our coefficients by powers of p: up to p2 on lines 26
and 30, up to p3 on line 34, up to p4 on line 69, and p12 on line 80. Over-estimating, we divide by
at most p2·2+1·3+1·4+1·12 = p23.

For lines 42–65, we have a loop which can be executed at most n+4 times. We constantly divide
by increasing powers of p; the largest power is the last time through the loop, which is at most
p2(n+6). As we pass through this loop at most n + 4 times, we divide by at most p2n2+20n+48.

Thus, on each pass we have divisions by at most p2n2+20n+48+23. As we loop through the main
part of Tate’s algorithm at most L times, we have divisions by at most p(2n2+20n+71)L. If m > (2n2+
20n + 71)L, then for all t, none of the ãi(t) = Pm

0 tâi(t) terms affect any congruence. Significantly
smaller choices of m work: many of the divisions (for example, from lines 42–65) arise only once.

B.2 Rational surfaces I

B.2.1 Preliminaries. Recall that an elliptic surface y2 = x3 + A(t)x + B(t) is rational if and
only if one of the following cases is true:

1) 0 < max{3 deg A(t), 2 deg B(t)} < 12;

2) 3 deg A(t) = 2deg B(t) = 12 and ordt=0 t12∆(t−1) = 0.

See [RS98, pp. 46–47] for more details.
Assume that we are in case 1. No non-constant polynomial of degree 11 or more divides ∆(t);

however, a 12th or higher power of a prime might divide ∆(t). Let k = deg ∆(t), and write

∆(t) = d∆1(t)∆2(t)
c4(t) = cγ1(t)γ2(t)

P0 = {p : p � deg ∆(t)} ∪ {p : p|cd}, P0 =
∏

p∈P0

p
(B.6)

where ∆1(t) through γ2(t) are primitive polynomials, ∆1(t) and γ1(t) are divisible by the same non-
constant irreducible polynomials, and ∆2(t) and c4(t) are not both divisible by any non-constant
polynomial.

Let Di(t) be the product of all non-constant irreducible polynomials dividing ∆i(t), and similarly
for ci(t). Let D(t) = D1(t)D2(t) = ακtκ + · · · + α0 (κ � k), c(t) = c1(t)c2(t).

Apply Lemma A.3 to c(t) and D2(t). Thus there exists c′ such that if there exists t where p
divides both polynomials, then p|c′. Let P2 be the prime divisors of c′ not in P0 and let P1 be the
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prime divisors of ακ · Discriminant(D(t)) not in P0. Define

P =
2⋃

i=1

Pi, P =
∏
p∈P

p. (B.7)

Note that every prime in P is greater than k and not in P0.

As the product of primitive polynomials is primitive, D(t) is primitive. For any prime, either
D(t) mod p is a constant not divisible by p or a non-constant polynomial of degree at most k. In the
second case, as there are at most k roots to D(t) ≡ 0 mod p, we find that given a p > k, there exists
tp such that D(tp) �≡ 0 mod p. By the Chinese remainder theorem, there exists t0 ≡ tp mod p for
all p ∈ P.

B.2.2 Calculating the conductor. For all p ∈ P, D(Pt + t0) ≡ D(t0) �≡ 0 mod p. As P and P0

are disjoint, this implies that D(Pt + t0) is minimal for all p ∈ P, as P0 contains the factors of d, 2
and 3. Moreover, fp(Pt + t0) = 0 for p ∈ P.

By changing variables again, from t to Pm
0 t + t1, we can determine the powers of p ∈ P0 in the

conductor. Combining the two changes, we send t to τ = P (Pm
0 t + t1) + t0.

Originally we had ∆(t) = d∆1(t)∆2(t). Now we have ∆(τ) = d∆1(τ)∆2(τ). It is possible
that D1(τ)D2(τ) is no longer primitive; however, if there is a common prime divisor p, p divides
ακ(P · Pm

0 )κ, implying p ∈ P0 � P.

We sieve to D(τ) square-free for p �∈ P0 � P. As P0 � P contains all primes less than k, as well
as the prime divisors of P0, P , ακ and Discriminant(∆(t)), we can perform the sieving. Note that
the discriminants of ∆(t) and ∆(τ) differ by a power of P · Pm

0 . Thus, away from these primes,
D(τ) ≡ 0 mod p2 has at most k < p2 roots, and we may sieve to a positive percentage of t. The
sieving is unconditional if each irreducible factor of D(τ) is of degree at most 3.

Now, D(τ) is divisible by fixed powers of primes in P0 and never divisible by primes in P. Thus
there exists c1, c2 with factors in P0 such that D̃(τ) = (D1(τ)/c1)(D2(τ)/c2) is not divisible by any
p ∈ P0 � P. We sieve to D̃(τ) square-free; for p �∈ P0 � P, this is the same as D(τ) not divisible
by p2.

We need to determine fp(τ) for p ∈ P0, p ∈ P, and p �∈ P0 � P.

By our previous arguments, if m is sufficiently large, fp(τ) = fp(Pt1 + t0) for p ∈ P0.

If p ∈ P then p �∈ P0. Modulo p, ∆(τ) = ∆(P (P0t + t1) + t0) ≡ ∆(t0) �≡ 0. Thus, for these p,
fp(τ) = 0.

Assume p �∈ P0 � P. The leading term of dD(τ) is dακ(P · Pm
0 )κ. By construction, p does not

divide the leading coefficient of ∆(τ), as P0 � P contains the prime divisors of d, αk, P and P0. If
we sieve to D̃(τ) square-free for p �∈ P0 � P, then as the degree of ∆(τ) is at most 10, the curve is
minimal for such p. Thus, fp(τ) is 1 if p|D2(τ) and 2 if p|D1(τ).

Thus, we have shown the following.

Theorem B.1. With all quantities as above, for D̃(τ) square-free, the conductors are

C(τ) =
∏

p∈P0

pfp ·
(
|D1(τ)|

c1

)2 |D2(τ)|
c2

. (B.8)

For sufficiently large τ , C(τ) is a monotone increasing polynomial (we may drop the absolute
values), and a positive percentage of τ yield D̃(τ) square-free.
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B.3 Rational surfaces II
We consider what could go wrong in our proof if we are in case 2, where 3 deg A(t) = 2deg B(t) = 12
and ordt=0 t12∆(t−1) = 0.

Thus, ∆(t) is a degree 12 polynomial, and we need to worry about minimality issues. As before,
we have

∆(t) = −24(22A3(t) + 33B2(t)) = d∆1(t)∆2(t)
c4(t) = cγ1(t)γ2(t)

P0 = {p : p � deg ∆(t)} ∪ {p : p|cd}, P0 =
∏

p∈P0

p.
(B.9)

There are three cases:

• ∆(t) not divisible by a 12th power;
• (αt + β)12|∆(t), (αt + β) |�c4(t);
• (αt + β)12|∆(t), (αt + β)|c4(t).

These cases are handled in a similar fashion as before; see [Mil02] for the calculations.

B.4 Generalizations
The previous arguments are applicable to any family where deg ∆(t) � 12 (which can include some
non-rational families). It is straightforward to generalize these arguments for all families.

B.5 Summary
We summarize our sieving and conductor results as follows.

Theorem B.2 (Conductors and cardinalities for families). For a one-parameter family with deg ∆(t)
� 12, which includes all rational families, by sieving to a positive percentage subsequence we obtain
a family with conductors given by a monotone polynomial. Further, by Theorem A.5, after changing
variables to τ = Pmt+t0, a positive percentage of t ∈ [N,N ] give D(τ) square-free except for primes
p|P , where the power of such p dividing D(τ) is independent of t. If all the irreducible factors of
∆(t) are degree 3 or less, the sieving is unconditional; for degree 4 and higher, the sieving is a
consequence of the ABC or square-free sieve conjecture.

Appendix C. Sums of test functions at primes

We list several standard sums of test functions over primes. F̂ , f̂i are even Schwartz functions with
compact support, ϕ(m) is the Euler phi-function.

All statements below are straightforward applications of partial summation and the Riemann
hypothesis (or the GRH for Dirichlet L-functions if m �= 1) to handle the prime sums (see, for
example, [Mil02]); weaker error terms are obtainable by the prime number theorem.

Lemma C.1 (Sum of F̂ over primes). We have

1
log N

∑
p≡b(m)

log p

p
F̂

(
a

log p

log N

)
=

1
2aϕ(m)

F (0) + O

(
1

log N

)
. (C.1)

Setting m = 1 and a = 1, 2 yields the following.

Corollary C.2. We have

1
log N

∑
p

log p

p
F̂

(
log p

log N

)
=

1
2
F (0) + O

(
1

log N

)
.
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Corollary C.3. We have

1
log N

∑
p

log p

p
F̂

(
2

log p

log N

)
=

1
4
F (0) + O

(
1

log N

)
.

Lemma C.4. We have

4
∑

p

log2 p

log2 M

1
p
f̂1f̂2

(
log p

log M

)
= 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du + O

(
1

log M

)
. (C.2)

For p ≡ b(m) we have the following.

Lemma C.5. We have

4
∑

p≡b(m)

log2 p

log2 M

1
p
f̂1f̂2

(
log p

log M

)
=

2
ϕ(m)

∫ ∞

−∞
|u|f̂1(u)f̂2(u) du + O

(
1

log M

)
. (C.3)

Lemma C.6. Let E have rank r over Q(t) and assume Tate’s conjecture for E (known if E is a
rational surface). Then

2
∑

p

log p

log X

1
p
f̂

(
log p

log X

)
−A1,F (p)

p
= rf(0) + o(1). (C.4)

Finally, we constantly encounter sums such as∑
p

log p

log C(t)
1
pr

f̂

(
r

log p

log C(t)

)
ar

t (p), (C.5)

where r ∈ {1, 2} and log C(t) is k log N + o(log N).
By Hasse, ar

t (p) � (2
√

p)r. The contribution Sl from p � logl N is

Sl �
1

log N

∑
p�logl N

log p

pr/2
. (C.6)

Clearly the larger contribution is from r = 1. By the prime number theorem,
∑

p�x log p � x.
By partial summation,

∑
p�x(log p/

√
p) �

√
x. Thus

Sl �
√

logl N

log N
. (C.7)

We have shown the following.

Lemma C.7 (Removing small primes). The sums over primes p � logl N in the explicit formula
contribute O(log(l/2)−1 N). For l < 2, this is negligible.

Appendix D. Handling the error terms in the two-level density

Following Rudnick and Sarnak [RS96] and Rubinstein [Rub98], we handle the error terms in the
two-level density, assuming that we are able to prove the one-level density theorem with error terms.
By the explicit formula (Equation (2.3)).∑

ji

Fi

(
log NE

2π
γ

(ji)
E

)
= Goodi + O((log NE)−1/2), (D.1)

where Goodi is the good part of the explicit formula, involving F̂ (0), F (0), and sums of aE(p) and
a2

E(p) for primes p > log N .
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Multiplying and summing over i yields

1
|F|

∑
E∈F

2∏
i=1

[∑
ji

Fi

(
log NE

2π
γ

(ji)
E

)
+ O((log NE)−

1
2 )
]

=
1
|F|

∑
E∈F

2∏
i=1

Goodi. (D.2)

Multiplying out the left-hand side yields terms such as

O

[
1
|F|

∑
E∈F

(log NE)−(2−k)/2
k∏

m=1

∑
jmi

Fi

(
log NE

2π
γ

(jmi )

E

)]
. (D.3)

If each function Fi were positive, we could insert absolute values and move (1/|F|)
∑

E∈F past
the log−(2−k)/2 NE factor. We assume that our family has been sieved, so that the conductors satisfy
log NE = c log N + o(log N).

There are three terms. If k = 0 there is clearly no net contribution. For k = 1 we have a one-level
density, which is finite by assumption. No error hits the k = 2 piece (this is the piece we want to
calculate). Only the k = 1 piece is troublesome for Fi not positive.

If Fi is not positive, we increase the above by replacing Fi with a positive function gi such that gi

is an even Schwartz function whose Fourier transform is supported in the same interval as that of Fi

and gi(x) � |Fi(x)|. As the gi satisfy the necessary conditions, we may apply the one-level density
theorem to the gi, obtaining a bounded quantity. Hitting this with (log NE)−1/2, we see that there
is a negligible contribution.

For a construction of gi, see Rubinstein [Rub98, pp. 40–41] or Rudnick and Sarnak [RS96,
pp. 302–304].

We have shown the following.

Theorem D.1 (Handling the error terms). If we are able to do the one-level density calculations,
then we may ignore the error terms in the two-level density.

Note that the error need not be O(log−1/2 N); o(1) also works.
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