
This article was downloaded by: [212.57.208.205]
On: 27 January 2015, At: 22:28
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Simulation and
Computation
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lssp20

One- and Two-Sample Bayesian Prediction Intervals
Based on Type-I Hybrid Censored Data
A. R. Shafay a & N. Balakrishnan b c
a Department of Mathematics , Fayoum University , Fayoum, Egypt
b Department of Mathematics and Statistics , McMaster University , Hamilton, Ontario,
Canada
c Faculty of Science , King Saud University , Riyadh, Saudi Arabia
Published online: 15 Sep 2011.

To cite this article: A. R. Shafay & N. Balakrishnan (2012) One- and Two-Sample Bayesian Prediction Intervals Based
on Type-I Hybrid Censored Data, Communications in Statistics - Simulation and Computation, 41:1, 65-88, DOI:
10.1080/03610918.2011.579367

To link to this article:  http://dx.doi.org/10.1080/03610918.2011.579367

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/lssp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2011.579367
http://dx.doi.org/10.1080/03610918.2011.579367
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Communications in Statistics—Simulation and Computation®, 41: 65–88, 2012
Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0918 print/1532-4141 online
DOI: 10.1080/03610918.2011.579367

One- and Two-Sample Bayesian Prediction Intervals
Based on Type-I Hybrid Censored Data
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1Department of Mathematics, Fayoum University, Fayoum, Egypt
2Department of Mathematics and Statistics, McMaster University,
Hamilton, Ontario, Canada
3Faculty of Science, King Saud University, Riyadh, Saudi Arabia

In this article, we consider a general form for the underlying distribution and
a general conjugate prior, and describe a general procedure for determining the
Bayesian prediction intervals for future lifetimes based on an observed Type-I hybrid
censored data. For the illustration of the developed results, the Exponential(�) and
Pareto(�� �) distributions are used as examples. One-sample Bayesian predictive
survival function can not be obtained in closed-form and so Gibbs sampling
procedure is used to draw Markov Chain Monte Carlo (MCMC) samples, which are
then used to compute the approximate predictive survival function. Finally, some
numerical results are presented to illustrate all the inferential results developed here.

Keywords Bayesian prediction; Exponential distribution; Markov Chain Monte
Carlo; Order statistics; Pareto distribution; Type-I hybrid censored sample.

Mathematics Subject Classification Primary 62G30; Secondary 62F15.

1. Introduction

In reliability analysis, experiments often terminate before all units on test have
failed due to cost and time considerations. In such cases, failure information is
available only on part of the sample, and on all units that had not failed, only
partial information will be available. Such data are said to be censored. The two
most common censoring schemes are Type-I and Type-II censoring schemes. They
can be described as follows. Consider n identical units on a life-testing experiment.
In the Type-I censoring scheme, the experiment is terminated when a pre-fixed
censoring time T ia reached. On the other hand, in the Type-II censoring scheme,
the experiment gets terminated when a pre-specified number r ≤ n of failures is
observed. Under both censoring schemes, some information is lost since only a part
of the sample is observed, but they do result in a saving in terms of time and
cost. In the Type-I censoring scheme, the duration of the test is guaranteed but
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66 Shafay and Balakrishnan

the level of efficiency may be too low or too high due to the uncertainty in the
number of complete failures. In the Type-II censoring scheme, the level of efficiency
is guaranteed (since the number of failures to be observed is fixed in advance), but
the duration of the experiment may end up being too long since the exact time of
the r-th failure is random. For these reasons, another censoring scheme becomes
necessary if both efficiency level and guaranteed duration are sought.

A mixture of Type-I and Type-II censoring schemes, known as hybrid censoring
scheme, has been discussed in the literature for this purpose. In the Type-I hybrid
censoring scheme, the experiment is terminated as soon as a pre-specified number r
out of n items has failed or a pre-fixed time T on test has been reached. In contrast,
in the Type-II hybrid censoring scheme, the life-testing experiment gets terminated
whenever the later of the two stopping rules is reached; see Childs et al. (2003).
Type-I hybrid censoring has been discussed extensively in the reliability literature;
see, for example, Epstein (1954), MIL-STD-781 C (1977), Chen and Bhattacharyya
(1988), Gupta and Kundu (1998), Kundu (2007), Park et al. (2008), and Park and
Balakrishnan (2009).

Let X1�n < X2�n < · · · < Xn�n be the order statistics (OS) from a random sample
of size n from an absolutely continuous distribution function F�x� ≡ F�x � �� with
density function f�x� ≡ f�x � ��, where the parameter � ∈ � may be a real vector.
Let K denote the number of Xi�n’s that are at most T . Then, K is a discrete random
variable with support 	0� 1� 
 
 
 � n� and probability density function (pdf) as

P�K = k� =
(
n
k

)
pkqn−k� k = 0� 1� 
 
 
 � n�

where p = F�T� and q = 1− p = 1− F�T�.
Therefore, under the Type-I hybrid censoring scheme described above, we have

one of the two following types of observations:

Case I. X1�n < · · · < Xr�n if Xr�n ≤ T with r ≤ K ≤ n;

Case II. X1�n < · · · < XK�n if T < Xr�n with 0 ≤ K ≤ r − 1.

Thus, the likelihood function of such a Type-I hybrid censored sample is as
follows:

Case I.

L1��� xr � =
n!

�n− r�!
r∏

i=1

f�xi�
1− F�xr��
n−r � (1.1)

where xr = �x1� 
 
 
 � xr� and x1 < · · · < xr ≤ T ;

Case II.

L2��� xK� =
n!

�n− K�!
K∏
i=1

f�xi�
1− F�T��n−K� (1.2)

where xK = �x1� 
 
 
 � xK� and x1 < · · · < xK ≤ T < xK+1.
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Bayesian Prediction Based on Hybrid Censored Data 67

We will use the following Lemma to develop the main results presented in the
following sections.

Lemma 1.1.

1. Conditional on K = k, the vectors �X1�n� 
 
 
 � Xk�n� and �Xk+1�n� 
 
 
 � Xn�n� are
mutually independent with

�X1�n� 
 
 
 � Xk�n�
d= �V1�k� 
 
 
 � Vk�k��

�Xk+1�n� 
 
 
 � Xn�n�
d= �W1�n−k� 
 
 
 �Wn−k�n−k��

where V1�k� 
 
 
 � Vk�k are OS from an iid sample of size k from F�x� right-truncated
at T, and W1�n−k� 
 
 
 �Wn−k�n−k are OS from an iid sample of size n− k from F�x�
left-truncated at T;

2. Conditional on K = k, the conditional pdf of Xs�n, given X1�n = x1� 
 
 
 � Xr�n = xr
�Xr�n < Xs�n ≤ T� r < s ≤ n�, is the same as the conditional pdf of Xs�k, given Xr�k =
xr , from a random sample of size k from F�x� right-truncated at T;

3. Conditional on K = k, the conditional pdf of Xs�n, given X1�n = x1� 
 
 
 � Xr�n = xr
�Xr�n ≤ T < Xs�n� r < s ≤ n�, is the same as the marginal pdf of the (s-k)-th order
statistic from a random sample of size n− k from F�x� left-truncated at T;

4. Conditional on K = k, the conditional pdf of Xs�n, given X1�n = x1� 
 
 
 � Xk�n = xk
�Xs�n > T� k+ 1 ≤ s ≤ n�, is the same as the marginal pdf of the (s-k)-th order
statistic from a random sample of size n− k from F�x� left-truncated at T.

For a proof of this result as well as some generalizations of this result, one may
refer to Iliopoulos and Balakrishnan (2009).

When r < s ≤ n, by using the above Lemma, the conditional density function
of Xs�n, given the Type-I hybrid censored data, is obtained readily as follows:

Case I.

f1�xs � xr � =
{
f11�xs � xr �� xr < xs ≤ T�

f12�xs � xr �� xs > T�
(1.3)

where

f11�xs � xr �

= 1
P�r ≤ K ≤ n�

n∑
k=s

f�xs � xr � K = k�P�K = k�

=
n∑

k=s

�k− r�!�k�T�

�s − r − 1�!�k− s�!

F�xs�− F�xr��

s−r−1
F�T�− F�xs��
k−sf�xs�


F�T�− F�xr��
k−r

� xr < xs ≤T�

and

f12�xs � xr � =
1

P�r ≤ K ≤ n�

s−1∑
k=r

f�xs � xr � K = k�P�K = k�

=
s−1∑
k=r

�n− k�!�k�T�

�s − k− 1�!�n− s�!

F�xs�− F�T��s−k−1
1− F�xs��

n−sf�xs�


1− F�T��n−k
� xs > T�
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68 Shafay and Balakrishnan

with

�k�T� =
P�K = k�∑n
j=r P�K = j�

�

Case II.

f2�xs � xK� =
1

P�0 ≤ K ≤ r − 1�

r−1∑
k=0

f�xs � xk� K = k�P�K = k�

=
r−1∑
k=0

�n− k�!�k�T�

�s − k− 1�!�n− s�!

F�xs�− F�T��s−k−1
1− F�xs��

n−sf�xs�


1− F�T��n−k
� xs > T�

(1.4)

where

�k�T� =
P�K = k�∑r−1
j=0 P�K = j�




Prediction of future events on the basis of the past and present knowledge is
a fundamental problem of statistics, arising in many contexts in a natural way. As
in the case of estimation, a predictor can be either a point or an interval predictor.
Several researchers have considered Bayesian prediction for future observations
based on Type-I censored data; see AL-Hussaini (1999a) and AL-Hussaini et al.
(2001). Bayesian prediction bounds for future observations based on Type-II
censored data have been discussed by several authors, including Dunsmore (1974),
Nigm and Hamdy (1987), Nigm (1988, 1989), AL-Hussaini and Jaheen (1995),
AL-Hussaini (1999b), and Raqab and Madi (2005). Draper and Guttman (1987)
discussed the two-sample Bayesian prediction of the future lifetime of an item
based on a Type-I hybrid censored data from an exponential distribution. Ebrahimi
(1992) developed the classical prediction intervals for future failures in the case
of exponential distribution under Type-I hybrid censoring. Recently, Balakrishnan
and Shafay (2011) considered a general form for the underlying distribution and a
general conjugate prior and developed a general procedure for determining the one-
and two-sample Bayesian prediction intervals for future lifetimes based on a Type-II
hybrid censored data. In this paper, we discuss the same problem based on a Type-I
hybrid censored data which involves some additional complications.

The rest of this article is organized as follows. In Sec. 2, we present the structure
of the prior and posterior distributions. In Sec. 3, we derive the one-sample Bayesian
predictive survival function and the one-sample Bayesian prediction bounds for the
s-th (r < s ≤ n� ordered lifetime from Type-I hybrid censored sample. Next, we
derive the two-sample Bayesian predictive survival function and the two-sample
Bayesian prediction bounds for the s-th ordered lifetime from a future independent
sample when the (observed) informative sample is a Type-I hybrid censored and the
(unobserved) future sample is a complete sample from the same parent distribution.
In Sec. 4, we present the results for the Exponential(�) and Pareto(�� �) distributions
as illustrative examples, wherein we adopt the Markov Chain Monte Carlo method
to compute the approximate predictive survival function in the one-sample case.
Finally, in Sec. 5, we present some numerical results for illustrating all the inferential
methods developed here.
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Bayesian Prediction Based on Hybrid Censored Data 69

2. Prior and Posterior Distributions

Since the survival function (SF) �F�x � �� = 1− F�x � �� corresponding to any
cumulative distribution function (CDF) F�x � ��� � ∈ �, can be written in the form

�F�x � �� = exp
−��x� ���� (2.1)

where ��x� �� = − ln�F�x � ��, we shall consider the underling population SF to be
given by (2.1). Of course, some conditions need to be imposed so that �F�x � �� is
a valid SF. These conditions are: ��x� �� is continuous, monotone increasing and
differentiable function, with ��x� �� → 0 as x → −� and ��x� �� → � as x → �.
The probability density function (pdf) corresponding to (2.1) is given by

f�x � �� = �′�x� �� exp
−��x� ���� (2.2)

where �′�x� �� is the derivative of ��x� �� with respect to x.
With an appropriate choice of ��x� �� (notice that the derivative of ��x� ��

with respect to x is the hazard rate function), several distributions that are used
in reliability studies can be obtained as special cases. For example, if ��x� �� = �x,
we obtain the Exponential(�) distribution. If ��x� �� = −� ln��/x�, we obtain the
Pareto(�� �) distribution. If ��x� �� = �x�, we obtain the Weibull(�� �) distribution.
The Burr Type XII(�� �) distribution is obtained by taking ��x� �� = � ln�1+ x��.
Appropriate conditions need to be imposed on ��x� �� to suit the domain on which
�F�x � �� in (2.1) is defined. For example, if �F�x � �� is defined only on the positive half
of the real line (as for the Exponential, Weibull and Burr Type XII distributions),
then ��x� �� → 0 as x → 0+ and ��x� �� → � as x → �. If �F�x � �� is defined on
����� (as in the Pareto distribution), then ��x� �� → 0 as x → �+ and ��x� �� →
� as x → �. The exponential form of the SF in (2.1) provides some flexibility in
developing general results, as carried out in the following sections.

Upon using (2.1) and (2.2) in (1.1) and (1.2), we obtain the likelihood function
as follows:

Case I.

L1��� xr � =
n!

�n− r�!
( r∏

i=1

�′�xi� ��
)
exp

[
−

r∑
i=1

��xi� ��− �n− r���xr� ��

]
� (2.3)

Case II.

L2��� xK� =
n!

�n− K�!
( K∏

i=1

�′�xi� ��
)
exp

[
−

K∑
i=1

��xi� ��− �n− K���T� ��

]

 (2.4)

From the Bayesian viewpoint, the unknown parameter is regarded as a
realization of a random variable, which has some prior distribution. We consider
here a general conjugate prior, suggested by AL-Hussaini (1999b), that is given by

���� �� ∝ C��� �� exp
−D��� ���� (2.5)

where � ∈ � is the vector of parameters of the distribution in (2.1) and � is the
vector of prior parameters. The prior family in (2.5) includes several priors used in
the literature as special cases.
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70 Shafay and Balakrishnan

Then, from (2.3), (2.4), and (2.5), the posterior density function of �, given the
Type-I hybrid censored data, is readily obtained as follows:

Case I.

�∗
1�� � xr � = I−1

1 �1��� xr � exp
−�1��� xr ��� (2.6)

where

�1��� xr � = C��� ��
r∏

i=1

�′�xi� ��� �1��� xr � =
r∑

i=1

��xi� ��+ �n− r���xr� ��+D��� ��

and

I1 =
∫
�∈�

�1��� xr � exp
−�1��� xr ��d��

Case II.

�∗
2�� � xK� = I−1

2 �2��� xK� exp
−�2��� xK��� (2.7)

where

�2��� xK� = C��� ��
K∏
i=1

�′�xi� ��� �2��� xK� =
K∑
i=1

��xi� ��+ �n− K���T� ��+D��� ��

and

I2 =
∫
�∈�

�2��� xK� exp
−�2��� xK��d�


3. Bayesian Prediction Intervals

3.1. One-Sample Bayesian Prediction

Upon substituting (2.1) and (2.2) in (1.3) and (1.4), we obtain the conditional density
function of Xs�n, given the Type-I hybrid censored data, as follows:

Case I.

f1�xs � xr � =
{
f11�xs � xr �� xr < xs ≤ T�

f12�xs � xr �� xs > T�
(3.1)

where

f11�xs � xr � =
n∑

k=s

k−s∑
w=0

s−r−1∑
q=0

C1�k�T� ���
′�xs� ��hk�w�q�xs� xr� T� ��� xr < xs ≤ T�

and

f12�xs � xr � =
s−1∑
k=r

s−k−1∑
w=0

C2�k�T� ���
′�xs� ��gw�xs� T� ��� xs > T�
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Bayesian Prediction Based on Hybrid Censored Data 71

with C1 =
�−1�w+q

(
k−s
w

)(
s−r−1

q

)
�k−r�!

�s−r−1�!�k−s�! , C2 = �−1�w
(
s−k−1

w

)
�n−k�!

�s−k−1�!�n−s�! ,

�k�T� ��

=
(
n
k

)
exp
−�n− k���T� ���
1− exp
−��T� ����k∑n

j=r

(
n
j

)
exp
−�n− j���T� ���
1− exp
−��T� ����j

�

hk�w�q�x� y� z� ��

= exp
−�s − r − q − 1���y� ��− w��z� ��− �k− s − w + q + 1���x� ���

exp
−��y� ���− exp
−��z� ����k−r

�

and

gw�x� y� �� = exp
−�n− s + w + 1�	��x� ��− ��y� �����

Case II.

f2�xs � xK� =
r−1∑
k=0

s−k−1∑
w=0

C2�k�T� ���
′�xs� ��gw�xs� T� ��� xs > T� (3.2)

where

�k�T� �� =
(
n
k

)
exp
−�n− k���T� ���
1− exp
−��T� ����k∑r−1

j=0

(
n
j

)
exp
−�n− j���T� ���
1− exp
−��T� ����j




From (2.6), (2.7), (3.1), and (3.2), we simply obtain the predictive density
function of Xs�n as follows:

Case I.

f ∗
1 �xs � xr � =

{
f ∗
11�xs � xr �� xr < xs ≤ T�

f ∗
12�xs � xr �� xs > T�

(3.3)

where

f ∗
11�xs � xr �

=
n∑

k=s

k−s∑
w=0

s−r−1∑
q=0

C1

∫
�∈�

�′�xs� ���k�T� ��hk�w�q�xs� xr� T� ���
∗
1�� � xr �d�� xr < xs ≤ T�

and

f ∗
12�xs � xr � =

s−1∑
k=r

s−k−1∑
w=0

C2

∫
�∈�

�′�xs� ���k�T� ��gw�xs� T� ���
∗
1�� � xr �d�� xs > T�

Case II.

f ∗
2 �xs � xK� =

r−1∑
k=0

s−k−1∑
w=0

C2

∫
�∈�

�′�xs� ���k�T� ��gw�xs� T� ���
∗
2�� � xK�d�� xs > T
 (3.4)
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72 Shafay and Balakrishnan

From (3.3) and (3.4), we simply obtain the predictive survival function of Xs�n

as follows:
Case I.

�F ∗
1 �t � xr � =

{�F ∗
11�t � xr �� xr < t ≤ T�

�F ∗
12�t � xr �� t > T�

(3.5)

where

�F ∗
11�t � xr � =

∫ T

t
f ∗
11�xs � xr �dxs +

∫ �

T
f ∗
12�xs � xr �dxs

=
n∑

k=s

k−s∑
w=0

s−r−1∑
q=0

C1

k− s − w + q + 1

∫
�∈�

�k�T� ��	hk�w�q�t� xr� T� ��

− hk�w�q�T� xr� T� ����
∗
1�� � xr �d�

+
s−1∑
k=r

s−k−1∑
w=0

C2

n− s + w + 1

∫
�∈�

�k�T� ���
∗
1�� � xr �d�

and

�F ∗
12�t � xr � =

∫ �

t
f ∗
12�xs � xr �dxs

=
s−1∑
k=r

s−k−1∑
w=0

C2

n− s + w + 1

∫
�∈�

�k�T� ��gw�t� T� ���
∗
1�� � xr �d��

Case II.

�F ∗
2 �t � xK� =

∫ �

t
f ∗
2 �xs � xK�dxs

=
r−1∑
k=0

s−k−1∑
w=0

C2

n− s + w + 1

∫
�∈�

�k�T� ��gw�t� T� ���
∗
2�� � xK�d�
 (3.6)

Then, the Bayesian predictive bounds of a two-sided equi-tailed 100�1− ��%
interval for Xs�n, r < s ≤ n, can be obtained by solving the following two equations:

�F ∗�LXs�n
� x� = 1− �

2
and �F ∗�UXs�n

� x� = �

2
�

where

�F ∗�t � x� =
{�F ∗

1 �t � xr �� Case I,

�F ∗
2 �t � xK�� Case II,

and LXs�n
and UXs�n

denote the lower and upper bounds, respectively.

3.2. Two-Sample Bayesian Prediction

Let Y1�m ≤ Y2�m ≤ · · · ≤ Ym�m be the OS from a future random sample of size m from
the same population. It is well known that the marginal density function of the s-th
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Bayesian Prediction Based on Hybrid Censored Data 73

order statistic from a sample of size m from a continuous distribution with cdf F�x�
and pdf f�x� is given by

fYs�m�y � �� =
m!

�s − 1�!�m− s�! 
F�y��
s−1
1− F�y��m−sf�y�� (3.7)

where 1 ≤ s ≤ m; see Arnold et al. (1992).
Upon substituting (2.1) and (2.2) in (3.7), we obtain

fYs�m�y � �� =
s−1∑
w=0

C3�
′�y� �� exp
−�m− s + w + 1���y� ���� (3.8)

where 1 ≤ s ≤ m and C3 = �−1�w
(
s−1
w

)
m!

�s−1�!�m−s�! .
From (2.6), (2.7) and (3.8), we simply obtain the Bayesian predictive density

function of Ys�m as follows:
Case I.

f ∗
1Ys�m

�y � xr � =
s−1∑
w=0

C3

∫
�∈�

�′�y� �� exp
−�m− s + w + 1���y� ����∗
1�� � xr �d�� (3.9)

Case II.

f ∗
2Ys�m

�y � xK� =
s−1∑
w=0

C3

∫
�∈�

�′�y� �� exp
−�m− s + w + 1���y� ����∗
2�� � xK�d�
 (3.10)

From (3.9) and (3.10), we simply obtain the predictive survival function of Ys�m
as follows:

Case I.

�F ∗
1Ys�m

�t � xr � =
∫ �

t
f ∗
1Ys�m

�y � xr �dy

=
s−1∑
w=0

C3

m− s + w + 1

∫
�∈�

exp
−�m− s + w + 1���t� ����∗
1�� � xr �d��

(3.11)

Case II.

�F ∗
2Ys�m

�t � xK� =
∫ �

t
f ∗
2Ys�m

�y � xK�dy

=
s−1∑
w=0

C3

m− s + w + 1

∫
�∈�

exp
−�m− s + w + 1���t� ����∗
2�� � xK�d�


(3.12)

Consequently, the Bayesian predictive bounds of a two-sided equi-tailed
100�1− ��% interval for Ys�m, 1 ≤ s ≤ m, can be obtained by solving the following
two equations:

�F ∗
Ys�m

�LYs�m
� x� = 1− �

2
and �F ∗

Ys�m
�UYs�m

� x� = �

2
�
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74 Shafay and Balakrishnan

where

�F ∗
Ys�m

�t � x� =
{�F ∗

1Ys�m
�t � xr �� Case I,

�F ∗
2Ys�m

�t � xK�� Case II,

and LYs�m
and UYs�m

denote the lower and upper bounds, respectively.

4. Illustrative Examples

In this section, we discuss the Bayesian prediction problems for the Exponential(�)
distribution when � is unknown, and the Pareto��� �� distribution when both
parameters � and � are unknown, as illustrative examples.

4.1. Exponential ��� Model

The distribution function in this case is

F�x � �� = 1− exp
−�x�� x > 0� (4.1)

where � > 0, and so we have

��x� �� = �x and �′�x� �� = �
 (4.2)

For the case when � is unknown, we use the conjugate gamma prior for � with
density

���� �� = dc

��c�
�c−1 exp
−�d�� � > 0� (4.3)

where c and d are positive constants, and so we have

C��� �� = �c−1 and D��� �� = �d� (4.4)

where � = �c� d�.
Hence, the posterior density function is obtained as follows:

Case I.

�∗
1�� � xr � =

(∑r
i=1 xi + �n− r�xr + d

)r+c

��r + c�
�r+c−1 exp

[
− �

{ r∑
i=1

xi + �n− r�xr + d

}]
�

(4.5)

Case II.

�∗
2�� � xK� =

(∑K
i=1 xi + �n− K�T + d

)K+c

��K + c�
�K+c−1

× exp
[
− �

{ K∑
i=1

xi + �n− K�T + d

}]

 (4.6)
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Bayesian Prediction Based on Hybrid Censored Data 75

4.1.1. One-Sample Bayesian Prediction. The predictive survival function of Xs�n in
this special case is obtained as follows:

Case I.

�F ∗
1 �t � xr � =

{�F ∗
11�t � xr �� xr < t ≤ T�

�F ∗
12�t � xr �� t > T�

where

�F ∗
11�t � xr � =

n∑
k=s

k−s∑
w=0

s−r−1∑
q=0

C1

k− s − w + q + 1

×
∫ �

0
�k�T� ��	hk�w�q�t� xr� T� ��− hk�w�q�T� xr� T� ����

∗
1�� � xr �d�

+
s−1∑
k=r

s−k−1∑
w=0

C2

n− s + w + 1

∫ �

0
�k�T� ���

∗
1�� � xr �d� (4.7)

and

�F ∗
12�t � xr � =

s−1∑
k=r

s−k−1∑
w=0

C2

n− s + w + 1

∫ �

0
�k�T� ��gw�t� T� ���

∗
1�� � xr �d�� (4.8)

with

�k�T� �� =
(
n
k

)
exp
−�n− k��T�
1− exp
−�T��k∑n

j=r

(
n
j

)
exp
−�n− j��T�
1− exp
−�T��j

�

hk�w�q�x� y� z� �� =
exp
−�	�s − r − q − 1�y + wz+ �k− s − w + q + 1�x��


exp
−�y�− exp
−�z��k−r

and

gw�t� T� �� = exp
−�	�n− s + w + 1��t − T����

Case II.

�F ∗
2 �t � xK� =

r−1∑
k=0

s−k−1∑
w=0

C2

n− s + w + 1

∫ �

0
�k�T� ��gw�t� T� ���

∗
2�� � xK�d�� (4.9)

where

�k�T� �� =
(
n
k

)
exp
−�n− k��T�
1− exp
−�T��k∑r−1

j=0

(
n
j

)
exp
−�n− j��T�
1− exp
−�T��j




It does not seem to be possible to compute the probabilities in (4.7)–(4.9)
analytically. Hence, we use the Markov Chain Monte Carlo (MCMC) technique for
constructing the Bayesian prediction interval.
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76 Shafay and Balakrishnan

To compute
∫ �
0 f����∗

1�� � xr �d� by using the MCMC technique, we use the
following procedure:

Step 1. Generate �1 ∼ Gamma(r + c,
∑r

i=1 xi + �n− r�xr + d);

Step 2. Repeat Step 1 and obtain �1, �2� 
 
 
 � �N ;

Step 3. The approximate value of
∫ �
0 f����∗

1�� � xr �d� is then obtained as

∫ �

0
f����∗

1�� � xr �d� =
∑N

i=1f��i�

N



Similarly, we can use the above algorithm to compute
∫ �
0 g����∗

2�� � xK�d�.

4.1.2. Two-Sample Bayesian Prediction. The predictive survival function of Ys�m in
this special case is obtained as follows:

Case I.

�F ∗
1Ys�m

�t � xr �

= I−1
1

s−1∑
w=0

C3

m− s + w + 1

( r∑
i=1

xi + �n− r�xr + �m− s + w + 1�t + d

)−�r+c�

�

(4.10)

where

I1 =
( r∑

i=1

xi + �n− r�xr + d

)−�r+c�

�

Case II.

�F ∗
2Ys�m

�t � xK�

= I−1
2

s−1∑
w=0

C3

m− s + w + 1

( K∑
i=1

xi + �n− K�T + �m− s + w + 1�t + d

)−�K+c�

�

(4.11)

where

I2 =
( K∑

i=1

xi + �n− K�T + d

)−�K+c�

�

4.2. Pareto��� �� Model

The distribution function in this case is

F�x � �� �� = 1−
(
�

x

)�

� x > �� (4.12)
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Bayesian Prediction Based on Hybrid Censored Data 77

where � > 0 and � > 0, and so we have

��x� �� �� = � ln
(
x

�

)
and �′�x� �� �� = �

x

 (4.13)

Under the assumption that both parameters � and � are unknown, we may
consider a natural joint conjugate prior for � and � which was suggested by Lwin
(1972) and generalized by Arnold and Press (1989). The generalized Lwin prior or
the power-gamma prior, denoted by PG�a� b� c� d�, is given by

���� �� �� ∝ �c�−1 exp
[
−�

(
d + a ln

(
b

�

))]
� � > 0� 0 < � < b� (4.14)

where a� b� c� d are positive constants. This general prior is obtained by first
specifying the prior for the parameter � and then specifying the conditional prior for
�, given knowledge on the parameter �. More specifically, we take ���� as a gamma
distribution with parameters c and d, and ��� � �� as a power function distribution
with parameters a� and b of the form

��� � �� ∝ ��a�−1b−a�� 0 < � < b�

to arrive at the joint prior given in (4.14). Thus, we have

C��� �� �� = �c�−1 and D��� �� �� = �

{
d + a ln

(
b

�

)}
� (4.15)

where � = �a� b� c� d�.
Hence, the posterior density function is obtained as follows:
Case I.

�∗
1��� � � xr � = �∗

11�� � xr ��
∗
12�� � �� xr �� (4.16)

where

�∗
11�� � xr � =


I1�xr � L��
r+c

��r + c�
�r+c−1 exp
−�I1�xr � L��� (4.17)

�∗
12�� � �� xr � = ��n+ a����n+a�−1L−��n+a�� (4.18)

I1�xr � z� =
∑r

i=1 ln
(
xi
z

)+ �n− r� ln
(
xr
z

)+ a ln
(
b
z

)+ d and L = min�x1� b�;

Case II.

�∗
2��� � � xK� = �∗

21�� � xK��
∗
22�� � �� xK�� (4.19)

where

�∗
21�� � xK� =


I2�xK� L��
K+c

��K + c�
�K+c−1 exp
−�I2�xK� L��� (4.20)

�∗
22�� � �� xK� = ��n+ a����n+a�−1L−��n+a�� (4.21)

and I2�xK� z� =
∑K

i=1 ln
(
xi
z

)+ �n− K� ln
(
T
z

)+ a ln
(
b
z

)+ d.
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78 Shafay and Balakrishnan

4.2.1. One-Sample Bayesian Prediction. The predictive survival function of Xs�n in
this special case is obtained as follows:

Case I.

�F ∗
1 �t � xr � =

{�F ∗
11�t � xr �� xr < t ≤ T�

�F ∗
12�t � xr �� t > T�

where

�F ∗
11�t � xr � =

n∑
k=s

k−s∑
w=0

s−r−1∑
q=0

C1

k− s − w + q + 1

∫ L

0

∫ �

0
�k�T� ��

× 	hk�w�q�t� xr� T� ��− hk�w�q�T� xr� T� ����
∗
1��� � � xr �d� d�

+
s−1∑
k=r

s−k−1∑
w=0

C2

n− s + w + 1

∫ L

0

∫ �

0
�k�T� ���

∗
1��� � � xr �d� d� (4.22)

and

�F ∗
12�t � xr � =

s−1∑
k=r

s−k−1∑
w=0

C2

n− s + w + 1

∫ L

0

∫ �

0
�k�T� ��gw�t� T� ���

∗
1��� � � xr �d� d��

(4.23)

with

�k�T� ��

=
(
n
k

)
exp

[−�n− k�� ln
(
T
�

)
�
1− exp
−� ln

(
T
�

)]
�k∑n

j=r

(
n
j

)
exp
−�n− j�� ln

(
T
�

)][
1− exp
−� ln

(
T
�

)]]j �
hk�w�q�x� y� z� ��

= exp
−�	�s − r − q − 1� ln
(
y

�

)+ w ln
(
z
�

)+ �k− s − w + q + 1� ln
(
x
�

)}]
[
exp

[−� ln
(
y

�

)]− exp
[−� ln

(
z
�

)]]k−r

and

gw�t� T� �� = exp
[
−�n− s + w + 1�� ln

(
t

T

)]
�

Case II.

�F ∗
2 �t � xK� =

r−1∑
k=0

s−k−1∑
w=0

C2

n− s + w + 1

∫ L

0

∫ �

0
�k�T� �� ��gw�t� T� �� ���

∗
2��� � � xK�d� d��

(4.24)

where

�k�T� �� �� =
(
n
k

)
exp
−�n− k�� ln

(
T
�
��
1− exp
−� ln

(
T
�

)]]k
∑r−1

j=0

(
n
j

)
exp
−�n− j�� ln

(
T
�

)][
1− exp

[−� ln
(
T
�

)]]j 
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Bayesian Prediction Based on Hybrid Censored Data 79

It does not seem to be possible to compute the probabilities in (4.22)–
(4.24) analytically. Hence, we use the Gibbs sampling technique to generate
MCMC samples, and then use the MCMC technique for constructing the Bayesian
prediction interval.

To compute
∫ L

0

∫ �
0 f��� ���∗

1��� � � xr �d� d� by using the MCMC technique, we
use the following procedure:

Step 1. Generate �1 ∼ Gamma
(
r + c,

∑r
i=1 ln

(
xi
L

)+ �n− r� ln
(
xr
L

)+ a ln
(
b
L

)+ d
)
;

Step 2. Generate �1 ∼ Power function��1�n+ a�� L�;

Step 3. Repeat Steps 1 and 2 and obtain ��1� �1�, ��2� �2�� 
 
 
 � ��N � �N �;

Step 4. The approximate value of
∫ L

0

∫ �
0 f��� ���∗

1��� � � xr �d� d� is then
obtained as

∫ L

0

∫ �

0
f��� ���∗

1��� � � xr �d� d� =
∑N

i=1 f��i� �i�

N



Similarly, we can use the above algorithm to compute∫ L

0

∫ �
0 g��� ���∗

2��� � � xK�d� d�.

4.2.2. Two-Sample Bayesian Prediction. The predictive density function of Ys�m in
this special case is obtained as follows:

Case I.

f ∗
1Ys�m

�y � xr � =
{
f ∗
11Ys�m

�y � xr �� 0 < y ≤ L�

f ∗
12Ys�m

�y � xr �� y > L�
(4.25)

where

f ∗
11Ys�m

�y � xr � =
∫ y

0

∫ �

0
fYs�m�y � �� ���∗

1��� � � xr �d� d�

= �r + c��n+ a�
I1�xr � L��
r+c

y
I1�xr � y��
r+c+1

s−1∑
w=0

C3

n+ a+m− s + w + 1
� 0 < y ≤ L�

and

f ∗
12Ys�m

�y � xr � =
∫ L

0

∫ �

0
fYs�m�y � �� ���∗

1��� � � xr �d� d�

= �r + c��n+ a�

I1�xr � L�

s−1∑
w=0

C3

n+ a+m− s + w + 1

× 1
y

[
1+ �m− s + w + 1� ln

(
y

L

)
I1�xr � L�

]−�r+c+1�

� y > L


Case II.

f ∗
2Ys�m

�y � xK� =
{
f ∗
21Ys�m

�y � xK�� 0 < y ≤ L�

f ∗
22Ys�m

�y � xK�� y > L�
(4.26)
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80 Shafay and Balakrishnan

where

f ∗
21Ys�m

�y � xK�

=
∫ y

0

∫ �

0
fYs�m�y � �� ���∗

2��� � � xK�d� d�

= �K + c��n+ a�
I2�xK� L��
K+c

y
I2�xK� y��
K+c+1

s−1∑
w=0

C3

n+ a+m− s + w + 1
� 0 < y ≤ L�

and

f ∗
22Ys�m

�y � xK� =
∫ L

0

∫ �

0
fYs�m�y � �� ���∗

2��� � � xK�d� d�

= �K + c��n+ a�

y I2�xK� L�

s−1∑
w=0

C3

n+ a+m− s + w + 1

×
[
1+ �m− s + w + 1� ln

(
y

L

)
I2
(
xK� L

) ]−�K+c+1�

� y > L


From (4.25) and (4.26), we simply obtain the predictive survival function as
follows:

Case I.

�F ∗
1Ys�m

�t � xr � =
{�F ∗

11Ys�m
�t � xr �� 0 < t ≤ L�

�F ∗
12Ys�m

�t � xr �� t > L�
(4.27)

where

�F ∗
11Ys�m

�t � xr � =
∫ L

t
f ∗
11Ys�m

�y � xr �dy +
∫ �

L
f ∗
12Ys�m

�y � xr �dy

=
s−1∑
w=0

C3

n+ a+m− s + w + 1

(
1−

[
I1�xr � t�

I1�xr � L�

]−�r+c�)

+ �n+ a�
s−1∑
w=0

C3

�n+ a+m− s + w + 1��m− s + w + 1�
�

and

�F ∗
12Ys�m

�t � xr � =
∫ �

t
f ∗
12Ys�m

�y � xr �dy

= �n+ a�
s−1∑
w=0

C3

�n+ a+m− s + w + 1��m− s + w + 1�

×
[
1+ �m− s + w + 1� ln

(
t
L

)
I1�xr � L�

]−�r+c�

�
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Bayesian Prediction Based on Hybrid Censored Data 81

Case II.

�F ∗
2Ys�m

�t � xK� =
{�F ∗

21Ys�m
�t � xK�� 0 < t ≤ L�

�F ∗
22Ys�m

�t � xK�� t > L�
(4.28)

where

�F ∗
21Ys�m

�t � xK� =
∫ L

t
f ∗
21Ys�m

�y � xK�dy +
∫ �

L
f ∗
22Ys�m

�y � xK�dy

=
s−1∑
j=0

C3

n+ a+m− s + w + 1

(
1−

[
I2�xK� t�

I2�xK� L�

]−�K+c�)

+ �n+ a�
s−1∑
w=0

C3

�n+ a+m− s + w + 1��m− s + w + 1�
�

and

�F ∗
22Ys�m

�t � xK� =
∫ �

t
f ∗
22Ys�m

�y � xK�dy

= �n+ a�
s−1∑
j=0

C3

�n+ a+m− s + w + 1��m− s + w + 1�

×
[
1+ �m− s + w + 1� ln

(
t
L
�

I2�xK� L
) ]−�K+c�




5. Numerical Results

To illustrate the inferential procedures developed in the preceding sections, we
present here a numerical study for the Exponential(�� distribution when � is
unknown and the Pareto(�� �) distribution when both parameters � and � are
unknown.

Example 5.1. To illustrate the prediction results for the Exponential��� distribution
when � is unknown, let us consider the data given by Bartholomew (1963) consisting
of lifetimes of 20 items on a life-test for a pre-fixed time of 150h. During that period,
15 items failed with the following lifetimes, measured in hours:

3� 19� 23� 26� 27� 37� 38� 41� 45� 58� 84� 90� 99� 109� and 138


We shall use these data to consider two different Type-I hybrid censoring
schemes:

1. When r = 15 and T = 130. Since T < x15�20, the life-test would have terminated
in this case at T , and we would have obtained the following data: 3, 19, 23, 26,
27, 37, 38, 41, 45, 58, 84, 90, 99, and 109;

2. When r = 15 and T = 150. Since x15�20 < T , the life-test would have terminated
in this case at time x15�20 = 138, and we would have obtained the following data:
3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90, 99, 109, and 138.
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82 Shafay and Balakrishnan

As done previously by Bartholomew (1963) and Childs et al. (2003), we assume
these data to have come from the Exponential(�) distribution, where � is unknown.
Based on the above two Type-I hybrid censoring schemes, we then used the results
presented earlier in Sec. 4.1 to construct 95% one-sample Bayesian prediction
intervals for OS Xs�n, s = 16� 
 
 
 � 20, from the same sample as well as 95% two-
sample Bayesian prediction intervals for OS Ys�m, s = 1, 5, 10, 15, 20, from a
future sample of size m = 20. To examine the sensitivity of the Bayesian prediction
intervals with respect to the hyperparameters �c� d�, Table 1 presents the lower and
upper 95% one-sample Bayesian prediction bounds for Xs�n, s = 16� 
 
 
 � 20, for the
choices of c = 0
9� 1� 1
1 and d = 50� 55� 60. Similarly, the lower and upper 95%
two-sample Bayesian prediction bounds for Ys�m, s = 1� 5� 10� 15� 20, for the choices
of c = 0
9, 1, 1.1 and d = 50� 55� 60, are presented in Table 2.

Example 5.2. To illustrate the prediction results for the Pareto��� �� distribution
when both parameters � and � are unknown, we generated OS from a sample of size
n = 20 from the Pareto distribution. The generated OS from the Pareto distribution
(with � = 3 and � = 6) are as follows:

6
046� 6
229� 6
445� 6
493� 6
856� 7
061� 7
097� 7
100� 7
163� 7
226� 7
344� 8
910�

9
290� 9
360� 9
525� 9
836� 10
263� 11
113� 15
769� and 39
211


We will use these data to consider two different Type-I hybrid censoring
schemes:

1. When r = 15 and T = 9
4. Since T < x15�20, the life-test would have terminated
in this case at T , and we would have obtained the following data: 6.046, 6.229,
6.445, 6.493, 6.856, 7.061, 7.097, 7.100, 7.163, 7.226, 7.344, 8.910, 9.290, and 9.360;

2. When r = 15 and T = 9
6. Since x15�20 < T , the life-test would have terminated
in this case at time x15�20, and we would have obtained the following data: 6.046,
6.229, 6.445, 6.493, 6.856, 7.061, 7.097, 7.100, 7.163, 7.226, 7.344, 8.910, 9.290,
9.360, and 9.525.

We assume these data to have come from the Pareto(�� �) distribution, where
both parameters � and � are unknown. Based on the above two Type-I hybrid
censoring schemes, we then used the results presented earlier in Sec. 4.2 to construct
95% one-sample Bayesian prediction intervals for OS Xs�n, s = 16� 
 
 
 � 20, from the
same sample as well as 95% two-sample Bayesian prediction intervals for OS Ys�m,
s = 1� 5� 10� 15� 20, from a future sample of size m = 20. To examine the sensitivity
of the Bayesian prediction intervals with respect to the hyperparameters �a� b� c� d�,
we used three different choices of the hyperparameters �a� b� c� d�: �1� 9� 3� 1�,
�1� 9� 6� 2�, �1� 9� 9� 3�. The corresponding results for the one-sample and two-sample
predictions, for these three choices of the hyperparameters, are presented in Tables 3
and 4, respectively.

6. Concluding Remarks

1. From Tables 1–4, we notice that, when we use the same value of r but larger T ,
the Bayesian prediction bounds become tighter as expected since the duration of
the life-testing experiment is longer in this case.
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2. It is evident from Tables 1 and 2 that, in the case of the exponential distribution,
the lower as well as upper bounds are relatively insensitive to the specification of
the hyperparameters �c� d�.

3. It is also evident from Tables 3 and 4 that, in the case of the Pareto
distribution, the lower bounds are relatively insensitive to the specification of the
hyperparameters �a� b� c� d� while the upper bounds are somewhat sensitive.

4. If the vector of prior parameters � is unknown, the empirical Bayes approach
could be used in estimating such prior parameters based on past samples; see, for
example, Maritz and Lwin (1989). Alternatively, one could use the hierarchical
Bayesian method in which some suitable prior for � could be proposed; see, for
example, Geisser (1990) and Bernardo and Smith (1994). Work in these directions
are currently under progress and we hope to report these findings in a future
article.
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