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Abstract— In this paper, we propose multiuser multiple-input
multiple-ouput (MIMO) one- and two-way relaying protocols.
Several wireless MIMO node pairs are establishing either unidi-
rectional or bidirectional transmission links via a single decode-
and-forward MIMO relay without causing interference to each
other. For both half-duplex two-phase relaying protocols, the
relay separates messages of different node pairs spatially by
using zero-forcing based methods, whereas, in order to cancel
the interference within the bidirectional links, XOR precoding
followed by self-interference cancellation is employed. Both sum
rate and maxmin fairness optimizations, as well as quality-of-
service assurance, are considered for the design of the precoders
at the relay. The corresponding optimization algorithms for both
one- and two-way relaying have been developed using semidefinite
programming, which consider the intersection of multiple access
and broadcast phases’ rate regions.

Index Terms— Multiuser communication, MIMO, decode-and-
forward, convex optimization, one- and two-way relaying.

I. INTRODUCTION

Incorporating the relay channel with multiple-input
multiple-output (MIMO) communications, in [1], [2], the
capacity of the conventional two-hop MIMO relay channels
with precoding has been investigated for a case of a single
source/destination (S/D) pair and a relay. MIMO precoding
techniques have been investigated in [3] for a scenario with one
S/D pair and two relays. In [4], MIMO relaying with a single
MIMO source, a MIMO relay, and multiple single-antenna
destinations has been considered, where the relay simply
amplifies and forwards the received signal to the destinations.

The aforementioned conventional two-hop relaying pro-
tocols suffer from spectral efficiency loss due to the two
channel uses required for the transmission from source to
destination. Two-way relaying (TWR) [5], which also occupies
two channel uses, has been proposed to reduce this loss by
establishing a bidirectional transmission link between source
and destination via a relay. In the first phase, both nodes trans-
mit simultaneously via a multiple access scenario to the relay.
In the second phase, the relay broadcasts a common message
which is obtained by combining the received messages. Since
the nodes know their own transmitted signal, they subtract the
back-propagated self-interference prior to decoding. Employ-
ing XOR precoding and superposition coding, in [6], transmit
channel state information (CSI) has been considered at the
decode-and-forward (DF) relay, which is motivated by the
assumption that the channel stays constant during two phases,
and MIMO channels are estimated for decoding in the first
phase anyway. The broadcast capacity region of MIMO TWR

has been derived in [7]. Moreover, non-regenerative relaying
based MIMO TWR has been considered in [8].

In this paper, we propose multiuser MIMO one- and two-
way relaying protocols with a single DF relay. e.g., an IEEE
802.11n access point. We assume that all nodes in the network
are equipped with multiple antennas, and the transmitting
nodes do not have CSIT except the relay, which has perfect
global CSI knowledge of the network. In the network, there
are multiple wireless node pairs, each of which would like
to either create an information flow from one node to other,
i.e., one-way relaying (OWR), or exchange information in
between two nodes, i.e., TWR, via the same single relay
without causing any interference to other node pairs. If a pair
prefer to use OWR but also want to exchange information, then
two one-way communication links are established one after
the other towards opposite directions, i.e., four channel uses.
For both schemes, in the downlink from the relay, we employ
zero-forcing beamforming to separate private messages of
different node pairs. Whereas, as a special case for TWR,
on top of spatial separation of pairs, the interference between
the exchanged messages of each pair is cancelled through
XOR precoding followed by self-interference cancellation. For
both relaying schemes, we design the precoding matrices at
the relay such that the overall two-phase (hop) sum rate is
maximized. A semidefinite programming (SDP) based iter-
ative algorithm is proposed, which exploits the geometrical
interpretation of the intersection of the multiple access and
the broadcast phases’ rate regions. Possible extensions of the
optimization to maxmin-fairness and quality-of-service (QoS)
requirements are also addressed.1

II. SYSTEM AND SIGNAL MODEL

We consider a DF relaying scenario, where K node pairs
communicate via a single DF relay, i.e., there are 2K+1 nodes
in total. We define two node sets U1 and U2, in which we group
one of the members of each pair. Without loss of generality,
we assume that each node in the network is equipped with
N antennas except the relay, which has M antennas. None of
the nodes in U1 and U2 has transmit CSI knowledge, and there
are no direct links between U1 and U2. In the following we

1Notation: Boldface lowercase and capital letters indicate vectors and
matrices, respectively. The superscripts (·)∗, (·)T , (·)H stand for complex
conjugate, matrix transpose, and complex conjugate transpose, respectively.
The operators E{·}, Tr(X), rank(X), null(X), I and � denote expectation, the
trace of the matrix X, the rank of X, the nullspace of X, an identity matrix with
a corresponding size, and positive semidefiniteness, respectively. CN (0, σ2)
stands for a zero-mean complex normal distribution with variance σ2.
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Fig. 1. The transmission protocols for one- and two-way relaying. The
numbers on the arrows indicate the indices of channel uses, i.e., time-slots.

present the principles of two half-duplex multiuser relaying
protocols: one-way relaying and two-way relaying.

A. Multiuser One-way Relaying

The nodes in U1 and U2 are assigned as the sources and
the destinations, respectively. The data flow is unidirectional,
i.e., from sources to destinations. The one-way protocol is
accomplished in two-hops (phases) with equal time share: a
concurrent transmission from all sources to the relay and a
broadcast transmission from the relay to the destinations. In
the first phase, K sources transmit simultaneously to the relay.
The source of the kth pair transmits the bit sequence x(k)

s

to its destination. Defining the transmit signals of the kth
source as x(k)

s → a(k)
s ∈C

N , the received signal r ∈ C
M at

the relay is r =
∑K

k=1
Hka(k)

s + nr, where Hk ∈ C
M×N is

the channel matrix between the kth source and the relay with
identically and independently distributed (i.i.d.) CN (0, σ2

Hk
)

entries, and nr ∼ CN (0, σ2
r I) is the complex additive white

Gaussian noise (AWGN). The transmit signals are subject
to the power constraint E{(a(k)

s )Ha(k)
s } ≤ Ps,∀k. The relay

efficiently decodes the information from all sources assuming
that it has sufficient number of antennas, which depends on
min(2K,M) and/or the number of independent spatial streams
transmitted from the users.

In the second phase, the relay re-encodes the received
information from the kth source as a(k)

r . Next, it broadcasts
the transmit signal ar =

∑K
k=1 Wka(k)

r , which is the superpo-
sition of a(k)

r ’s after precoding with the corresponding matrix
Wk. A fixed relay power constraint is imposed such that∑K

k=1 Tr(WkWH
k ) ≤ Pr. Further details about the structure

and the optimization of the precoder matrices Wk will be
given in the following sections. The received signal at the
kth destination is then given by

r(k)
d = GkWka(k)

r + Gk

∑K
�=1,� �=k W�a(�)

r + n(k)
d , (1)

where Gk ∈ C
N×M is the channel matrix between the relay

and the kth destination with i.i.d. CN (0, σ2
Gk

) entries, and the

AWGN noise n(k)
d ∼ CN (0, σ2

dI). The one-way transmission
protocol is illustrated in Fig. 1.a., through the arrows 1 and 2.

B. Multiuser Two-way Relaying

In contrary with OWR, both members of the kth pair
have data to transfer to each other. In other words, we
have two sources and two destinations per pair, and hence,
a bidirectional link is established via the relay in order to
exchange information. The nodes of the kth pair want to
exchange the bit sequence duple (x(k)

12 , x(k)
21 ), where x(k)

12 and
x(k)
21 represent the bit sequences to transmit from the node

in U1 to the node in U2 and vice-versa, respectively. In the

first phase, all 2K nodes transmit concurrently to the relay
through the same physical channel. Defining the transmit
signals (x(k)

12 , x(k)
21 ) → (a(k)

12 , a(k)
21 ) ∈ C

N , the received signal at
the relay is r̃ =

∑K
k=1

(
Hka(k)

12 + GT
k a(k)

21

)
+ ñr,where the

statistics of the noise term is same as in OWR, and channel
reciprocity is assumed, i.e., the channel from the relay to the
kth pair’s node in U2 is defined as Gk in Section II-A, and
hence, the channel from the kth pair’s node in U2 to the relay
is GT

k . Next, the relay decodes the information from all nodes.
In the second phase, the relay re-encodes the received

information and broadcasts back to all nodes through the
same channels as in the first phase, i.e., the channels are
assumed to stay constant over two phases. The transmit signal
of the relay ãr is determined by the decoded bit-sequences(
x(1)
12 x(1)

21 · · · x(K)
12 x(K)

21

)
from the first phase. The relay needs to

separate 2K nodes while broadcasting 2K independent mes-
sages, which is accomplished in two separate levels. Firstly,
in order to cancel the interference in between the members
of each pair, XOR precoding followed by self-interference
cancellation is used. With XOR precoding, two bit sequences
are combined on bit-level prior to encoding. Specifically, the
relay applies bitwise XOR operation on the both decoded bit-
sequences of the kth pair, and codes the resulting bit-sequence
x(k)
r , i.e., x(k)

12 ⊕ x(k)
21 = x(k)

r → ã(k)
r ,∀k ∈ {1, . . . , K}. Hence,

by after applying self-interference cancellation at the receiver
side, x(k)

12 and x(k)
21 do not anymore cause interference to each

other, i.e., separation in bit-level. However, different node
pairs and consequently messages, i.e., ã(k)

r , still need to be
separated through downlink, which is done spatially as will
be explained in Section III. Finally, the transmit signal of
the relay ãr is obtained by superposing ã(k)

r s after precoding
each with the matrix W̃k, i.e., ãr =

∑K
k=1 W̃kã(k)

r , where∑K
k=1 Tr(W̃kW̃

H

k ) ≤ Pr.
The received signals at the members of the kth pair in U1

and U2 are given respectively by

r̃(k)
U1

= HT
k W̃kã(k)

r + HT
k

∑K
�=1,� �=k W̃�ã(�)

r + ñ(k)
U1

,

r̃(k)
U2

= GkW̃kã(k)
r + Gk

∑K
�=1,� �=k W̃�ã(�)

r + ñ(k)
U2

, (2)

where the noise terms ñ(k)
m ∼ CN

(
0, σ2

dI
)

for m ∈ {U1,U2}.
After each node decodes the intended message, the self-
interference cancellation is done by applying a simple XOR
operation, i.e., x(k)

r ⊕ x(k)
12 = x(k)

21 , and x(k)
r ⊕ x(k)

21 = x(k)
12 .

III. ACHIEVABLE RATES AND PRECODING AT THE RELAY

A. Uplink to the Relay - Multiple Access Phase

Assuming that the relay has enough antennas for perfect
decoding, the relay decodes the information from all nodes
based on r and r̃ for one- and two-way relaying, respectively.
Using Gaussian codebooks, the achievable rates of transmitting
nodes in the first phase are described by the MIMO multiple
access channel (MAC) rate region. The MIMO MAC rate
regions without CSIT for multiuser one- and two-way relaying
are given respectively by the following set of inequalities

Rone
S ≤ log2

∣∣∣I + γ
∑

i∈S̃1

HiHH
i

∣∣∣,∀S ⊆ U1 (3)
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Rtwo
S ≤ log2

∣∣∣I+ γ
(∑

i∈S̃1

HiHH
i +

∑

j∈S̃2

GT
j G∗

j

)∣∣∣,∀S ⊆ U1∪U2(4)

which constitute in total 2K − 1 and 22K − 1 inequalities,
respectively, and γ := Ps

Nσ2
r

. S̃, S̃1, S̃2 represent the index sets
of all nodes in S for OWR, all U1 nodes in S for TWR, and
all U2 nodes in S for TWR, respectively. Because of no CSIT,
we use diagonal covariance matrices with equal weights.

B. Downlink from the Relay - Broadcast Phase

For both relaying schemes, there are K messages that
should be separated spatially. For OWR, it is a broadcast
channel with K destinations, and for TWR, it is a modified
broadcast channel with 2K destinations, where the members
of each pair is demanding the same message. Assuming CSI
at the relay, several MIMO broadcasting schemes have been
proposed in the literature for the design of the precoders.
Although dirty paper coding (DPC) is the optimal in terms of
maximizing the sum rate of the conventional broadcast chan-
nel, it is not practical because of its nonlinearity. Instead, we
focus on low-complexity solutions, e.g., block diagonalization
based zero-forcing beamforming (ZFB) [9], [10].

1) One-Way Relaying: We apply zero-forcing between the
destinations, and choose the precoding matrices, Wone

k such
that Wone

k satisfies the zero-forcing condition G�Wone
k = 0

for � 
= k, k = 1, . . . , K. In other words, defining

Fone
k = [GT

1 · · ·GT
k−1 GT

k+1 · · ·GT
K ]T ,

Wone
k is forced to lie in the nullspace of Fone

k . Since
M > rank(Fone

k ) is the condition for nonempty nullspace,
M > max1≤k≤K{rank(Fone

k )} must be satisfied to zero-force
and transmit data concurrently to all destinations.

Using the zero-forcing Wone
k in (1), the received signal at

the kth destination simplifies to r(k)
d = GkWone

k a(k)
r + n(k)

d .
Hence, the mutual information between the relay and the kth
destination can be expressed as

Ĩone
k = log2

∣∣∣I +
1
σ2

d

GkVone
k Λone

k (Vone
k )HGH

k

∣∣∣∣,

where Vone
k = null(Fone

k ) and can be computed through
the singular value decomposition (SVD) of Fone

k , Λone
k is

the covariance matrix of the kth transmit signal a(k)
r for

OWR, and Vone
k Λone

k (Vone
k )H := Wone

k (Wone
k )H . The optimal

power loading coefficients of Λone
k can be found by apply-

ing water-filling on Σk, which is obtained through SVD of
GkVone

k = UkΣkŨk [10]. We also assume that Tr(Λone
k )≤Pk,

where
∑K

k=1 Pk = Pr. Hence, denoting the optimal water
filling solution for Tr(Λone

k ) ≤ 1 with Λ̌one
k , Ĩone

k becomes

Ĩone
k = log2

∣∣I + (Pk/σ2
d)Σ2

kΛ̌
one
k

∣∣. (5)

2) Two-Way Relaying: The zero-forcing condition for TWR
differs from the previous case to G�Wtwo

k = 0, HT
� Wtwo

k = 0
for � 
= k, k = 1, . . . ,K. Hence, Wtwo

k is forced to lie in the
nullspace of Ftwo

k , which is defined as

Ftwo
k = [H1 GT

1 · · ·Hk−1 GT
k−1 Hk+1 GT

k+1 · · ·HK GT
K ]T .

Just like OWR, M > max1≤k≤K{rank(Ftwo
k )} must hold to

zero-force and transmit data concurrently to all nodes in
U1 ∪ U2 with TWR.

Substituting Wtwo
k in (2), the received signals at the mem-

bers of the kth pair in U1 and U2 for TWR become

r̃(k)
U1

= HT
k Wtwo

k ã(k)
r + ñ(k)

U1
and r̃(k)

U2
= GkWtwo

k ã(k)
r + ñ(k)

U2
.

Hence, the mutual information between the relay and the
members of the kth pair in U1 and U2 are written as

Ĩtwo
U1,k = log2

∣∣∣I +
1
σ2

d

HT
k Vtwo

k Λtwo
k (Vtwo

k )HH∗
k

∣∣∣∣,

Ĩtwo
U2,k = log2

∣∣∣I +
1
σ2

d

GkVtwo
k Λtwo

k (Vtwo
k )HGH

k

∣∣∣∣,

where Vtwo
k = null(Ftwo

k ), Λtwo
k is the covariance matrix

of the kth signal ã(k)
r for TWR, and Vtwo

k Λtwo
k (Vtwo

k )H :=
Wtwo

k (Wtwo
k )H . A water-filling solution can not be directly

applied here in order to find the maximal rates for both Ĩtwo
U1,k

and Ĩtwo
U2,k, because Λtwo

k is not beamforming to a single node
as in OWR but two, i.e., both nodes of the kth pair.

Achievable Downlink Rates: In the broadcast phase of
TWR, we are multicasting the kth common message a(k)

r to the
nodes of the kth pair, where the rate should be adjusted with
respect to the weakest user according to the general multicast
channel. However, employing XOR precoding, we differ from
the conventional multicast problem such that we can support
unbalanced rates for ã(k)

r by padding zeros to the lower-rate
bit sequence before XORing x(k)

12 and x(k)
21 at the relay. We

explain this feature with an intuitive and conceptual example:
Assuming x(k)

12 and x(k)
21 are perfectly decoded in the first

MAC phase at the relay, we denote the length of these bit
sequences with L

(k)
12 and L

(k)
21 , respectively. Now, say that

Ĩtwo
U1,k > Ĩtwo

U2,k, i.e., L
(k)
21 > L

(k)
12 , and the transmission rates

through the first phase are enough to support these broadcast
rates. Interpreting s12 (s21) consecutive bits of x(k)

12 (x(k)
21 ) as a

symbol to be encoded by a Gaussian codebook, the relay pads
s21 − s12 zeros after each s12 consecutive bits in x(k)

12 , such
that the length of x(k)

12 is extended to be L
(k)
21 . Obtaining x(k)

r

by XORing x(k)
21 and the extended x(k)

12 , we encode it with a
codebook of rate max{Ĩtwo

U1,k, Ĩtwo
U2,k} = Ĩtwo

U1,k.
At the receive sides, the node in U1 employs a codebook of

size proportional to Ĩtwo
U1,k to decode and obtain x(k)

r perfectly.
On the other hand, although the node in U2 can only decode
Ĩtwo
U2,k bps/Hz, and the common message has been encoded

with a codebook of size Ĩtwo
U1,k, it has an apriori knowledge

for decoding, i.e., there are some intentional and redundant
zeros padded per symbol to its intended bit sequence. Instead
of searching through 2nĨtwo

U1,k possible codewords, it can omit
2nĨtwo

U1,k − 2nĨtwo
U2,k of these, which stand for the additional

s21 − s12 bits per symbol, and do not bear information for
the node in U2. Hence, although the node in U2 can not fully
decode x(k)

r , it has perfect access to x(k)
12 -related part of it. In

other words, shrinking the size of its codebook, the number
of symbols that can be transmitted (correspondingly the trans-
mission rate) is reduced. To sum up, by using appropriate zero
padding and apriori knowledge at corresponding nodes, two-
way relaying can support unbalanced downlink rates for each

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE.



BC

MAC

R

R

R

R

�

�

BC

MAC

R

R

�

�*

�

1

2

a) c)

�

R

R

b)

1 iter.
st

2 iter.
nd

3 iter.
rd

4 iter.
th

5 iter.
th

Fig. 2. a) The achievable rate region for any pair of rate tuple. b) The
illustration of the iterations for φα,β . c) Search space reduction: For example,
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common message. Hence, the bidirectional broadcast capacity
region derived in [7] is achieved with our zero-padding based
proposal. In [3], equal downlink rates were assumed, which
achieves the broadcast capacity region at only one point [7].

Remark 1: The aforementioned formulations can be trivially
extended to the successive ZFDPC proposed in [9].

C. The Overall Two-Phase Rate Region

We define Rone
k as the overall two-phase rate of the trans-

mission between the members of the kth pair for OWR, and
Rtwo

U1,k, Rtwo
U2,k as the overall two-phase rates of nodes in U1 and

U2, respectively, belonging to the kth pair for TWR. Hence,
the overall two-phase rate region of both one- and two-way
relaying schemes can be defined by combining the multiple
access and broadcast phase rate constraints, i.e.,

{Rone
1 , · · · , Rone

K } ∈ Cone
MAC ∩ Cone

BC for OWR,

{Rtwo
U1,1, R

two
U2,1 · · · , Rtwo

U1,K , Rtwo
U2,K} ∈ Ctwo

MAC ∩ Ctwo
BC for TWR,

where Cone
MAC and Ctwo

MAC are the union set of all MAC related
inequalities represented by (3) and (4), respectively; Cone

BC :=
{Rone

k ≤ Ĩone
k , ∀k ∈ {1, ...,K}} and Ctwo

BC := {Rtwo
U1,k ≤

Ĩtwo
U1,k, Rtwo

U2,k ≤ Ĩtwo
U2,k,∀k ∈ {1, . . . , K}}. The final overall

transmission rates should be multiplied with 1/2 to introduce
the effect of two channel uses needed for both traffic patterns.

IV. OPTIMIZATION OF THE PRECODERS

A suboptimal but trivial choice of optimizing precoders
is to decouple multiple access and broadcast phases. Since
the maximal supportable rates for the first phase is readily
available (see (3) and (4)), the sum rate for the broadcast
phase can be maximized through the well-known schemes
and optimization techniques proposed in the literature for the
general MIMO broadcast channel [9], [10]. Then, in order to
find the overall two-phase rates, the resultant rates from the
broadcast phases must be crosschecked with the corresponding
multiple access phase’s rate constraints. Nevertheless, this
decoupling approach is suboptimal since resources can not
be fully utilized, i.e., the bottleneck phase can be different
for each node/link. Thus, although more complex, we aim to
find the overall two-phase optimal rates avoiding decoupling,
which differs the optimization procedure from the general
broadcast channel optimizations.

While optimizing precoders, we consider two common
figures of merit: sum rate and fairness. In the following,
we introduce the overall sum rate maximization problem and
present the corresponding optimization algorithm in details.
Besides, extensions of the optimization to QoS assurance and
maxmin fairness are addressed, but the related algorithms are
only sketched for the sake of brevity.

A. Sum Rate Optimization

The general sum rate maximization problems for OWR and
TWR are formulated respectively as

POWR : max
{Pk}K

k=1,{Ri}K
i=1

∑K
i=1

Ri

subject to {R1, · · · , RK} ∈ Cone
MAC ∩ Cone

BC ,
∑K

k=1
Pk ≤ PR, Ri ≥ 0∀i, Pk ≥ 0,∀k

PTWR : max
{Λtwo

k }K
k=1,{Ri}2K

i=1

∑2K
i=1

Ri

subject to {R1, · · · , R2K} ∈ Ctwo
MAC ∩ Ctwo

BC ,
∑K

k=1
Tr(Λtwo

k ) ≤ PR, Ri ≥ 0∀i,Λtwo
k  0,∀k,

where {R1, · · · , RK} := {Rone
1 , · · · , Rone

K } for OWR and
{R1, · · · , R2K} := {Rtwo

U1,1, R
two
U2,1, · · · , Rtwo

U1,K , Rtwo
U2,K} for

TWR. All constraints within both POWR and PTWR can
be modeled as SDP constraints independently from either
optimizing for power (POWR) or covariance matrices (PTWR).

Although both POWR and PTWR are convex problems, they
can not be solved through a trivial water-filling solution or
a simple SDP. Both compromise several logdet consisting
upper bound constraints on the variables building the objective
function, which can not be directly and trivially solved by the
available numerical SDP tools. In the following, we propose
an iterative algorithm which exploits the geometry of the
intersection of the uplink and the downlink rate regions, and is
independent of the value of K and different relaying schemes.
In the sequel, we consider sum rate optimization only for
TWR in details, and drop the expressions for OWR for the
sake of brevity. However, the derivations for TWR can be
directly applied for OWR by just changing the corresponding
constraints and optimization variables, which does not affect
neither the solution method, nor the structure of the algorithm.

Having K̃ = 2K nodes for information flow in TWR,
we search for the sum-rate optimal K̃ rate tuple inside a
space with K̃ dimensions, defined by the constraints in
multiple access and broadcast phases’ rate regions. Moreover,
this intersection region is convex by definition, i.e., it is the
convex hull of all achievable K̃ rate tuple. In the following,
we firstly give an intuitive simple motivating example for
K̃ = 2 case, and then, building on this framework, the general
sum rate maximization algorithm for arbitrary K̃ is presented.

1) 2-Dimensional Case: Each rate pair within K̃ rate tuple,
i.e., (R̄α, R̄β), where α, β ∈ {1, . . . , K̃}, α 
= β, is defined
in a 2-dimensional convex rate region Iα,β as depicted in
Fig. 2.a. with the shaded area. The relation between any
tuple within this region can be expressed through an angle
φα,β ∈ [0, π/2] as R̄β = R̄α tan(φα,β). Hence, the maximum
possible sum rate of this pair, i.e., R̄α+R̄β =R̄α(1+tan(φα,β)),
for a given φα,β is found by the quasi-convex problem Pφα,β

:

max τ subject to
(
τ, τ tan(φα,β)

)
∈ C(α,β)

MAC ∩ C(α,β)
BC , τ ≥ 0

where τ := R̄α, C(α,β)
MAC and C(α,β)

BC represent the convex MAC
and BC region constraints associated with the rate pair (α, β),
respectively; and we omit the power and semidefiniteness
constraints for notational simplicity. Modeling the mutual
information expressions of BC region as SDP constraints, the
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problem Pφα,β
can be efficiently and optimally solved by a

bisection method combined with SDP feasibility checks [11],
[12], but we drop the explicit expressions for the sake of
brevity. Computing the optimal τ�, we find the optimal rate
pair (R̄φ

α, R̄φ
β) = (τ�, τ� tan(φα,β)) which maximizes the sum

rate of the pair on the direction of φα,β . Note that the change
of optimization coordinates from cartesian to polar gives us the
opportunity to use the efficient bisection algorithm and reduce
the computational complexity significantly as K̃ increases.
Moreover, as it will be explained in the next section, it provides
the flexibility to reduce the optimization search space.

Next, since the rate region Iα,β is convex in terms of φα,β

(independently from the chosen pair or the employed relaying
scheme), we can search over the optimal φα,β that maximizes
R̄α + R̄β , using an unconstrained minimization method, e.g.,
the steepest descent method. To sum up, for each iteration of
the descent algorithm, i.e., for each chosen φα,β , we solve
Pφα,β

, and iterate until iterating φα,β further does not induce
significant change in sum rate (see Fig. 2.b. for an illustration.).

2) The General Case: Previously, we disregarded the con-
straints enforced by the relation of the chosen (α, β) pair with
other nodes in the set N\{α, β}, where N = U1 ∪ U2 is the
set of all nodes in the network. Since each pair (α, β) out of
K̃ dimensions (representing K̃ rate tuple) can be interpreted
through an angle φα,β , it may be conjectured that we need
K̃!/(2(K̃ − 2)!) angles to represent all relations between
all dimensions, whereas, in essence, we need only K̃ − 1
angles. This statement can be immediately proven by setting
one dimension fixed, say the νth one, and expressing all the
rest K̃ − 1 dimensions in terms of the νth dimension and a
corresponding angle. Thus, the rates for all dimensions can be
expressed as

Rν =
(
Rν , Rν tan(φν,μ1), . . . , Rν tan(φν,μK̃−1

)
)
,

for any ν ∈ N , where μ1, . . . , μK̃−1 are the members of the
set N\{ν}, and |N\{ν}| = K̃ − 1. Having the knowl-
edge of the vector φ = [φν,μ1 , . . . , φν,μK̃−1

], one can de-
rive all other angles through the relation tan(φμi,μj

) =
tan(φν,μi

)/ tan(φν,μj
), ∀i, j ∈ {1, . . . , K̃−1}, i 
= j. Hence,

for a given vector φ and any ν, the maximum sum rate for
TWR is obtained through the following quasi-convex problem

Pφ : max
Rν ,{Λtwo

k }K
k=1

Rν subject to Rν ∈ Ctwo
MAC ∩ Ctwo

BC , Rν ≥0,

Λtwo
k  0∀k,

∑K̃
k=1

Tr(Λtwo
k ) ≤ PR,

which can be efficiently solved with a bisection method
combined with SDP feasibility checks [11], [12]. Since the
K̃ dimensioned achievable rate region is convex by definition,
we can search over φ, whose elements φi ∈ [0, π/2], i =
1, . . . , K̃ − 1, using an unconstrained minimization method.

The overall sum rate maximization algorithm is summarized
with Asum. While implementing the bisection part of the
Asum, Rmin

ν is set to 0, Rmax
ν is chosen large enough according

to the operation mean SNR value, and ε is a small positive
number indicating the precision of the bisection algorithm.
Moreover, the search direction for φ is found through a nu-
merical first derivative computation, i.e., (f(x+ ε)−f(x))/ε.

Asum : SUM RATE MAXIMIZATION ALGORITHM

initiate: → φ ∈ [0, π/2]
repeat: → solve Pφ for given φ

initiate: → Rmin
ν , Rmax

ν

repeat: → Rν := (Rmin
ν + Rmax

ν )/2
→ solve the feasibility problem for Rν , φ

Rν ∈ Cone
MAC ∩ Cone

BC ,
∑K̃

k=1Tr(Λtwo
k )≤PR,Λtwo

k �0∀k,
→ if feasible Rmin

ν := Rν

→ else Rmax
ν := Rν

until: → Rmax
ν − Rmin

ν < ε
→ compute the search direction for φ : Δφ

numerical first derivative computation for sum rate
→ line search for choosing step size: t
→ update: φ := φ + tΔφ

until: → no further significant improvement on sum rate.

The iterations for the descent algorithm continues until the
difference at the sum rate becomes negligible for a new
iteration. The convergence and the optimality of the algorithm
are ensured through the related conditions of the employed
methods [11].

Remark 2: The search space for each φi in φ can be reduced
by some pre-optimizations, i.e., φi ∈ [φmin

i , φmax
i ] instead of

[0, π/2]. Since each information flow’s MAC single bound is
known readily (see (3),(4)), the feasibility of the corresponding
rate expression at the BC phase can be checked to satisfy the
given MAC rate or not, i.e., check if MAC and BC intersect
for single user bounds. If they intersect, calculating the angle
between this rate and its corresponding pair’s rate, this portion
can be excluded from the optimization space (see Fig. 2.c.).

B. Extensions to Maxmin Fairness and QoS Assurance

1) Maxmin Fairness: Depending on the instantaneous chan-
nel realizations and/or distances of the nodes to the relay,
sum rate maximization may lead some nodes to have a very
low transmission rate, which may be unfair but chosen so to
maximize sum rate over the network. In order to prevent such
situations, the Ris can be chosen such that maxmin-fairness
is applied over the whole network. Hence, for OWR, we aim
to allocate powers to individual messages such that fairness
between S/D pairs, i.e., mini Rone

i is maximized. Likewise, for
TWR, the covariance matrices are chosen such that fairness
between all nodes, i.e., mini min{Rtwo

U1,i, R
two
U2,i}, or between all

pairs, i.e., mini(Rtwo
U1,i + Rtwo

U2,i) is maximized. For both OWR
and TWR, the problem formulation will be same as POWR or
PTWR, except that the objective functions are changed with
the corresponding ones mentioned previously.

We outline the maxmin-fairness maximization algorithm
basing on Asum without going into details. Changing the
objective function correspondingly and applying Asum once
over the node set N , the maximal minimum rate is found
for any one i ∈ {1, ..., K̃}, say Rmaxmin

i . Then, we create a
constraint set Cmaxmin and add the constraint {Ri ≥ Rmaxmin

i }
to it. Moreover, we update the set of nodes T = N\{i} for
maxmin optimization. In the next iteration, we add Cmaxmin to
Asum, and maximize again the minimum of the rates in the set
T . In other words, while assigning a rate of at least Rmaxmin

i

to the ith node, we are assigning the highest maxmin rates to
the rest of the nodes in T . Continuing with this fashion until
T = ∅, and reducing the number elements of N with each
iteration, we allocate resources such that the most maxmin-
fair rates are allocated to the nodes.
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Fig. 3. Average sum rates versus SNR for OWR and TWR (K = 2, N = 2).

2) QoS Assurance: In order to provide sufficient and/or
required transmission rates to all nodes, QoS assurance can
be introduced, while maximizing the sum rate. In other
words, each node is supplied with the least transmission rate
it requires. Collecting all QoS related constraints on linear
combinations of Ri in a constraint set CQoS, we can add the
constraint {R1, · · · , RK̃} ∈ CQoS to both POWR and PTWR,
and use Asum correspondingly. The QoS constraints will be
taken into account during the SDP feasibility checks.

V. SIMULATIONS AND CONCLUSIONS

In this section, we present Monte Carlo simulation results.
Throughout the simulations, we use the MATLAB based
semidefinite tool Yalmip [12] to solve the designed semidef-
inite problems. The channel matrices are assumed to stay
constant over the two phases. All nodes have the same noise
variance, i.e., σ2

n = σ2
r = σ2

d, and the relay is assumed to have
a sum transmit power of node pairs, i.e., PR = KPs both for
OWR and TWR. The average signal-to-noise ratio is defined
as SNR = Ps/σ2

n. There are K = 2 node pairs, i.e., 4 users,
where each node is equipped with N = 2 antennas.

In Fig. 3, we compare the sum rates of both multiuser
MIMO OWR and TWR schemes vs. SNR. We assume
symmetric channel quality for both U1 and U2, and set
σ2

Hk
= σ2

Gk
= 1,∀k. Within each pair, users want to exchange

information, which is accomplished in four channel uses with
OWR (from U1 to U2, then from U2 to U1), and two channel
uses with TWR. As references for both OWR and TWR, we
plot sum rates when the relay serves the node pairs one by one
(TDMA manner), and also employs multiuser diversity (MD)
such that it chooses the best pair to serve depending on the
instantaneous channel conditions. The relay has M =KN =4
(for OWR) or M = 2KN = 8 (for TWR) antennas. It is
depicted that TWR offers a significant sum rate improvement
over OWR and recovers the spectral efficiency loss observed
in OWR. Even assigning 2KN =8 antennas to OWR scheme
can not recover the loss with respect to TWR. The ultimate
upper bounds, i.e., the MAC sum rate bound, are also shown
in Fig. 3. For OWR, increasing M shrinks the gap to the upper
bound. The significant advantage of using multiuser precoding
is confirmed by comparing the proposed multiuser schemes’
performance with the reference scenarios. Moreover, multiuser
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OWR with M = 8 can only perform as much as the TDMA
based reference scenario for TWR does.

The impact of unbalanced link quality is investigated in
Fig. 4, where we fix Ps/σ2

n = 20 dB and σ2
H =σ2

Hk
=1,∀k,

and vary σ2
G =σ2

Gk
∀k. For OWR, the transmission from U1

to U2 is limited with multiple access phase for high σ2
G/σ2

H,
whereas broadcast phase is the bottleneck for the the transmis-
sion from U2 to U1. Since all Hk∀k, and Gk∀k are consisted
in both phases for TWR, the broadcast phase turns out to the
performance limiting factor. We note that, for both schemes,
the gap between sum rates and upper bounds can be further
reduced by using higher complexity precoders, e.g., ZFDPC.

To conclude, multiuser TWR has been shown to supply
considerable sum rate improvement over OWR, but requires
more antennas at the relay, which may limit the number of
users to serve in practice.
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