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One- and two-sample tests for single-locus
inbreeding coefficients using the bootstrap
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Two bootstrap procedures are proposed to perform one- and two-sample tests on inbreeding
coefficients for single loci by resampling over the genotypes. These tests allow testing against a
broad range of new alternative hypotheses in addition to panmixis. Monte Carlo simulations show
that the coverage probability of these tests behaves satisfactorily if the number of bootstrap
resamples is larger than or equal to 2500 and the sample size is larger than or equal to 20, for the
case of two alleles. As the fixation index of the underlying distribution becomes more extreme,
higher sample sizes are required to obtain a reliable test. Two explicit formulae for the power of the
two tests are estimated from Monte Carlo simulations, and a comparison with the classical chi-
square test is made. A Turbo-Pascal computer program is available to perform the two presented
bootstrap tests.
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Introduction

The Hardy-Weinberg (HDW) law is of great
importance in population genetics and states that
within one generation, genotype frequencies will follow
the multinomial distribution with the allele frequencies
as the distribution parameters, provided that the
gametes in that population associate completely at
random and no selective forces are active (Lessios,
1992).

Statistical tests for conformity of observed genotype
frequencies to HDW-expectations often lack generality
and may only be applied when specific assumptions are
met. Large sample goodness-of-fit tests can give false
and misleading P-values when sample sizes are small
and/or some expected cell-counts are sparse or equal
to zero, except under some very restricted conditions
(Sokal & Rohlf, 1981; Lessios, 1992; but see Agresti,
1990). To overcome this problem many corrections
have been proposed, but the improvement in correct-
ness of the statistical test is often limited (Guo &
Thompson, 1992). Exact tests are restricted to cases
with few alleles (say, 4-3) because of the very high
computation time (Herndndez & Weir, 1989; Guo &
Thompson, 1992; Lessios, 1992). Pooling of genotypes

*Correspondence.

or alleles is often applied to reduce the number of cells
in the contingency table so that goodness-of-fit tests
can be performed correctly or, if necessary, the
complete enumeration of the exact significance level is
possible. However, pooling may obscure deviations
from HDW-expectations (Swofford & Selander, 1989;
Lessios, 1992; Zaykin & Pudovkin, 1993). The use of
a Monte Carlo procedure has been suggested by
Herndndez & Weir (1989) and a general Monte Carlo
algorithm to approximate the exact significance level of
a test of HDW-conformity has been proposed by Guo
& Thompson (1992).

Lessios (1992) pointed out that extensive statistical
tests for HDW-conformity are of limited value unless
they are performed with the intention of testing a parti-
cular biological or genetical hypothesis. This is, for
example, the case when comparing an observed fixa-
tion index with the fixation index expected under each
theoretical condition (for calculation of expected
fixation indices under various conditions see Wright,
1969, p. 174-210 and Brown, 1979), or when
comparing the observed fixation indices of two popula-
tions that differ with respect to a factor which is
expected to cause the deviations from HDW-expecta-
tions (Lessios, 1992). The above cited test procedures
obviously lack the generality to test against all these
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alternatives. This problem can be rectified by the jack-
knife or bootstrap procedure. The use of these
methods has been proposed to estimate the distribu-
tion of F-statistics for multiple loci by resampling over
all the scored loci (Weir & Cockerham, 1984; Weir,
1990a,b), but no general resampling algorithm is avail-
able to estimate the distribution of observed fixation
indices for single loci by resampling over genctypes. In
this paper we present two general bootstrap
algorithms: the first can be applied to compare statisti-
cally an observed fixation index with a fixed expected
value and the second one to compare two observed
fixation indices. The behaviour of these two test proce-
dures will be investigated by Monte Carlo simulations.
A Turbo-Pascal (version 3.0) program which is avail-
able free of charge upon request, was written on an
IBM 386 PC to perform these tests. (To obtain the
program send a formatted 3.5 inch dise to the first
author.)

The bootstrap

Efron (1979) introduced a very general resampling
procedure, the ‘bootstrap’, for estimating the distribu-
tions of statistics based on independent observations.
Let X=X, X,, .., X, be a random sample of size n of
independent, identically distributed (iid.) random
variables with common but unknown distribution func-
tion F, and x=x, x,, .., X, its observed realization,
and let R(X,F) be a statistic of interest for which one
wants to estimate the distribution. The bootstrap
method proceeds by constructing the empirical distri-
bution function F,, drawing a random sample of size #,
with replacement, from F, and approximating the
sampling distribution of R(X,F) by the bootstrap
distribution of R* = R(X* F,). Efron (1979) suggests a
Monte Carlo approximation to estimate the bootstrap
distribution of R*. Based on this bootstrap distribu-
tion, several methods have been proposed to estimate
confidence intervals (C.I.) and to perform hypothesis
tests (for reviews see Efron & Tibshirani, 1986; Efron,
1987; Hall, 1988; Hall & Wilson, 1991). Hall and
Wilson (1991) provide two guidelines for bootstrap
hypothesis testing. They recommend resampling the
sample data B times, calculating ¢*,= | R*(X*,F,)—
R(X,F)|/o* for each bootstrap sample, taking
=¥ g1 - oy Where 1¥;, is the ordered statistic of r*; and
rejecting Hy if [ R(X,F )=~ Ry |/o > t. This method per-
forms well if a ‘good’ estimate of o is available. With
fixation indices the variance must be estimated by the
bootstrap, resulting in a nested procedure with high
computation times. Hall and Wilson (1991) suggest
that in such cases the bootstrap pivoting (i.e. dividing
by &) may be disregarded.

Monte Carlo simulations

Two errors can be made while performing a statistical
test: (a) falsely rejecting the null hypothesis which is
known as a type I error, or (b) falsely accepting the null
hypothesis, the so-called type Il error. Two error
probabilities are associated with these error types,
namely o and § respectively. Ideally, one would like to
keep both a and B close to zero. In practice this is not
possible, and usually one keeps a fixed { <0.05) while
B and consequently the power of the test depends on
the sample size, the minimal difference one wants to
detect and the test procedure (Siegel & Castellan,
1988).

The two error probabilities can be investigated by
Monte Carlo simulations (Bickel & Krieger, 1989). In
each simulation step, a dataset is generated from an
underlying distribution, and the test is performed. This
is repeated many (M) times and one counts for
example the number (N) of tests where P <0.05. If the
data were generated from the null distribution, one
would ideally expect that 1—N/M (ie. the coverage
probability) is close to 0.95 (ie. the nominal
value =1 — a ). Analogously, the power of a test can be
investigated. The only difference to the previous
approach is that datasets are generated from an alter-
native distribution.

Estimation of the inbreeding coefficient

The F-statistics Fgy, Fy; and Fg introduced by Wright
(1951) offer a convenient way to summarize the
population structure (Weir and Cockerham, 1984). Fig
and F; measure the deviations from HDW-propor-
tions in the subpopulation and the total population
respectively, while Fg; measures the genetic differ-
entiation between subpopulations (Nei, 1977). Nei
{(1977) showed that the gene diversity of the total
population can be partitioned into its intra- and inter-
subpopulational components when gene diversity is
defined as the frequency of heterozygotes expected
under HDW-equilibrium. Therefore he reformulated
the three F-statistics and obtained for Fg, which is the
statistic of interest here, the following expression:

_Hs—H,

F,

18 HS ’
where H;=observed heterozygosity in subpopulation
S and Hg=expected heterozygosity under HDW-
conditions. Nei (1978) proposed an unbiased estimator
for Hy for a single locus which is given by:
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where n=sample size and f;
allele.

=frequency of the ith

One-sample test

To test if an observed F g differs from an expected
value F, we propose the following bootstrap algorithm:

(1) construct F,, where the x;s contain the genotypes,
(2) draw a bootstrap sample X* of size n from F,,

(3) calculate F*;s; based on X*, and r*,= | F¥, —

(4) repeat steps 2 to 3 B times, and

(5) P-value = proportion of times that t*,> | Fig— F,|.
By taking, for example, 1*,= F*5, — Fs and comparing
this value to Fig—F, without taking the absolute
values, a one-sided hypothesis test at the 0.05 signifi-
cance level with H,:F ;> F, can be conducted.

We performed Monte Carlo simulations of size
1000 for four different sample sizes (10, 20, 50 and
100) and six different sizes of bootstrap resamples
(100, 500, 1000, 2500, 5000 and 10000) with
a =0.035, to investigate the behaviour of the coverage
probability, for the case of two alleles with both the

allele frequencies equal to 0.5 and H:F;s=0. Data
were generated from a multinomial distribution in

FISI!

Tahle 1 Coverage probabilities for the one-sample
bootstrap test, as estimated by Monte Carlo simulations for
four different sample sizes and six different numbers of
bootstrap resamples with the underlying F,s equal to zero
and HyF =0

Number of bootstrap resamples

Sample
size 100 500 1000 2500 5000 10000
10 060 073 083 079 084 0.83
20 080 092 092 094 093 0.96
50 084 093 092 093 095 0.94
100 093 096 094 096 096 0.95
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Turbo-Pascal (version 3.0).. The pseudorandom
number generator was seeded before each series of
random numbers was generated in order to make the
pseudorandom numbers as ‘random’ as possible
{Duntemann, 1985). The distribution parameters were
calculated according to Wright’s (1969, p.175) formu-
lae. These simulations (Table 1) show that the coverage
probability differs maximally only 2 per cent from the
nominal level if the number of bootstrap resamples (B)
is larger than or equal to 2500 and if the sample size is
larger than or equal to 20. For very small samples
( <20), the coverage probability seems to be lower than
expected, even for very large numbers of bootstrap
resamples. For large sample sizes (100) a B equal to
500 seems already to result in a coverage probability
close to the nominal level. The coverage probabilities
for the one-sample test with HyFg=F, where F,
ranges from 0 to 0.9, estimated with Monte Carlo
simulations of size 1000 and 2500 bootstrap
resamples, are summarized in Table 2. The coverage
probability becomes much lower than the expected
nominal level as the fixation index of the underlying
distribution becomes more extreme for the sample
sizes 10 and 20. This effect seems to be strongest for
the smallest sample size and is absent for the larger
sample sizes ( = 50).

We estimated the power of the one-sample test, with
Monte Carlo simulations of size 1000 for three sample
sizes (20, 50 and 100), B= 2500, a =0.05, F s ranging
from 0.1 to 1, and HyF;3=0 (Table 3). The sample
size equal to 10 was omitted from this analysis since
the bootstrap test seems to fail here in the sense that
the type I error rate is higher than expected. In order to
be able to predict the power of the test for conditions
other than in the simulation, we used a loglstlc regres-
sion approach to model the power of the test in relation
to the underlying Fis and the sample size (S). Under
the null hypothesis, the reduction in deviance
(DEV, .4uction) by adding a variable to the model follows
approximately a chi-square distribution with 1 degree
of freedom for continuous variables (Dobson, 1990).

Table 2 Coverage probabilities estimated by Monte Carlo simulations (M =1000)
with the number of bootstrap resamples equal to 2500 for four different sample
sizes and the underlying F s ranging from 0 to 0.9.

F s of the underlying distribution

Sample
size 0 0.1 02 03 04 05 06 07 0.8 0.09
10 087 090 091 086 080 077 065 047 032 002
20 094 050 090 092 091 089 086 089 083 076
50 096 095 095 095 094 093 094 096 092 094
100 095 094 094 093 095 095 096 095 094 095
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Table 3 Power of the one-sample bootstrap test as estimated by Monte Carlo
simulations for three different sample sizes and F ranging from 0.1 to 1

F s of the underlying distribution

Sample
size 01 02 03 04 05 06 07

20 0.09 017 033 055 074 086 092
50 011 028 051 082 096 099 1
100 013 052 083 099 1 1 1

0.8 09 1
098 099 1
1 1 1
1 1 1

The residual deviance follows approximately a chi-
square distribution with the residual number of degrees
of freedom under the hypothesis that the model gives a
good fit {(Dobson, 1990). A model fit in GLIM resulted
in the following model:

1-f=1-exp(—log.(l+exp(—3.308+6.585F
+0.1059F iS))).

(DEV, yction ©quals 1003, 441 and 244 respectively for
the intercept, Fis and FigS (P<0.0001 in all three
cases); § on its own was not included in the model:
DEV. jucion=1.89, 1 df, P=0,17) The residual
deviance of the model equals 16.57 with 30 df
(P=0.98) indicating a good model fit.

Two-sample test

To test if two fixation indices differ significantly from
each other one could take the 95 per cent confidence
intervals and reject the null hypothesis of no difference
if the intervals do not overlap (Weir, 1990b). This
conservative approach (Crowley, 1992) can be
improved by using approximately the same bootstrap
algorithm as for the one-sample case. The test statistic
of interest here is the difference between the two
observed fixation indices (d = F5, ~ Fs,} instead of
Fig. If d differs significantly from zero, the two fixation
indices can be considered significantly different from
each other. By keeping the resampling separate for the
two fixation indices, this bootstrap procedure should
be less dependent on the similarity of the underlying
distributions than most other statistical procedures
(Crowley, 1992),

As before, one-sided hypotheses can be tested by
omitting the absolute values. To investigate the cover-
age probability of the two-sample bootstrap test we
generated for each Monte Carlo simulation two data-
sets of equal sample size independently from a multi-
nomial distribution with Fg=0. We performed for
three samples sizes (20, 50 and 100), and six different
numbers of bootstrap resamples {100, 500, 1000,
2500, 5000 and 10000), Monte Carlo simulations of
size 1000 for the case of two alleles with both allele

Table 4 Coverage probabilities for the two-sample
bootstrap test, as estimated by Monte Carlo simulations for
three different sample sizes and six different numbers of
bootstrap resamples

Number of bootstrap resamples

Sample
size 100 500 1000 2500 5000 10000
20 096 098 096 094 093 0.94
50 092 095 096 095 096 095
100 098 098 093 095 095 0.95

frequencies equal to 0.5 and H:F g, = Fg,. The results
are summarized in Table 4 and show that the coverage
probability deviates by maximally 3 per cent from the
nominal level. A higher accuracy can be achieved by
increasing the number of bootstrap resamples.

The results of the power estimations are summar-
ized in Table 5. We generated the two datasets
seperately. For the first, F,s was kept equal to 0 while
for the second Fg ranged from 0.1 to 1. The logistic
regression model fit in GLM resulted in the following
formula:

1-8=1-exp(—log(1+exp(—3.200+4.667F
+0.0719F S))).

(DEV, ueiion ©quals 1176, 449 and 306 respectively for
the intercept, Fg and FigS (P<0.0001 in all three
cases); S on its own was not included in the model:
DEV_ q,cien=0.24, 1 df, P=0.62.) The residual
deviance of the model equals 36.56 with 30 d.f.
(P=0.19) indicating a good model fit.

Comparison with the power of the chi-square
test

When the null hypothesis is false, the chi-square and
the likelihood ratio test statistics have approximate
noncentral chi-square distributions (Agresti, 1990).
This property can be used to estimate the power of
these tests by estimating the noncentrality parameter.
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Table 5 Power estimations of the two-sample bootstrap test as estimated by Monte
Carlo simulations for three different sample sizes and the difference between the
two underlying fixation indices ranging from 0.1 to 1

FIS]_FIS2

Sample
size 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

20 004 010 024 032 046 060 069 077 093 1
50 007 025 031 047 079 087 094 097 099
100 012 030 058 086 093 095 098 1 1 1

—

For Wright's model this parameter is given by:
A=N(m—-1)F? (Haber, 1980),

where N=sample size, m=number of alleles and
F=fixation index. The power of a chi-square test to
detect the given F with sample size N and m alleles can
be found in noncentrality tables (Agresti, 1990). We
compared the power of the chi-square test to that of
the one-sample bootstrap test for sample sizes equal to
20, 50 and 100, F ranging from 0.1 to 0.9, m=2 (1
df), and H,:Fs=0. We calculated the proportional
difference between the power of the bootstrap test and
the chi-square test relative to the power of the boot-
strap. The chi-square test has up to =20 per cent less
power than the bootstrap test for small sample sizes
and F s <0.6 (Table 6). For larger samples, the powers
of the bootstrap and chi-square test seem to become
comparable.

Discussion

We presented two bootstrap tests which allow us to
compare statistically: (a) an observed fixation index
with any expected value between —1 and 1, and (b)
two observed fixation indices, both for single loci and
by resampling over the genotypes. Whereas all other
statistical procedures test for HDW-conformity, these
two bootstrap tests provide a way to test against many
other alternative hypotheses.

The bootstrap can be applied in almost every situa-
tion where the data are independent and are a random
sample of the population (Crowley, 1992). This feature
does, however, also incorporate the danger that it will
be used without considering the behaviour of the test in
a new situation. There has been insufficient basic
research to determine when the bootstrap can be
expected to be reliable (Noreen, 1989; Manly, 1991),
which may not always be the case (Crowley, 1992). The
nonparametric bootstrap distribution is asymptotically
highly accurate (Bickel & Freedman, 1981; Singh,
1981; Efron & Tibshirani, 1986), but that is no

Table 6 Proportional (per cent) difference between the
power of the one-sample bootstrap and chi-square test for
three sample sizes, Fiq between 0.1 and 1, and Hy:F' (s =0

F 5 of the underlying distribution

Sample

size 0.1 02 03 04 05 06 07 08 09 1

20 19 14 18 21 18 12 4 3 1 0
50 0 -4 -10 2 2 0 0 0 0 0
100 0 -6 o -2 0 0 0 0 00

Positive values indicate that the bootstrap test has higher
power.

guarantee for a good small sample behaviour (Efron &
Tibshirani, 1986; Noreen, 1989), and the meaning of
‘large’ in this context is usually not clear (Manly, 1991).
Empirical investigation of the behaviour of the test is
very important (Manly, 1991; Crowley, 1992). Monte
Carlo simulations offer a convenient way to investigate
the behaviour of a test (Bickel & Krieger, 1989). For
both the one- and two-sample bootstrap tests proposed
here, these simulations show that the type I error
probability is close to the expected level (i.e. 0.05)if the
number of bootstrap resamples is larger than or equal
to 2500 and for sample sizes =20, confirming the
reliability of the tests. For smaller sample sizes how-
ever, the bootstrap test seems to fail. Also, as the fixa-
tion index of the underlying distribution becomes more
extreme the bootstrap test seems to become less
reliable for the smaller sample sizes. The reason for
that is that the bootstrap implicitly assumes that the
sample contains all the ‘important’ information from
the total population (Crowley, 1992). For example, as
the underlying fixation index increases, the probability
of having only homozygotes in the sample increases. In
that case the estimated fixation index equals 1 and all
the fixation indices based on a resample of the data will
also be equal to 1 resulting in a P-value equal to zero.
The presence of one heterozygote in that sample
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contains very important information since it provokes
variability in the bootstrap resamples. Thus, if one
expects an extreme underlying fixation index, the
sample size must be large enough to avoid obtaining
pure homo- or heterozygous samples. The same
problem may arise if there are for example two alleles
with one rare allele. The probability of having a pure
homozygous sample increases and sample sizes must
be taken that are sufficiently large.

As Lessios (1992) and Guo & Thompson (1992)
pointed out, the fact that the null hypothesis cannot be
rejected does not necessarily indicate that the null
hypothesis holds. This may simply be the result of a
lack of power due to a small sample size. The power of
the statistical test for the given sample size needs to be
estimated to get an idea of the type II error probability
(8). The formulae found for the two bootstrap tests
may prove useful in such cases. These formulae should,
however, be used with caution since it has not been
tested whether they hold under different conditions,
with more alleles and/or other allele frequencies.

Since for the two presented bootstrap tests the
distribution of fixation indices for single loci is
considered, the tests can be expected to have maximal
power to detect factors that affect all alleles or geno-
types at that locus, whereas for factors that may act on
only one or a few alleles or genotypes, such as selec-
tion, the presented methods may have reduced power.
The methods can be easily extended, however, to the
estimation of the distribution of fixation indices for
single alleles which will result in a higher power to
detect forces like selection. This extension will be
prone, however, to type I errors because of the multiple
testing within each locus. Significance levels may be
adjusted by a classic Bonferroni technique or by a
sharper method of sequential comparisons {Hochberg,
1988; Lessios, 1992).

The comparison of two observed fixation indices
with the two-sample bootstrap test is not restricted to
the comparison of the same loci with comparable
alleles, but can be done between different loci of differ-
ent species. By repeatedly resampling the data
independently for the two samples and calculating the
bootstrap estimate of the fixation indices, the distribu-
tions of the two fixation indices are compared. In fact
one compares the degree of deviation from HDW-
expectations and thus of the magnitude of the
processes leading to the fixation indices for the com-
pared loci. Since this method should be less dependent
on the similarity of the underlying distributions (Crow-
ley, 1992), it can even be applied to compare different
loci from different species in contrast to the randomi-
zation method. It is, of course, up to the investigator to
decide which comparisons are biologically relevant.

Although more simulations must be performed,
especially to investigate the behaviour of the tests for
multiple allele situations, these bootstrap procedures
seem to be a promising technique in statistically
comparing inbreeding coefficients. We recommend the
application of these bootstrap tests if hypotheses other
than testing against panmixis are required. The sample
sizes should be kept > 20, and should be increased if
the underlying fixation index is expected to be extreme
and/or if certain alleles are rare such that the probabi-
lity of obtaining samples from which resamples show
no variability is high. The number of bootstrap
resamples should be > 2500 and preferably equal to
5000. Since it takes only a few minutes to perform the
test on an IBM 386 PC, it may be better to set the
number of bootstrap resamples as high as possible.
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