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ABSTRACT Efficient beam alignment in wireless networks capable of supporting device mobility is
currently one of the major challenges in mmWave communications. In this context, we formulate the
beam-alignment problem via the adversarial multi-armed bandit (MAB) framework, which copes with
arbitrary network dynamics including non-stationary or adversarial components. Building on the well
known exponential weights algorithm (EXP3) and by exploiting the structure and sparsity of the mmWave
channel, we propose a modified (MEXP3) policy that requires solely one-bit of feedback information
(reducing the amount of exchanged data during the beam-alignment process). Our MEXP3 comes with
optimal theoretical guarantees in terms of asymptotic regret. Moreover, for finite horizons, our regret
upper-bound is tighter than that of the original EXP3 suggesting better performance in practice. We then
introduce an additional modification that accounts for the temporal correlation between successive beams
and propose another beam-alignment policy. Our numerical results demonstrate that our beam-alignment
policies outperform existing ones with respect to the regret but also to the outage, throughput and delay in
typical mobile mmWave settings.

INDEX TERMS beam alignment, exponential weights, mobile mmWave, multi-armed bandits

I. INTRODUCTION

TO cope with the ever increasing mobile data traffic, an
envisioned solution for future networks is to exploit the

large available spectrum in the millimeter wave (mmWave)
band [3], [4]. However, communicating at these frequencies
is very challenging as the transmitted signal suffers from
strong attenuation because of the high free-space path loss
and additional losses when the signal penetrates objects or is
absorbed by particles in the atmosphere [5]. All this leads to a
limited propagation range and to a few multipath components
(or a sparse mmWave channel). Hence, highly-directional
beams have to be employed by both the transmitter and the
receiver to concentrate the signal’s energy and compensate
all these losses. Such beams can be formed using high-gain
antenna arrays, which contain a large number of elements
and yet occupy little space thanks to the small wavelengths
at such high frequencies [6].

This represents the so called beam-alignment problem
where the beams of the transmitter and the receiver need
to be constantly aligned to ensure a reliable communication

link and overcome the difficulties of the mmWave channel.
Moreover, the beam-alignment policies need to support user
mobility and to cope with unpredictable and possibly non-
stochastic variations of the wireless network (e.g., caused
by the users’ behavior and intermittent connectivity). Under
such time-varying conditions, adjusting the beam-directions
and identifying optimal beamforming vectors implies sig-
nificant signaling and training overhead, which affects the
overall performance. Hence, online beam-alignment policies
capable of adapting on-the-fly to such changes become nec-
essary to enable future mobile mmWave applications such as
virtual reality headsets, autonomous vehicles, etc.

A. EXISTING WORK
The beam-alignment problem has been addressed in the
literature from two main perspectives: beam training and
compressed sensing (CS)[7]. The first approach consists of
training from a set of candidate beamforming vectors through
exhaustive search [8] or adaptive hierarchical search [9], [10]
to identify the best beam-direction in terms of a given metric
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(e.g., signal-to-noise ratio (SNR)). For instance, in the IEEE
802.11ad standard [10] the beam search is done with wide
beams whose widths are reduced progressively following a
multi-level hierarchical scheme. The main limitation of such
approaches resides in the large training feedback and coor-
dination overhead making it unsuitable for mobile mmWave
applications.

The CS-based methods [11], [12] use the sparsity of the
mmWave channel to formulate the beam-alignment as a
sparse recovery problem and reduce the training delay. The
channel parameters, such as the propagation path gains and
angles of arrival/departure, are estimated and used to con-
struct the beamforming vectors for data transmission. This
approach scales poorly with the number of antennas and re-
quires a precise prior knowledge of the channel structure and
sparsity. Moreover, these methods rely on strong assumptions
regarding the temporal variation of the channel (either static
or stochastic) during the estimation phase, which poses sev-
eral issues when the channel is highly dynamic and possibly
non-stochastic.

More recently, online optimization and machine learning
(ML) tools have been investigated to design beam-alignment
algorithms in dynamic wireless networks that rely on less
stringent assumptions and are more data-oriented. Two main
ML frameworks are exploited for beam-alignment: deep
learning and multi-armed bandits (MAB). The policies based
on the former make use of properly trained artificial neural
networks (ANN) as universal approximators learning the
relation between the mmWave environment and the optimal
beam-direction. Although promising, this approach relies on
a large amount of relevant training data and an optimal design
of the ANN architecture. Acquiring such relevant training
data is currently not trivial being both expensive and time-
consuming; not to mention the privacy and security issues
it may raise. More details can be found in [7], [13] and
references therein.

In this work, we adopt the MAB formulation leaving as
future investigation a more in-depth comparison between
the two ML-based approaches. In this framework, the beam
alignment is cast into a sequential decision-making problem,
in which the devices (e.g., a central node or the transmit-
ter/receiver) choose at each step a beam-direction, out of a
finite set of choices, and then observe a reward (e.g., the
resulting SNR at the receiver). The devices then learn the
best beam direction by jointly exploiting the observed past
rewards and exploring new beam directions. The authors in
[14] proposed the unimodal beam alignment (UBA) algo-
rithm that restricts the search set of the best directions by
using the correlation between consecutive beams and the uni-
modality of the power of the received signal. An online beam-
alignment algorithm for mmWave vehicular communications
was introduced in [15], which uses the vehicle’s direction of
arrival as a contextual information. In [16], another beam-
alignment policy was investigated, which requires the perfect
knowledge of the data rates for all chosen beam directions.
The policy in [17] incorporates the receiver’s location as

an out-of-band additional information to improve the beam
alignment. In [18], the proposed policy aims at reducing
the beam-alignment delay by exploiting previously acquired
knowledge about the channel.

All the existing MAB-based policies above [14], [15],
[16], [17], [18] depend on a central authority, which first
chooses jointly the best pair of beam directions of the trans-
mitter and the receiver, and then feedbacks the result to both
devices resulting in a high signaling overhead. Moreover,
these approaches are deterministic and exploit the so-called
upper confidence bound (UCB). This directly implies that
they are relevant only in stochastic and stationary wireless
environments and cannot account for other possibly non-
stationary components such as the behaviour and connectiv-
ity patterns of other devices.

B. OUR CONTRIBUTIONS

In this work, we focus squarely on distributed beam-
alignment policies that do not require the existence of a
central node nor rely on any assumptions regarding the
network dynamics, as opposed to [14], [15], [16], [17], [18].
For this, we build on the exponential weights algorithm for
exploration and exploitation (EXP3) in [19] to define novel
beam-alignment policies capable to adapt to such arbitrary
and unpredictable environments.

The exponential weights algorithm, also known as the
multiplicative weights, has been repeatedly discovered in
many fields ranging from optimization, game theory and
machine learning [20], and has since become ubiquitous.
Indeed, its applications range from data classification and
prediction [21], privacy-preserving data analysis [22], learn-
ing graphical models [23], pooling problems for blending
industries [24], learning the Nash equilibrium in various non-
cooperative games [25], etc.

To the best of our knowledge, our work is the first to
exploit exponential weights for beam alignment in mmWave
networks [1], [2]. Compared with traditional schemes, our
policies aim at learning the best beam-directions in an adap-
tive, online manner without relying on pre-deployed training
every time the channel changes. Indeed, it is possible to si-
multaneously transmit data while tracking good beams from
the beginning of the transmission. Of course, this comes with
a cost in terms of high outage levels in the early stages of
the learning process. The main advantage of our adaptive
policies is that this cost happens only once, in the beginning
of the transmission, and that they do not require dedicated
training every channel coherence time (nor to optimize the
training phase duration, which has a crucial impact on the
data transmission efficiency).

Finally, our online beam-alignment policies do not require
the perfect knowledge of the channel and relies solely on one-
bit of feedback that basically captures whether the target SNR
has been reached at the receiver.

Specifically, our main contributions can be summarized as
follows.
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• We model the beam alignment in arbitrarily dynamic
mmWave networks as an adversarial MAB problem
[26], in which the transmitter and the receiver select
their own beam directions individually while relying
only on a 1-bit of feedback. Thanks to the adversarial
formulation, which by definition is capable of coping
with environments that vary in a completely arbitrary
way, possibly non-stationary (as in our case) and even
adversarial, decoupling the learning at the transmitter
and the receiver becomes possible and results in splitting
the complexity of the beam-alignment process between
the two nodes.

• Building on the well-known EXP3 algorithm, we pro-
pose a novel modified exponential weights (MEXP3)
algorithm that exploits the sparse structure of the
mmWave channel. Based on this, we design a modified
reward that reinforces the exploitation of past good
beam-directions and penalizes the poor ones. We then
prove that the new MEXP3 has the no-regret property
and that the average regret decays to zero optimally as
O(1/

√
T ), where T denotes the time horizon, similarly

to the original EXP3. Moreover, for fixed and finite
horizons, our regret upper-bound for MEXP3 is tighter
(smaller multiplicative constant factor) than the original
EXP3 bound, suggesting better performance in practical
settings.

• We introduce a further reward modification and pro-
pose the nearest neighbor-aided beam tracking modified
exponential-weight algorithm (NBT-MEXP3), which
exploits the temporal correlation between consecutive
aligned beams to restrict the beam search to the neigh-
borhood of a previously found good beam. The property
of no-regret is conjectured for NBT-MEXP3 and vali-
dated via extensive numerical simulations.

• Although the asymptotic regret performance of the
proposed algorithms, O(1/

√
T ), is optimal and cannot

be improved under arbitrary network dynamics [27],
[28], our two novel policies MEXP3 and NBT-MEXP3
offer significant performance improvements in practical
mmWave settings. Our numerical simulations, show that
the proposed policies offer better practical performance
especially in terms of outage and throughput for both
single and multipath channels. Our modified rewards
lead to online learning algorithms that adapt better and
faster to the varying mmWave channel, which results in
lower outage and higher data rates compared to other
existing policies.

II. SYSTEM MODEL
We consider a point-to-point mmWave multiple-input
multiple-output (MIMO) system, as depicted in Fig. 1, con-
sisting of a fixed transmitter (Tx), equipped with MT anten-
nas andNT ≤MT radio frequency (RF) chains, and a mobile
receiver (Rx) equipped with MR antennas and NR ≤ MR

RF chains. Both nodes communicate via directional beams

which point towards certain spatial directions determined by
the hybrid (analog and digital) beamforming vectors fi ∈
CMT , i ∈ {1, . . . , A} and wj ∈ CMR , j ∈ {1, . . . , A} used
at the transmitter and the receiver respectively.

FIGURE 1. Beam-alignment in a point-to-point mmWave MIMO
system.

Hybrid beamforming codebook

The codebook consists of a set ofA hybrid beamforming vec-
tors designed offline using the procedure in [29, Algorithm
1], which offers high beamforming gains compared to other
existing codebooks in the literature [29]. The codebook size,
A = 2n, n ∈ N?, represents the total number of all possible
beam directions.

The analog beamformers designed to steer the transmitted
signal into a particular spatial direction are implemented us-
ing phase shifters, which cover uniformly the angular domain
between −π

2
and

π

2
. Since each beamforming vector corre-

sponds to a unique direction, our proposed online policies
will select a suitable beamforming vector (or equivalently the
beam direction) to meet the SNR requirements.

The main role of the digital weights is to optimize the
beamforming gain of the different beams (with respect to
an ideal beam pattern). They are fixed and tuned as in [29].
Also, the digital part of the codebook enables transmission
via multiple data streams, which could be exploited in multi-
user systems. Such a transmission mode is not possible
when using only an analog beamformer with a single radio
frequency (RF) chain.

mmWave channel model

The transmitted signal in the mmWave band experiences
limited scattering. Therefore, we use the well-known narrow-
band geometric model [9], [6], [30], [16] with L propagation
paths

H(t) =

√
MTMR

ρ

L∑
l=1

α` aR(θ`)aT (φ`)
† ej2πν`t, (1)

where ρ represents the average path loss [31]; α` ∼
N (0, σ2

α`
), ` ∈ {1, 2, .., L} is the complex path gain assumed

to follow a Gaussian distribution; σα` is the average power
gain; φ` and θ` are the angles of departure (AoD) and arrival
(AoA) respectively; ν` is the Doppler shift of the `th path;
aT (θ`) and aR(φ`) are the array steering vectors for the
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transmitter and the receiver. Assuming a uniform linear array
(ULA), aT (θ`) and aR(φ`) can be expressed as:

aR(θ`) =
1√
MR

[1, ej
2π
λ d sin(θ`), ..., ej(MR−1) 2π

λ d sin(θ`)]T ,

(2)

aT (φ`) =
1√
MT

[1, ej
2π
λ d sin(φ`), ..., ej(MT−1) 2π

λ d sin(φ`)]T ,

(3)
where d is the distance between the antenna elements within
the array and λ represents the wavelength of the transmitted
signal. While most of the results in this paper hold irrespec-
tive from the channel model and network dynamics, we use
the narrowband model in (1) to illustrate the performance of
the proposed algorithms in Sec. V.

User mobility
To model the mobility of the receiver, we exploit the bound-
less mobility model adopted in [32] assuming a bounded
two-dimensional movement area. This model is memory-
based and incorporates temporal correlations in the update
of the user’s speed and direction, which leads to realistic
settings and time-varying channel matrices H(t). It also
allows to impose limitations on the linear speed, acceleration
and rotation speed, and thus offers a good tradeoff between
accuracy and flexibility [32]. In this model, the speed v(t)
and direction of movement Θ(t) are updated every channel
coherence time Tc as follows:{

v(t+ Tc) = min{max{v(t) + ∆v, 0}, vmax},
Θ(t+ Tc) = Θ(t) + ∆ Θ,

(4)

where vmax is the maximum speed; the speed variation is
∆v ∼ U [−amax Tc, amax Tc] with amax being the maximum
linear acceleration and U denoting the uniform distribution;
∆Θ ∼ U [−ωmax Tc, ωmax Tc] is the direction variation with
ωmax denoting the maximum rotation speed.
In this work, we exploit this mobility model to generate dif-
ferent trajectories to simulate the receiver’s mobility. Every
update time Tc, the model parameters v(t) and Θ(t) are used
to determine the receiver’s position with respect to the trans-
mitter. Then using this new position, the channel parameters
AoA θ`(t) and AoD φ`(t) are updated as shown explicitly
in [33]. The other channel parameters ρ(t) and ν`(t) are also
updated every Tc depending on the new transmitter-receiver
distance and the speed respectively.

Received signal
The received signal yi,j at time t can be written as:

yi,j(t) = w†j(t) H(t) fi(t) s(t) + w†j(t) n(t), (5)

where i and j denote the indices of the transmit and receive
beams respectively. To simplify the presentation, we drop the
explicit temporal variability of the channel model parameters
hereafter. During the beam-alignment process, the transmitter
uses a beamforming vector fi to transmit its symbols s ∈ C
such that E[| s |2] = Ptr, where Ptr is the transmit power.
The receiver uses its own beamforming vector wj to recover

the transmitted signal. The channel noise vector, denoted by
n ∼ N (0, σ2

n), is a Gaussian distributed random variable.
The resulting SNR at the receiver depends on the beams fi
and wj and is expressed as

SNRi,j =
| w†jHfi |2 Ptr

σ2
n

. (6)

Assuming a stochastic channel model, we define an outage
as the event in which the SNR falls below a certain threshold
ξ, whose value represents the target SNR. The outage proba-
bility can be then defined as

Pout(i, j) , Pr[SNRi,j < ξ]. (7)

The choice of the threshold ξ will depend on the nature of the
application. For instance, if the mmWave link is used for an
application that requires high values of SNR, the value of ξ
should be high as well.

The outage probability is an important performance metric
in communications systems in which an average performance
is less relevant than guaranteeing a minimum instantaneous
quality of service [34], [35]. In 5G for instance, ultra-reliable
low latency applications depend crucially on instantaneous
reliability, which can be measured by the outage probability
[36]. However, minimizing the outage probability above is
quite a challenging problem as its explicit expression be-
comes intractable in practice (e.g., in our channel model with
mobility or when the statistics of the channel is unknown).
Indeed, even in the most simplified MIMO Rayleigh channel
with perfect knowledge of the channel statistics at the trans-
mitter, optimizing the outage probability remains an open
issue [37]. Thus, we propose here to exploit the multi-armed
bandit framework and sequential decision processes in an
effort to approach the minimum outage as detailed below.

III. PROBLEM FORMULATION
Multi-armed bandit learning approaches have been consid-
ered recently to jointly tune the beam-alignment vectors at
the transmitter and receiver fi and wj in such stochastic
environments [14], [15], [16], [17], [18]. However, these
works do not aim at minimizing the outage probability and
they rely on a central authority or node that is able to compute
the best pair of beams and to feedback the result to both the
transmitter and receiver.

Our main goal is to propose distributed and decoupled
beam-alignment policies at the transmitter and the receiver,
which choose their own beamforming vectors fit (beam-
direction it) and wjt (beam-direction jt) independently. Fur-
thermore, our policies do not require any knowledge on the
channel state or statistics and are only based on a single bit
of feedback.

Ideally, to minimize the outage probability in a time-
varying environment in a decoupled way, the transmitter
would like to select the best beam-direction it at time t
solving the following problem:

∀t, minimize
I∈{1,2,...,A}

Pout (I, jt) (8)
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and the receiver would do the same:

∀t, minimize
J∈{1,2,...,A}

Pout (it, J) . (9)

Several issues arise in this ideal formulation1. First, the ob-
jective functions at each time instant are typically unknown
at the transmitter and receiver. Indeed, the two objectives
are inter-dependent, which raises a causality issue, and the
channel statistics may be unknown at the transmitter. Second,
the definition of the outage probability becomes problematic
as the environment seen by one of the nodes (either the trans-
mitter or the receiver) depends on the decision process of
the other node, which effectively results in a non-stationary
environment.

All the above motivates the use of online optimization
and, more specifically, the use of the adversarial multi-armed
bandit (MAB) framework [26] to propose adaptive beam-
alignment schemes that approach these goals and which
do not require any assumptions on the network dynamics.
Indeed, since our beam-alignment problem is decoupled be-
tween the transmitter and receiver, the existing centralized
approaches based on stochastic MABs [14], [15], [16], [17],
[18] (which assume stochastic network dynamics) are no
longer relevant. As mentioned above, even if the wireless
channel is stationary the decoupled decision processes of
each of the nodes may not be so.

A. ADVERSARIAL MAB FORMULATION
The advantage of the adversarial MAB formulation described
below is that, by definition [26], it does not rely on any
assumptions on the network dynamics, which can vary in
a completely arbitrary way including adversary or non-
stationary components. This feature is precisely what allows
us to decouple the learning process between the transmitter
and receiver.

In this formulation, the transmitter and the receiver are
decision nodes that exploit separately an iterative online deci-
sion process as follows. At each time instant t ∈ {1, . . . , T },
where T is the time horizon or the transmission duration, a
decision node chooses an action, in this case a beam direc-
tion: it ∈ {1, . . . , A} at the transmitter and jt ∈ {1, . . . , A}
at the receiver. As a result of the transmission, we assume that
the receiver is able to compute a binary ACK-type of reward:

rit,jt(t) ,

{
1, if SNRit,jt(t) > ξ,
0, otherwise, (10)

which is then fed back to the transmitter. Based on this
observed reward, the decision nodes will update their action
choices and so on.

The intuition behind our chosen reward in (10) is that the
overall averaged reward over the transmission horizon T , i.e.,
1
T
∑T
t=1 rit,jt(t), offers an approximation or an empirical

measure of the outage probability. Moreover, assuming a

1This decoupled beam-alignment problem can also be interpreted as a
team game or a common goal non-cooperative game with unknown payoff
functions.

stochastic channel model, the expected reward of a fixed
beam pair (i, j) is directly linked to the outage probability
defined in (7):

E[ri,j ] = P [SNRi,j > ξ]

= 1− Pout(i, j),
(11)

where the expectation E[.] is taken over the randomness
of the channel. As shown above, maximizing the expected
reward is equivalent to minimizing the outage probability
in the stochastic case or the centralized beam-alignment
problem. In our decoupled beam-alignment problem, this
average reward represents an empirical measure of the outage
probability at each of the decision nodes.

B. REGRET PERFORMANCE METRIC
In the MAB framework, the notion of regret has been con-
sidered as the relevant performance metric that evaluates the
performance of an online policy [38], [14], [16]. The regret
measures the gap in the average reward between the online
policy and the best fixed oracle policy in hindsight over the
time horizon T . The latter is an ideal policy that maximizes
the overall reward and relies on the non-causal knowledge of
all the rewards during the entire horizon [19]. To be precise,
the average regret at the transmitter side in our case writes as:

RegT =
1

T

(
max
I

T∑
t=1

rI,jt(t)−
T∑
t=1

rit,jt(t)

)
. (12)

Similarly, the average regret at the receiver equals

RegR =
1

T

(
max
J

T∑
t=1

rit,J(t)−
T∑
t=1

rit,jt(t)

)
. (13)

An online policy has the property of no-regret if its av-
erage regret decays to (or less than) zero asymptotically:
lim sup
T→∞

RegQ ≤ 0, with Q ∈ {T,R} being the decision

nodes.
The no-regret property is an asymptotic performance guar-

antee ensuring that the online policy performs at least as good
as the best fixed (or oracle) policy in hindsight (i.e., having
perfect and non-causal knowledge of the networks dynamics
throughout the horizon T ). Quite remarkably, this is achieved
while relying only on strictly causal feedback amounting to a
single bit of information. To sum up, in the rest of the paper,
we propose several online policies in an effort to minimize
the regret at both the transmitter and the receiver.

IV. PROPOSED BEAM-ALIGNMENT POLICIES
As mentioned before, the beam-alignment represents a cru-
cial step in establishing a reliable link for data transmission
in mmWave systems. In this section, we present three beam-
alignment policies exploiting machine learning techniques
and adversarial MABs. The first policy is based on the
original exponential weights for exploration and exploitation
(EXP3) algorithm in [19], which will be detailed below. We
then propose two novel policies by modifying the chosen ac-
tions’ (or beams) rewards. Our policies draw inspiration from
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the sparse nature of the mmWave channel and the correlation
between successive beams, leading to better performance
results.

A. EXP3-BASED BEAM-ALIGNMENT POLICY
The main idea of EXP3 is to assign a probability to each
possible action, and then choose an action according to this
probability distribution, at each iteration t. Once an action
is chosen, the decision node receives a reward and, as a
result, it updates the probability distribution following an
exponential map that depends on the cumulative scores or
rewards up to that instant. In our case, the beam directions
that often provide an SNR above the threshold ξ are the
ones that are reinforced and have higher probabilities. In
other words, EXP3 increases the probability of actions with
good performance history, while not discarding completely
the exploration of other actions that may perform better in the
future; this effectively balances the data exploitation versus
data exploration.

More precisely, at iteration t, the transmitter chooses a
beam-direction it for data transmission according to the
probability distribution p̂T (t) whose entries are defined for
all i ∈ {1, 2, . . . , A} as:

p̂T,i(t) = (1− γ) pT,i(t) +
γ

A
, (14)

pT,i(t) =
exp(η GT,i(t− 1))
A∑
k=1

exp(η GT,k(t− 1))

, (15)

where GT,i(t − 1) =
∑t−1
τ=1 r̂T,i(τ) represents the cumu-

lative score of action i. Since only the reward rit,jt(t) of the
chosen beam it can be observed at time t, we need to estimate
other beams’ rewards. For this, we define

r̂T,i(t) =


ri,jt(t)

p̂T,i(t)
, if i = it,

0, otherwise,
(16)

which represents an unbiased reward estimator for all beams
i at time t [19].

The parameters η > 0 and γ ∈ (0, 1] are tuning or learning
parameters that tradeoff between data exploration and ex-
ploitation. Increasing the value of γ draws the probability
distribution away from the exponential Gibbs distribution
in (15) towards the uniform distribution, and hence moves
away from data exploitation towards more exploration. An
opposite behaviour is observed for the parameter η. When
increasing η the exponential Gibbs distribution moves away
from the uniform distribution (i.e., when η = 0) towards a
Dirac or a deterministic pure exploitation policy. Notice that
both parameters have to be very carefully tuned to optimize
the tradeoff exploration vs. exploitation.

After the transmission, the transmitter receives 1-bit of
feedback or the value of the reward rit,jt(t) from the receiver
and updates the cumulative scores as follows:

GT,i(t) = GT,i(t−1)+r̂T,i(t), ∀i ∈ {1, 2, . . . , A}. (17)

The new cumulative rewards will be then exploited to update
the transmitter’s probability distribution p̂T (t + 1) for the
next round and so on. These different steps are summarized
in the algorithm BA-EXP3.

Remark that the BA-EXP3 online policy consists of two
equally important ingredients: i) the exponential mapping in
(15) that reinforces the probabilities to choose beams that
have performed well in the past, while still exploring new
beams; and ii) the estimated rewards r̂T,i(t) based on which
the cumulative score in (17) is computed and which effec-
tively evaluates the performance of past explored beams.

The receiver runs a similar algorithm independently from
the transmitter. The two nodes’ learning processes are linked
via the feedback signaling. More precisely, the receiver uses
its own probability distribution p̂R(t), defined similarly as
in (14), to choose a beam-direction jt at round t. Then, the
receiver evaluates the binary reward for the chosen beam-
directions it and jt by comparing the received SNR with
the threshold ξ as in (10), and then updates its probability
distribution for the next round. We further assume that the
obtained reward is sent back to the transmitter via a reliable
control channel as a 1-bit feedback information 2.

BA-EXP3: Exponential Weight for Beam Alignment at Tx
Parameters: η > 0 and γ ∈ (0, 1]

Initialization: Gi(0) = 0 and pT,i(1) = 1/A, ∀i
Repeat for t = 1, 2, ..., T

Select action it with probability distribution p̂T (t)

Receive feedback rit,jt(t) ∈ {0, 1} from Rx
Update the cumulative rewards as in (17)
Update the distribution p̂T (t+ 1) via (14)

The following theoretical result from [19] indicates that
the expected average regret of algorithm BA-EXP3 decays to
zero as O(1/

√
T ). This decay rate is optimal and cannot be

improved in the absence of strong stationarity assumptions
regarding the underlying network dynamics [27], [28]. As
argued in Sec. III, in our distributed beam-alignment prob-
lem, the wireless environment depends on the other node’s
decisions and, hence, does not evolve following a stochastic
stationary process.

Corollary 1 (Theorem 1 in [19]) If the BA-EXP3 beam-
alignment policy is run at both the transmitter and receiver

with the parameters η =
γ

A
and γ = min

{
1,

√
A logA

(e− 1) T

}
for a horizon T , then the expected average regret is upper

2The control channel can be either a microwave channel as proposed in the
ECMA 387 standard [39], or a mmWave channel as in the IEEE 802.15.3c
[40] and IEEE 802.11ad [41] standards. On the one hand, the directional
mmWave channel is low-cost, but may suffer from poor reliability due to
difficult propagation characteristics. On the other hand, the omni-directional
microwave channel is more reliable at the expense of additional hardware
and energy consumption [42].
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bounded as:

E[RegQ] ≤ 2
√
e− 1

√
A logA

T
, (18)

with e = exp(1), and the expectation is taken over the
randomness of the BA-EXP3 policy.

The upper bound of the expected average regret in (18)
shows that the BA-EXP3 policy is asymptotically optimal
when T grows large. Also, when the transmission horizon
T is finite or small, this bound also provides a worst-case
guarantee in terms of the gap between the empirical outage
of BA-EXP3 compared with the ideal oracle policy, which
depends only on T and the number of available beams A.

B. MODIFIED EXPONENTIAL WEIGHTS ALGORITHM
(MEXP3)
Measurement campaigns [43], [44], [45] have demonstrated
the existence of only a few multipath components in the
mmWave propagation environment, which leads to a limited
number of available propagation paths with high enough
SNR for data transmission. We exploit this channel’s sparsity
to adapt the BA-EXP3 algorithm and identify faster the good
beam-directions.

To do so, let us denote the global reward matrix R(t) ∈
{0, 1}A×A such that

R(t) = [ri,j(t)]1≤i≤A
1≤j≤A

(19)

where the rewards are defined in (10). The matrix R(t)
contains the rewards of all possible pairs (i, j) at time t and is
not fully available at any of the two nodes. A typical example
of a reward matrix R(t) is illustrated in Fig. 2 for a particular
mmWave channel setting and A = 16 (complete details will
be provided in the next section). Due to the characteristics of
the mmWave channel, the matrix R(t) has a particular sparse
structure. The few non-zero entries are all grouped in one
or a few clusters and correspond to the set of good beam-
directions.

Hence, the goal of our online policies is to identify the
indices i (beam-directions at Tx) and j (beam-directions at
Rx) that correspond to a unit value in this matrix (to avoid an
outage event and guarantee a minimum SNR at the receiver).
Based on this observation, we leverage the structure of the
reward matrix to define a modified reward:

r̃T,i(t) =



−1

1− p̂T,i(t)
, if i = it and rit,jt(t) = 0,

β

p̂T,i(t)
, if i = it and rit,jt(t) = 1,

0, otherwise,
(20)

where β ≥ 1 is a weighting parameter which affects the beam
selection probabilities and, hence, represents another param-
eter that tradeoffs between data exploration and exploitation
and which needs to be carefully tuned.

The intuition behind the above modified reward is to
reinforce good beam directions (i.e., the ones that provide
rit,jt(t) = 1) by associating them a reward β-times higher
than the original BA-EXP3. Moreover, the poor beams
(rit,jt(t) = 0) are penalized by associating them a strictly
negative reward as opposed to zero. Dividing by the quantity
1 − p̂T,it(t) leads to an important and fast penalization of a
past good beam that has accumulated a high probability to be
chosen, but which has become obsolete because of changes
in the mmWave environment. Also, dividing by 1 − p̂T,it(t)
insures a soft penalization of a beam with low probability
to avoid discarding it completely as it may become a future
good beam. To sum up, this denominator penalizes the poor
beams according to their past performance and not randomly
by just assigning a negative reward. Therefore, the modi-
fied reward encourages the algorithm to adapt faster to the
changes in the channel and to keep track of the good beam
directions.

FIGURE 2. Illustration of a typical reward matrix in mmWave
channels, for the setting: MT = 32, MR = 4, L = 1, A = 16,
ξ = 6 dB and a carrier frequency fc = 28 GHz.

MEXP3: Modified Exponential Weight for Beam Alignment at Tx
Parameters η > 0, β ≥ 1 and γ ∈ (0, 1]

Initialization: Gi(0) = 0 and pT,i(1) = 1/A, ∀i
Repeat for t = 1, 2, ..., T

Select action it with probability distribution p̂T (t)

Receive feedback rit,jt(t) from Rx
Construct the modified rewards r̃T,i(t) as in (20)
Update the cumulative rewards:

GT,i(t) = GT,i(t− 1) + r̃T,i(t), ∀i
Update the distribution p̂T (t+ 1) via (14)

Although the new algorithm MEXP3 may seem quite
similar to the original algorithm BA-EXP3 at first, our new
modified reward r̃T,it(t) in (20) results in a very different
behavior with respect to the regret and other performance
metrics. This modified reward changes one of two key ingre-
dients of the original EXP3 algorithm: the cumulative scores
GT,i(t) =

∑t
τ=1 r̃T,i(τ) that evaluate the performance of

the past explored beams, which are then mapped on the
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probability simplex (via the exponential map). In particular,
the no-regret proof and showing that the expected cumulative
regret of MEXP3 grows sub-linearly with respect to the time
horizon is very different than the proof in [19]. One of the
main challenges we have overcome is that r̃T,i(t) no longer
represents an unbiased reward estimator for beam i. All the
details behind our proof are presented in the Appendix.

Theorem 1 If the MEXP3 policy is run at both the
transmitter and receiver with the parameters A ≥ 3,

η =
γ

βA
, γ = min

{
1− 2

A ,
√

2A lnA
e T

}
and β ≥

max

{
1,

√
2

A

(
γ − γ

A

)−1}
, then the expected average re-

gret is bounded by:

E[RegQ] ≤
√

2 e

√
A lnA

T
. (21)

Notice that the expectation of the regret in Theorem 1 is
taken only with respect to the random sequence of the chosen
beam directions. This means that the no-regret property holds
irrespective from the underlying system dynamics, which can
be arbitrary and even non stationary.

The above result shows that MEXP3 provides an optimal
asymptotic regret performance similarly to the original BA-
EXP3; the regret decays as O(1/

√
T ). Even though we

cannot improve this decay rate under arbitrary and non-
stationary network dynamics, the upper bound we obtain for
MEXP3 is tighter than the one for BA-EXP3 in the multi-
plicative constant, which is important in the finite horizon
regime. This indicates that MEXP3 outperforms BA-EXP3 in
terms of regret and that the gap between the two algorithms
is larger for relatively short transmissions (finite T ).

C. NEAREST NEIGHBOUR-AIDED BEAM TRACKING
(NBT-MEXP3)
Here, we propose an additional modification by using a con-
textual information to accelerate the beam search and track-
ing. Our empirical observations of the temporal evolution
of the reward matrix R(t) indicates a temporal correlation
between the locations of its unit-valued clusters that depends
on the mobility of the receiver (speed, orientation, etc.)
and on the wireless characteristics (blockage, line-of-sight
(LOS), non-LOS (NLOS), etc.). The location of the clusters
does not change abruptly or randomly but rather smoothly
following the mobility of the receiver.

Concretely, this means that future good beam directions
are more likely to be among the neighboring directions that
have performed well in the past. Therefore, we can exploit
this intuition to keep track of good beams with the aid of their
nearest neighbours. This new feature increases the tracking
speed of the good beams by adapting to the user’s mobility
and other changes in the channel. For this, we modify the
rewards of the non-chosen beams as follows:

r̃T,k (t) =
β′ rit,jt(t)

p̂T,it(t)
, ∀k ∈ Vit , (22)

where Vit = {it−1, it+1} is the set of the nearest neighbors3

of the chosen beam direction it at time t and parameter β′ ∈
[1, β], which plays a similar role as β for the neighbouring
beams.

Combining the modified reward in (20) for the chosen
action it with the reward in (22) for its neighbors, we
construct a new reward vector r̃T (t) = [r̃T,k(t)]k∈{1,...,A},
which is used to update the cumulative rewards for each
beam-direction, as follows

r̃T,k(t) =



(−1)1+rit,jt (t) β rit,jt (t)

1− rit,jt(t) + (−1)1+rit,jt (t)p̂T,k(t)
, if k = it,

β′ rit,jt(t)

p̂T,k−1(t)
, if k = it + 1,

β′ rit,jt(t)

p̂T,k+1(t)
, if k = it − 1,

0, otherwise.
(23)

The resulting NBT-MEXP3 algorithm is detailed below.

NBT-MEXP3: Nearest Neighbour-aided Beam Tracking with
MEXP3 at Tx

Parameters η > 0, 1 ≤ β′ ≤ β and γ ∈ (0, 1]

Initialization: Gi(0) = 0 and pT,i(1) = 1/A, ∀i
Repeat for t = 1, 2, ..., T

Select action it with probability distribution p̂T (t)

Receive feedback rit,jt(t) from Rx
Construct the reward vector r̃T (t) as in (23)
Update the cumulative rewards:

Gi(t) = Gi(t− 1) + r̃T,i (t) , ∀i
Update the distribution p̂T (t+ 1) via (14)

Although finding a sub-linear upper bound for the regret
of NBT-MEXP3 is not trivial, our extensive numerical sim-
ulations indicate that the NBT-MEXP3 policy holds the no-
regret property asymptotically.

Conjecture 1 The proposed NBT-MEXP3 beam-alignment
policy has the no-regret property and the average regret
decays to zero as O(1/

√
T ), similarly to BA-EXP3 and

MEXP3.

The proof of the above conjecture is left open for future
work. By following a similar approach as in the proof of
Corollary 1 and Theorem 1, an encountered difficulty comes

from the ratio
pT,k(t)

p̂T,it(t)
, k ∈ Vit , which appears in the

expectation of the regret and which cannot be bounded ap-
propriately. This term is due to our modified reward r̃T,i(t)
in (23) assigning a non-zero reward to the neighbouring beam
of a good direction.

3We focus only on the two nearest neighbors for simplicity reasons and
also based on our empirical observations. Choosing a larger (or optimized)
size for the neighbors’ set could be of interest for future research.
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V. NUMERICAL RESULTS
In this section, we evaluate the performance of the pro-
posed beam-alignment algorithms in terms of regret, outage,
throughput and delay in a typical mmWave setting described
in Sec. II and specified here. Notice that our online beam-
alignment policies and their theoretical guarantees do not rely
on any assumptions on the underlying network dynamics.
This implies that the conclusions drawn below carry over
many other mmWave settings incorporating various practical
aspects and specifications.

The plotted curves are averaged over 10, 000 scenarios
or time-varying channel realizations over the horizon T .
Our online policies do not rely on any initial knowledge of
the wireless environment (i.e. the beam search starts with
a random choice following the uniform distribution). The
channel is assumed to remain constant during a transmission
frame Tc, which represents the channel coherence time. The
duration Tc consists of several sub-frames such that each sub-
frame represents one iteration of the online beam-alignment
policies at both Tx and Rx or, more precisely, the time
interval between two successive feedback signals. In our
simulations, we consider a channel coherence time Tc = 1.3
ms [46] and a sub-frame duration of 250 µs [47]. This results
in 5 sub-frames per coherence interval, meaning that the
channel conditions change every 5 iterations of our online
policies, because of device mobility, time-varying wireless
characteristics, etc. We consider the mmWave MIMO point-
to-point link of Fig. 1 with MT = 42, NT = 4, MR = 32
and NR = 2. Both nodes are equipped with ULAs with λ/2
spacing between their elements. The transmission power is
Ptr = 37 dBm. The size of the beamforming codebook is
A = 32 for a single-path channel, which ensures a good
tradeoff between beam-alignment accuracy and exploration
cost as detailed in [1]. The threshold ξ for the SNR at the
receiver is fixed at 6 dB.

Regarding the wireless channel matrix, the commonly
used geometric model in (1) is adopted with α` ∼ N (0, 1),
the carrier frequency fc = 28 GHz and a bandwidth of
1 MHz, which meets the narrowband channel assumption
according to the maximum delay spread measurements in
[48]. The noise power density equals −174 dBm/Hz. The
pathloss ρ is calculated following the close-in free space
model in [31], [48] as follows

ρ = 20 log
4πfc
c

+ 10 np logD [dB], (24)

where c = 3 × 108 is the speed of light, D is the distance
between the transmitter and receiver and np is the pathloss
exponent, which equals 2.1 for LOS and to 3 for NLOS
[48, Table 3]. The Doppler shift is updated every Tc such

that ν` =
v fc
c

as in [6], [30]. Unless stated otherwise, we
consider a single-path channel (L = 1). For the multipath
channel L = 3, we consider a LOS path combined with
two NLOS paths determined by two reflectors positioned
randomly between the transmitter and the receiver for each
new channel realization.

The location of the transmitter is fixed (e.g., a base station).
The receiver (a mobile user) is assumed to move in the
area covered by the transmitter’s ULA within a distance less
than 200 m. The mobility model in (4) is used with the
typical parameters: speed vmax = 30 km/h, acceleration
amax = 2 m/s2 and rotation speed ωmax = π/4 rad/s.
The position of the receiver is updated every transmission
frame of duration 1.3 ms, which corresponds to the channel
coherence time under our dynamic conditions [46]. For each
receiver position, a new channel matrix H is computed by
updating its parameters as detailed in Section II. In other
words, the channel conditions change (implying that the good
beam directions that meet the SNR requirement also change)
every 5 iterations of our algorithms in the figures below.

The learning parameters of our online policies are chosen
empirically based on extensive numerical simulations. Here,
we set η = 0.02, γ = 0.001 for BA-EXP3; η = 0.023,
γ = 0.03 and β = 10 for MEXP3; η = 0.01, γ = 0.001,
β = 10 and β′ = 5 for NBT-MEXP3. Naturally, we
exploit the values and the ranges obtained in Corollary 1
and Theorem 1 as starting point. Notice that these values are
optimal only with respect to the upper-bounds of the regret
and are not necessarily optimal in terms of the actual regret.
A more efficient way to fine tune these parameters is a non-
trivial issue to be investigated in future work.

In what follows, we compare our policies with existing
ones in the literature but also with several relevant bench-
marks, which we briefly described below.
• Centralized-UCB: the centralized beam-alignment pol-

icy proposed in [16] based on stochastic MABs and the
upper-confidence bound (UCB) algorithm.

• Exhaustive search: the brute-force policy that tries all
A2 beam pairs (one at each iteration) in a round-robin
fashion and selects the best one; this optimal beam is
then exploited until the channel changes and the process
is reinitialized.

• Rand: the random beam-direction is drawn following
the uniform distribution.

Average regret
We start by comparing our policies to the original BA-EXP3
and the Centralized-UCB at the transmitter side. The average
regret is plotted in Fig. 3. We also plot the upper bounds of
the expected average regret of BA-EXP3 and MEXP3 given
in Corollary 1 [19] and Theorem 1.

We first notice that all policies based on exponential learn-
ing: BA-EXP3, MEXP3 and NBT-MEXP3, yield an average
regret lower and decaying faster compared with Centralized-
UCB. This can be explained by the fact that the Centralized-
UCB policy has a larger set of choices, theA2 beam-direction
pairs, whereas the distributed policies have a set of only A
beam-directions. The larger search set of Centralized-UCB
requires more data exploration, which leads to more regret.

Also, both our modified policies outperform the original
BA-EXP3. They are more adapted to the varying mmWave
channel since they are inspired from its particular structure.
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FIGURE 3. The average regret at the transmitter decays faster for our
proposed policies MEXP3 and NBT-MEXP3, with a slight advantage for the
latter. The three distributed policies based on exponential learning clearly
outperform the Centralized-UCB policy.

The upper-bounds validate our theoretical results: the ob-
tained bound for MEXP3 in Theorem 1 is tighter than the
bound for the BA-EXP3.

Outage
Fig. 4 illustrates the empirical outage of the different beam-
alignment policies. Our new algorithms, MEXP3 and NBT-
MEXP3, outperform clearly the original BA-EXP3 and the
other policies. This highlights the interest of exploiting the
special structure of the mmWave channel and modifying the
rewards as in MEXP3. The nearest neighbours additional
reward modification in the NBT-MEXP3 policy provides
a slight performance improvement compared to MEXP3.
Also, the exhaustive search policy results in high outage
similarly to the random policy. This is mainly caused by the
fact that only 5 beam pairs can be explored from the total
of A × A = 1024 possibilities before the change in the
channel conditions occurs. In turn, this effectively renders
the gathered information about those 5 trials outdated and
irrelevant.

Regarding the number of iterations needed to reach an
outage below 10% (around 2000 iterations for MEXP3), it
is equivalent to a duration of 500 ms. Although 500 ms may
seem long at first, it is a low price to pay for the entire trans-
mission duration. Indeed, once these early learning stages
have passed, our method is capable to adapt to the network
changes and track good beams while reliably transmitting
data. At the opposite, traditional methods have to perform
dedicated training and identify good beam directions every
time the channel has changed (every Tc) before transmitting
any data at all, having a crucial impact on the effective
performance.

Effective throughput
Fig. 5 illustrates the evolution of the average achievable rate
as a function of the iterations. In our proposed policies, we
do not separate the communication in two distinct phases:
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FIGURE 4. Our novel policies, MEXP3 and NBT-MEXP3, outperform the
original BA-EXP3, Centralized-UCB as well as the other benchmarks. This
shows the importance of exploiting the structure of the mmWave channel and
of our modified rewards to reach lower outage.

beam-alignment training and data transmission. Instead, the
transmitter and receiver communicate effectively during the
whole frame while adjusting the beam-directions (at the cost
of higher outage levels in the early learning stages). In Fig. 5,
we make the same assumption for Centralized-UCB and ex-
haustive search policies for comparison purposes. Our novel
policies MEXP3 and NBT-MEXP3 outperform the original
BA-EXP3 and the other benchmarks in terms of the speed in
reaching higher data rates.
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FIGURE 5. Exploiting neighbouring beams (NBT-MEXP3) is beneficial in
achieving higher average rate.

Average delay

Here, we compare the average beam-alignment delay of the
three exponential learning policies, which represents the av-
erage time interval required to identify good beam-directions
that provide an SNR above the threshold for a given channel.
Fig. 6 depicts the average delay as a function of the SNR
threshold for two different codebook sizes A = {8, 32}.
We notice that reaching higher SNR thresholds require more
exploration time to find good beams. This highlights the

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3033419, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

latency vs. reliability tradeoff between the delay and the SNR
at the receiver.
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FIGURE 6. The average delay as function of the SNR threshold ξ and for
codebook sizes A = {8, 32}. All exponential learning policies lead to similar
performance with a slight advantage for the NBT-MEXP3 policy.

Regarding the impact of the codebook sizeA, Fig. 6 shows
that the average delay increases with the codebook size.
Indeed, the beams of a larger codebook are narrower and
induce more delay given that the search set of beams is larger.
However, using a large codebook allows to focus the signal’s
energy in a more compact angular domain to reach higher
beamforming gains, which illustrates again the latency vs.
reliability tradeoff.

Impact of user mobility
We now investigate the ability of our NBT-MEXP3 and
MEXP3 algorithms to support high-mobility conditions and
their impact on the empirical outage. We compare the outage
performance obtained with the following mobility parame-
ters: vmax = 30 km/h, amax = 2 m/s2 and ωmax = π/4
rad/s (low-mobility); and with more dynamic parameters:
vmax = 110 km/h, amax = 5 m/s2 and ωmax = π/2
rad/s (high-mobility). In Fig. 7, we can see that increasing
the mobility of the receiver leads to higher outage levels
as expected. Higher mobility implies more frequent changes
in the mmWave channel which affects the quality of the
beam alignment and results in lower SNR. Moreover, the
proposed algorithms need more iterations to reach low outage
levels compared to the low-mobility setting. Fig. 7 shows
that our proposed policies may be suitable for high-mobility
mmWave applications with an increased delay cost.

Impact of multipath channel
We compare the outage performance of the proposed beam-
alignment policies, MEXP3 and NBT-MEXP3, in a multipath
channel (when L = 3) composed of one LOS path and
two NLOS components and the single LOS channel (when
L = 1). Fig. 8 shows the ability of the proposed policies
to adjust the beams even in a multipath channel with an
additional exploration cost, as it takes longer to reach lower
outage levels. This can be explained by the less favorable
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FIGURE 7. Impact of the user’s speed: higher mobility leads to higher outage
levels.

propagation conditions (involving higher path loss for NLOS
paths combined with possible destructive combination of
multipath components).
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FIGURE 8. Multipath components and NLOS paths lead to higher outage and
increase the exploration cost:

COMPLEXITY VS. PERFORMANCE
Regarding the complexity of the various policies, we discuss
here the scalability of each iteration in function of the code-
book size A. Exhaustive search and the random policies have
a constant cost,O(1), as only one pair of beams can be tested
at each sub-frame or iteration. For Centralized-UCB policy,
the complexity of each iteration scales linearly with the
number of available choices, in this case the number of joint
beamforming pairs,O(A2). The complexity of all distributed
online policies based on the adversarial MAB framework:
BA-EXP3, MEXP3 and NBT-MEXP3, also scales linearly
with the number of choices, which in this case represents
the number of individual beams at each decision node, i.e.,
O(A) (the size of the probability distributions updated at
each iteration).

The above highlights the tradeoff between complexity
and performance. The least complex policies are the ones
which perform quite poorly in terms of performance (random
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and exhaustive search). Remarkably, our online policies al-
lows one to distribute the complexity between the transmitter
and receiver, resulting in relatively low complexity policies
that are also capable of adapting to the dynamic and un-
predictable changes in the network. Centralized-UCB suffers
from the larger number of joint beam pairs, A2, and, because
it inherently relies on stochastic and stationary channel as-
sumptions, it is not suitable to multi-user scenarios, in which
the network dynamics will depend on other decision nodes
and will hence be non-stationary.

On the contrary, our distributed online policies rely on no
assumptions on the underlying network dynamics and can be
extended to multi-user scenarios as discussed below.

VI. EXTENSIONS TO WIDEBAND, MULTI-USER
MMWAVE NETWORKS
For the sake of simplicity and clarity of presentation, we
have focused in this paper on a narrowband single point-to-
point mmWave link. The extension to wideband mmWave
networks (multi-carrier or single-carrier) involves adapting
the codebook design (specifically the digital part of the
beams) as in [49], [50]. Once this is done, our online policies
can be easily exploited. The amount of feedback bits over the
control channel would equal the number of carriers (one bit
per carrier) in the multi-carrier case.

The extension of the proposed policies to multi-user inter-
ference channels is straightforward [2]. The adversarial MAB
framework and our online policies based on the exponential
weights algorithm rely on no assumptions on the underlying
network dynamics, which can easily incorporate the inter-
ference from other transmitter-receiver pairs. The one-bit
feedback mechanism would operate in a similar manner for
each individual pair, under the mild assumption that each one
has access to an interference-free control channel.

In the uplink (multiple access channels) or the downlink
(broadcast channels), the design of the multi-user beamform-
ing codebooks is much more involving and requires non
trivial interference management, allocation of the multiple
antennas over the served users, etc. Nevertheless, once the
codebooks have been properly designed and each transmit-
ter and receiver has access to its own finite set of actions
(beams), the multi-armed bandits framework and our online
policies based on the exponential weights algorithm can be
easily adapted. The feedback mechanism would require a
number of control channels equal to the number of users
(as in the multi-user interference channels) knowing that
only a single bit required to/from each of the users. At last,
in the downlink, the transmitter would have to wait for all
one-bit feedback signals to arrive from the receivers before
transmitting new data.

VII. CONCLUSIONS
In this paper, we address the beam-alignment problem in dy-
namic mmWave networks. We exploit the adversarial multi-
armed bandit framework to design distributed policies, in
which the transmitter and the receiver choose their beams

separately while relying only on a one-bit feedback. Building
on the well known exponential weights algorithm (EXP3),
we propose two novel beam-alignment policies (MEXP3 and
NBT-MEXP3) that exploit the mmWave characteristics and
lead to tracking optimal beam directions more efficiently.
We prove rigorously that our MEXP3 online policy has the
no-regret property, while a conjecture is provided for NBT-
MEXP3 (validated via extensive simulations).

The performance of the proposed algorithms is demon-
strated via numeric results in terms of regret, outage, through-
put and average delay in a practical mmWave setting. We
show that our policies outperform the original BA-EXP3
and other existing centralized policies by being capable to
adapt to the rapid and unpredictable changes of the mmWave
channel. Regarding the performance gap between our two
novel algorithms, NBT-MEXP3 only slightly outperforms
MEXP3. One possible improvement lead is to exploit the
mobility model to predict the user’s position and orientation.

VIII. APPENDIX
PROOF OF THEOREM 1
We start by proving the following lemma which will be
exploited in the main proof 4.

Lemma 1 For the parameters A ≥ 3, η =
γ

βA
, and β ≥

max

{
1,

√
2

A

(
γ − γ

A

)−1}
and 0 < γ ≤ 1− 2

A
, we have

pT,it(t) r̃
2
T,it(t) ≤

β2 A

2 (1− γ)
, ∀t ≥ 1.

Since 0 ≤ pT,it(t) ≤ 1, to prove this result, it suffices to
show that for all t ≥ 1

0 ≤ 2 (1− γ) β 2rit,jt (t)

β2 A
(

1− rit,jt(t) + (−1)1+rit,jt (t)p̂
T,it (t)

)2 ≤ 1,

(25)
We distinguish the two cases depending on the value of
the reward of the chosen actions. a) If rit,jt(t) = 1, the

inequalities in (25) are met for γ ≤ 1− 2

A
. b) If rit,jt(t) = 0,

the inequalities in (25) are true for

β ≥ max

{
1,

√
2

A

(
γ − γ

A

)−1}
.

For the main proof of Theorem 1, we define the sum
St ,

∑A
i=1 exp (η GT,i (t− 1)) , ∀t ≥ 1. Then, for any

A > 1, η > 0, β ≥ 1 and 0 < γ < 1, we have the following
ratio

St+1

St
=

∑A
i=1 pT,i(t) exp (η r̃T,i(t)) . (26)

From Lemma 3.3 in [19] and the inequality r̃T,i(t) ≤
βA

γ
,

the following holds:

exp (η r̃T,i(t)) ≤ 1 + η r̃T,i(t) + ΦM (η) r̃2T,i(t)

4We provide a proof to Theorem 1 at the transmitter side as similar steps
hold for the regret bound at the receiver.
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with ΦM (η) =
exp(Mη)− 1−M η

M2
and M =

βA

γ
.

Using this inequality, the ratio in (26) can be expressed as

St+1

St
≤ 1 + η pT,it(t) r̃T,it(t) + ΦM (η) pT,it(t) r̃

2
T,it(t),

(27)
since the unchosen beams at time t have a zero reward.

Next, the idea is to upper bound the last two terms of the
inequality (27) as follows:

pT,it(t) r̃T,it(t) ≤
β rit,jt(t)

1− γ
, ∀t ≥ 1, (28)

pT,it(t) r̃
2
T,it(t) ≤

β2 A

2 (1− γ)
,∀t ≥ 1, (29)

the latter follows from Lemma 1.
Since η > 0 and ΦM (η) > 0, combining (27), (28), (29) and
the fact that 1 + x ≤ exp(x), ∀x ∈ R leads to

St+1

St
≤ exp

(
η β rit,jt(t)

1− γ
+

ΦM (η) β2 A

2 (1− γ)

)
. (30)

Now, by first taking the logarithm and then summing over
t = 1, ..., T in the above, we further obtain

ln
ST+1

S1
≤ η β

1− γ

( T∑
t=1

rit,jt(t)

)
+

ΦM (η) β2 A

2 (1− γ)
T . (31)

Since S1 = A and ST +1 ≥ exp (η GT,k(T )), for an
arbitrary and fixed k ∈ {1, . . . , A}, we get

ln
ST +1

S1
≥ η GT,k(T )− lnA, ∀k (32)

with GT,k(T ) =
∑T
t=1 r̃T,k(t).

Combining (31) and (32), we can bound the overall re-
wards of the algorithm, denoted by GAlg, as follows

GAlg ,
T∑
t=1

rit,jt(t)

≥ 1− γ
β

T∑
t=1

r̃T,k(t)− 1− γ
η β

lnA− ΦM (η) β A T
2η

Taking the expectation with respect to the distribution of
the chosen beams 〈i1, ..., iT 〉 in the random online policy, we
obtain

E[GAlg] ≥ 1− γ
β

T∑
t=1

E[r̃T,k(t)]−1− γ
η β

lnA−ΦM (η) β A T
2η

,

with

E[r̃T,k(t)] =


β, if rk,jt(t) = 1,

−p̂T,k(t)

1− p̂T,k(t)
, if rk,jt(t) = 0.

We can now show that

E[GAlg] ≥ (1−γ)T − 1− γ
η β

lnA−ΦM (η) β A T
2η

, ∀t ≥ 1.

Next, let EGmax , max
I,J

∑T
t=1 E[rit,jt(t)], denote the

expected cumulative rewards of the oracle best solution in
hindsight. Knowing that it can’t be higher than T , as all
rewards are either 0 or 1, we show that

EGmax − E[GAlg] ≤ γ T +
1− γ
η β

lnA+
ΦM (η) β A T

2η
.

(33)

Substituting ΦM (η) =
γ2

β2 A2

(
exp(

βηA

γ
)− 1− βηA

γ

)
and η =

γ

β A
in (33) yields to

EGmax − E[GAlg] ≤ (1− γ) A lnA

γ
+

exp (1) γ T
2

.

Hence, the expected average regret is upper bounded as

EGmax − E[GAlg]

T
≤ A lnA

γ T
+

exp (1) γ

2
.

The upper bound above is a convex function with respect
to γ. We can thus minimize it and obtain the optimal step-

size γ =

√
2 A lnA

exp (1) T
and the following optimal bound of

the expected average regret

EGmax − E[GAlg]

T
≤
√

2 exp (1)

√
A lnA

T
,

which completes our proof.
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